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Characterization and targeting of the ALDH subpopulation in ovarian cancer 
Charles N. Landen, Jr., MD, MS 

University of Alabama at Birmingham, Birmingham, AL 

Ovarian Cancer Academy OC093443 2010-2011 Annual Report 

 

INTRODUCTION:  
 

While most ovarian cancer patients initially respond to chemotherapy, most will ultimately recur 

and succumb to disease, suggesting that there is a subpopulation of cells within a heterogeneous 

tumor that has either inherent or acquired resistance to chemotherapy
1
. Recently subpopulations 

of cancer cells in solid tumors have been observed to have properties of stem cells, and therefore 

designated as “cancer stem cells” (CSC’s) or tumor initiating cells (TIC’s) 
2-3

. The intent of this 

project is to characterize whether ovarian cells that express aldehyde dehydrogenase 

(ALDH1A1) have cancer stem cell properties, and if targeting ALDH1A1 would lead to a 

reversal of the chemoresistant properties. Characteristics of cancer stem cell that will be assessed 

include tumorigenicity experiments, evidence of multipotentiality, and enhanced resistance to 

chemotherapeutics. The effects of ALDH1A1 downregulation will be determined both in vitro 

and in vivo, using small interfering RNA (siRNA) encapsulated in nanoparticles that allow 

efficient in vivo delivery. If our hypotheses are confirmed, we will have identified a 

subpopulation of ovarian cancer cells that might survive initial chemotherapy and contribute to 

resistance, and furthermore may find a clinically feasible novel methodology to target these cells 

to improve outcomes in this devastating disease. 

 

 

BODY: 
 

Task 1: Determine tumorigenicity of ALDH1A1 subpopulations 

 

The goal of task 1 was to determine the tumorigenicity of ALDH1A1 subpopulations. In 

last year’s annual report, we described results published in Molecular Cancer Therapeutics
4
 

showing tumorigenicity of ALDH1A1-positive cells compared to ALDH1A1-negative cells from 

the A2780cp20 cell line. As summarized in Table 1, ALDEFLUOR-positive cells exhibited 

increased tumorigenic potential, with 100% tumor initiation after injection of 100,000, 25,000, or 

5,000 cells, and 1 tumor established after 1,000 cells injected. ALDEFLUOR-negative cells were 

also able to form tumors, although at a lower rate: two of 5 mice formed tumors after injection of 

25,000 or 100,000 cells, and no tumors formed after injection of 5,000 or 1,000 cells.  

 

Table 1. Tumorigenicity of ALDH1A1-positive and ALDH1A1-negative cells. 

A2780cp20 cells injected 

IP 
1 mil 250k 100k 25k 5k 1k 

Serial 

transplantation 

rate 

ALDEFLUOR-negative 5/5 4/5 2/5 2/5 0/5 0/5 0/5 

ALDEFLUOR-positive   5/5 5/5 5/5 1/5 5/5 
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Figure 1. Patient tumors collected in the recurrent setting were more densely positive for CD133 cells 

compared to tumors collected at primary therapy from the same patient. Each line represents a patient. 

The TD50, or dose of cells required to permit tumor formation in 50% of animals, was 50-fold 

lower with ALDEFLUOR-positive cells. 

An additional important characteristic is demonstration that cancer stem cells have 

enhanced potential for differentiation. We also demonstrated that tumors formed after injection 

of ALDEFLUOR-positive cells contained both positive and negative ALDH1A1 populations. 

However, no ALDEFLUOR-positive cells were found in the tumors that formed after injection 

of ALDH1A1-negative cells (Figure 4A,B in attached manuscript). This was confirmed with 

IHC (Figure 4C,D). A similar differentiation capacity was noted in vitro (Figure 4E,F). Of the 

ALDEFLUOR-positive cells, the population gradually reverted to 75.3%, 54.2%, and 51.4% 

ALDEFLUOR-positive, respectively for each timepoint. However, the ALDEFLUOR-negative 

cells could not produce any ALDEFLUOR-positive cells.  

An additional element of this task is to determine whether ALDH1A1-positive cells from 

patient tumors have enhanced tumorigenicity. Initial attempts to examine this led to few tumors 

forming from either population, either due to toxicity of the processing procedure required to 

separate cells to single-cell populations, or because of the inherent low rate of tumor formation 

from primary xenografts. We have adjusted our initial approach to use tumors growing in mice, 

established after immediate implantation into mice. These cells will have demonstrated xenograft 

tumorigenicity, and because they can be collected in a more controlled setting, should require 

less aggressive and more rapid digestion, enhancing viability. Our protocols for establishing 

primary xenografts have been optimized, described in more detail under task 2, and will be 

utilized in the next year.  

 

Task 2: Determine if ALDH1-positive cells survive chemotherapy in the tumor microenvironment. 

Although ALDH1 and other putative cancer stem cell populations have enhanced 

tumorigenicity, that does not necessarily mean that they have preferential survival in patient 

tumors. We utilized a unique cohort of patients in whom we have both primary and recurrent 

ovarian cancer specimens. We performed IHC on these for ALDH1, CD44, and CD133 to 

determine whether recurrent tumors, which are generally more chemoresistant, are 

predominantly composed of these populations. What we discovered was very interesting, and 

was published in Clinical Cancer Research
5
. Many recurrent tumors were indeed composed of a 

greater number of each of these CSC populations, most significantly in the case of CD133. 

Interestingly, many tumors actually had less of each population in the recurrent tumor, most 
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Figure 2. “Holografts” are efficiently established after SQ implantation (A), and 

response to chemo correlates with patient response (B). 

     A   B 

notably in the case of ALDH1. But if the patients were stratified by the setting in which their 

tumors were collected, the difference was even more striking. Tumors collected immediate after 

receiving primary therapy, the time at which cells surviving would ultimately cause recurrent 

disease, were higher in both ALDH1 (2-fold) and CD133 (24-fold) cells. CD44 was higher, but 

not to a statistically significant degree. Tumors collected at first recurrence were very similar to 

their primary tumor. This is clinically consistent, because many patients will again have a 

positive response to chemotherapy when having a first recurrence. It is also consistent with the 

stem cell hypothesis, since surviving cancer stem cells would be expected to give rise to a 

heterogeneous tumor resembling the initial tumor.  

To examine whether this is also noted in a setting where chemotherapy administration 

and tumor collection is more controlled, we have established protocols for development of 

primary xenografts in SCID mice.  We first examined which sites of implantation are optimal for 

xenograft formation. We have implanted and compared growth in four sites: 1) subcutaneous, 2) 

subrenal capsule, 3) intraperitoneal, and 4) mammary fat pad. After attempts in 23 patients, these 

respective sites have yielded take rates (defined as at least one tumor formed that can be re-

established and expanded) of 91.3%, 8.0%, 23.5%, and 63.6%, respectively (Figure 2A). To 

determine if the tumors are only composed of putative tumor initiating cells, we have performed 

immunohistochemistry for ALDH1A1, CD44, and CD133, and found that there is less than 10% 

variability between xenograft and patient tumors. They also retain the heterogeneity and 

histologic classification of patient tumors. Even mixed-histology tumors display both histologic 

subtypes in the growing holografts. Most importantly, these xenografts retain biologic tumor 

heterogeneity and respond to combined platinum/taxane therapy similarly to how patients 

respond from whom these matched tumors were obtained. Once tumors have been established, at 

least one is collected for banking purposes, but remaining mice are randomized to continued 

observation or treatment with combination carboplatin and paclitaxel. Mice are treated for 4 

weeks (or until complete response), and response recorded based on traditional RESIST criteria.  

In the first 13 

holografts established, 

patients who ultimately 

had only a partial 

response (PR) to 

primary therapy had a 

much slower tumor 

reduction (or no 

response at all) 

compared to patients 

who had a complete 

response (CR) 

(p<0.001, Figure 2B). 

 

In order to determine if ALDH1A1 and other putative cancer stem cells make up the 

majority of the xenograft tumors collected after chemotherapy, we performed IHC for these 

markers on treated tumors. We found that on average, there was a significant increase in ALDH1 

and CD133-positive CSCs comprising treated tumors (Figure 3). CD44 was only increased in 

two tumors, and not significant overall. These are consistent findings from patient tumors. 

However, it is important to note that treated tumors are not composed of ONLY these cells. 

0% 
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Figure 3. Xenografts with a significant response 

to carboplatin/paclitaxel therapy are enriched in 

ALDH and CD133-positive cells (*=p<0.05) 

Additional studies will explore, on a more high-

throughput level, what other populations and 

pathways are activated in these chemoresistant 

tumors that allow enhanced survival. 

 

 

 

 

 

 

Task 3: Target ALDH1 with siRNA in vivo 

 

There are no known inhibitors of ALDH1A1 for in vivo studies. Therefore, as previously 

reported, we utilized a method for delivery of siRNA in vivo using DOPC nanoparticles. In this 

study nude mice were injected intraperitoneally with either SKOV3TRip2 or A2780cp20 cells 

and randomized to four treatment groups to begin 1 week after cell injection: 1) control siRNA in 

DOPC, delivered IP twice per week; 2) docetaxel 35 mg, delivered IP weekly (for SKOV3TRip2 

model) or cisplatin 160 g, delivered IP weekly (for A2780cp20 model); 3) ALDH1A1-siRNA 

in DOPC, IP twice per week; or 4) ALDH1A1-siRNA in DOPC plus docetaxel (for 

SKOV3TRip2) or cisplatin (for A2780cp20). After four weeks of treatment, mice were sacrificed 

and total tumor weight recorded. Immunohistochemical analysis confirmed reduced ALDH1A1 

expression with ALDH1A1-siRNA/DOPC treatment compared to controls but not with 

chemotherapy alone. In SKOV3TRip2 xenografts (Figure 5F in appended manuscript) there was 

a non-significant reduction in tumor growth with docetaxel treatment of 37.0% (p=0.17) and 

with ALDH1A1 siRNA treatment of 25.0% (p=0.38) compared to control-DOPC. The 

combination of ALDH1A1 siRNA and docetaxel resulted in significantly reduced growth, by 

93.6% compared to control siRNA (p<0.001), by 89.8% compared to docetaxel plus control 

siRNA (p=0.003), and by 91.4% compared to ALDH1A1 siRNA (p=0.002). In A2780cp20 

(Figure 5G in appended manuscript), there was a similar non-significant reduction in tumor 

weight with cisplatin alone of 43.9% (p=0.32) and with ALDH1A1 siRNA treatment of 57.0% 

(p=0.19). These effects may be even less significant than the mean tumor weights suggest, given 

the presence of two especially large tumors in the control siRNA group. However, again 

combined therapy showed a sensitization to chemotherapy with ALDH1A1 siRNA, with 

combination therapy reducing growth by 85.0% compared to control siRNA (p=0.048), by 

73.4% compared to cisplatin plus control siRNA (p=0.013), and by 65.3% compared to 

ALDH1A1 siRNA alone (p=0.039). Given the minimal effects of either single agent and the 

consistent finding of significant improvement with combined therapy, these data suggest a 

synergy between ALDH1A1 downregulation and both taxane and platinum chemotherapeutic 

agents, though formal dose-finding experiments would be required to definitively prove synergy. 

 Although the methods used here are being pursued in phase I clinical trials, we are 

continuing to explore whether other nanoparticle systems might improve delivery of siRNA in 

vivo. We are currently collaborating with a colleague to explore the use of protein cage 

nanoparticles. These nanoparticles are composed of repeating subunits of peptides, the structure 

of which can be modified to present ligands for receptor-mediated delivery. If we can enhance 

delivery to desired cells, such as tumors, doses of siRNA might be increased, and constructs 

against proteins that would normally be toxic to normal cells might be utilized. Studies in this are 
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preliminary and ongoing, but we have been able to demonstrate delivery of fluorescent-tagged 

siRNA to tumor tissues in vivo, and siRNA-mediated downregulation of a desired target in vitro.  

 

Task 4: Evaluate mechanisms of ALDH1-mediated chemoresistance 

 

 We have achieved successful transfection the ALDH1A1-negative A2780ip2 cell line 

with a construct producing ALDH1A1. The construct was obtained through Addgene (plasmid 

#11610), produced in the laboratory of Dr. Steven Johnson. However, the ALDH1 protein 

produced does not appear to be active, as assessed by the Aldefluor assay. Therefore we cannot 

reasonably expect that biologic effects can be elicited. We are in the process of repeating the 

transfection, in order to determine the effects of forced overexpression of ALDH1A1 in a null 

line. In the meantime, microarrays have been completed on ALDH-positive and –negative cells 

(representative genes presented in Table 1), and confirmation/examination of individual genes is 

underway. We are also discussing collaboration with a colleague with expertise in metabolism 

and mitochondrial mechanisms of chemotherapy resistance. Several genes involved in 

mitochondrial metabolism are overexpressed in the ALDH1-positive cells, using the Illumina 

microarray data. Confirmation of these genes with qPCR will be performed, as will 

mitochondrial metabolism experiments that might determine differential regulation of 

metabolism in ALDH-positive and –negative cells.  

 

Table 1. Differential expression ALDH-positive and –negative AL2780cp20 cells 

SYMBOL 
ALDHneg 

mean 
ALDHpos 

mean Ratio Pos:Neg T-test 

OVEREXPRESSED 
   ALDH1A1 2321.55 18392.72 7.92 0.0017 

NSUN5C 68.08 193.72 2.85 0.0057 

ZNF286A 70.46 145.51 2.07 0.0088 

2-Sep 58.28 118.05 2.03 0.0078 

PRRG4 103.39 209.32 2.02 0.0021 

CD97 71.23 142.09 1.99 0.0007 

TWIST2 76.32 149.70 1.96 0.0044 

MAT2B 78.75 151.76 1.93 0.0024 

AP1M2 72.74 137.81 1.89 0.0089 

NDRG2 84.04 159.13 1.89 0.0090 

C2CD2 132.93 251.12 1.89 0.0014 

CDCA1 85.56 155.65 1.82 0.0052 

C7orf28A 74.91 131.89 1.76 0.0026 

ZNF714 287.74 486.13 1.69 0.0093 

ZNF501 87.71 147.49 1.68 0.0085 

TCF20 58.51 96.52 1.65 0.0006 

KCNH2 65.48 104.66 1.60 0.0066 

RAD51L1 84.59 133.86 1.58 0.0036 
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KEY RESEARCH ACCOMPLISHMENTS:  
 

 ALDH-positive cells from the A2780cp20 and SKOV3TRip2 cell lines have 

approximately 50-fold increased tumorigenicity compared to ALDH-negative cells.  

 Tumors treated with chemotherapy are enriched in the CD133 CSC population, compared 

to matched samples collected prior to therapy. 

 Tumors collected immediately at the completion of primary therapy are enriched to an 

even greater degree than tumors collected at first recurrence.  

 Efficient establishment of primary xenografts directly from patient tumors is feasible, and 

mimic patient tumors in histologic make-up, CSC density, and response to chemotherapy. 

 Xenograft tumors from mice treated with chemotherapy are similarly enriched in ALDH1 

and CD133 CSCs. 

 Treatment of tumor-bearing mice with ALDH1A1-targeting siRNA in DOPC sensitized 

normally-resistant cell lines to cisplatin or paclitaxel.  

 Alternatives to DOPC-mediated delivery of siRNA are being explored 

 ALDH1-positive and –negative cells have differential expression of multiple genes, and 

mitochondrial metabolism may contribute to the chemoresistant properties of ALDH-

positive cells.  

 

 

 

REDUCED EXPRESSION 
   STRC 135.54 90.32 0.67 0.0019 

ZNF3 231.49 153.44 0.66 0.0003 

HOXB1 199.72 132.32 0.66 0.0053 

ZFP37 219.24 144.25 0.66 0.0005 

CHES1 887.74 581.44 0.65 0.0086 

DAAM1 625.07 402.09 0.64 0.0088 

ZMIZ2 318.61 204.68 0.64 0.0089 

DKFZ 99.51 62.03 0.62 0.0097 

FBXO2 325.58 202.91 0.62 0.0060 

ALDH3A2 636.03 395.36 0.62 0.0089 

DAAM1 596.23 368.13 0.62 0.0031 

NOV 1011.84 614.10 0.61 0.0073 

SFH 203.09 119.64 0.59 0.0067 

SCARA3 217.30 127.41 0.59 0.0008 

CGAO 102.98 60.02 0.58 0.0097 

LIPC 291.32 166.38 0.57 0.0041 

PKP4 366.28 208.85 0.57 0.0086 

ZNF304 164.21 91.06 0.55 0.0042 

AGPAT7 370.26 189.80 0.51 0.0052 
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REPORTABLE OUTCOMES:  
 

 Publications:  

 

Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia 

PV, Jennings NB, Gershenson DM, Bast RC, Jr., Coleman RL, Berestein G, and Sood 

AK.  Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer. 

Molecular Cancer Therapeutics 9(12): 3186-99, 2010. † 

Steg AD, Katre AA, Goodman B, Han HD, Nick AM, Stone RL, Coleman RL, Alvarez 

RD, Lopez-Berestein G, Sood AK, Landen CN. Targeting the Notch Ligand Jagged1 

in Both Tumor Cells and Stroma in Ovarian Cancer. Clin Can Res, 17(17): 5674-85, 

2011. 

Steg AS, Bevis KS, Katre AA, Ziebarth A, Alvarez RD, Zhang K, Conner M, Landen 

CN. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin 

Can Res, 18(3):869-81, 2012.  

Ziebarth AJ, Landen CN Jr, Alvarez RD. Molecular/genetic therapies in ovarian 

cancer: future opportunities and challenges. Clin Obstet Gynecol, 55(1):156-72, 2012. 

Steg AS, Katre AA, Bevis KS, Ziebarth A, Dobbin ZC, Shah MS, Alvarez RD, Landen 

CN. Smoothened Antagonists Reverse Taxane Resistance in Ovarian Cancer. Mol 

Cancer Ther, 11(7): 1587-97, 2012.  

 

 Abstracts presented: 

 

Landen CN, Goodman B, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, 

Gershenson DM, Bast RC, Coleman RL, Lopez-Berestein G, and Sood AK. Targeted 

therapy against aldehyde dehydrogenase in ovarian cancer. Proceedings of the 

American Association of Cancer Research, 2010.  

Bevis KS, Steg AD, Katre AA, Ziebarth AA, Zhang K, Conner MG, Landen CN. The 

significance of putative ovarian cancer stem cells to recurrence. Center for Clinical and 

Translational Science Annual Scientific Symposium, 2010.  

Ziebarth AA, Steg AD, Bevis KS, Katre AA, Alvarez RA, Landen CN. Targeting the 

Hedgehog pathway reverses taxane resistance in ovarian cancer. Proceedings of the 

42
nd

 Annual Society of Gynecologic Oncologists Meeting, 2011. 

Bevis KS, Katre AA, Steg AD, Erickson BK, Frederick PJ, Backes TK, Zhang K, 

Conner MG, Landen CN. Examination of matched primary and recurrent ovarian 

cancer specimens supports the cancer stem cell hypothesis. Proceedings of the 42
nd

 

Annual Society of Gynecologic Oncologists Meeting, 2011. 

Steg AD, Ziebarth AA, Katre A, Landen CN Jr. Targeting hedgehog reverses taxane 

resistance by Gli-dependent and independent mechanisms in ovarian cancer. 

Proceedings of the American Association of Cancer Research, 2011. 
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(CD105) in platinum resistant epithelial ovarian cancer. 43
rd

 Annual Society of 

Gynecologic Oncologists Meeting, 2012. 

Ziebarth
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AD, Alvarez

 
RD, Conner

 
MG, and Landen 

CN. Primary ovarian cancer murine xenografts maintain tumor heterogeneity and 

biologically correlate with patient response to primary chemotherapy. 43
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 Annual 

Society of Gynecologic Oncologists Meeting, 2012. 

Dobbin ZC, Katre AA, Ziebarth A, Shah MM, Steg AD, Alvarez RD, Conner MG, 

Landen CN. An Optimized Primary Ovarian Cancer Xenograft Model Mimics Patient 

Tumor Biology and Heterogeneity. Ovarian Cancer: Prevention, Detection and 

Treatment of the Disease and its Recurrence, Pittsburg, PA, 2012.  

Dobbin ZC, Katre AA, Ziebarth A, Shah MM, Steg AD, Alvarez RD, Conner MG, 

Landen CN. Use of an optimized primary ovarian cancer xenograft model to mimic 

patient tumor biology and heterogeneity. American Society of Clinical Oncology, 2012. 

 

 Grants awarded for which data generated by this work contributed preliminary data: 

 

o Principle Investigator, Examination of the true mediators of resistance in ovarian 

cancer, Translational Research Intramural Grant, UAB CCTS and CCC, 4/1/2010 

– 3/31/2011, $71,000 ($60,000 direct) over 1 year. 

o Principle Investigator. Identifying mediators of chemoresistance in ovarian 

cancer. The Norma Livingston Foundation. 50,000, 5/1/2012-4/30/2013. 

 

 Funding applied for with decision pending:  

 

Synergistic Translational Leverage Award    Role: Initiating PI   

Sponsor: CDMRP OCRP           

Epigenetic Dietary Therapeutics in Ovarian Cancer   

$500,000 in direct costs over 3 years  

Major goals of Project: This proposal seeks to determine the efficacy of nutraceuticals EGCG (an 

active anti-tumor ingredient in green tea) and sulforaphane (concentrated in broccoli 

sprouts) as a therapeutic against ovarian cancer. These extracts exert epigenetic effects 

through hypomethylating and deacetylase inhibiting properties, the mechanisms of which 

will be further delineated. A phase 0 trial is also proposed to determine if changes in 

tumor gene expression can be induced with short-term use of the nutraceuticals. 

 

Synergistic Translational Leverage Award    Role: Initiating PI   

Sponsor: CDMRP OCRP           

Predictors of Response to PARP Inhibitors in Ovarian Cancer 

$500,000 in direct costs over 3 years  

Major goals of Project: To use a primary “holograft” model and a functional XRT-induced 

Rad51 activity assay to identify tumors with defective homologous recombination and 
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response to PARP inhibitors. Additionally response to PARP inhibition will be used to 

develop a PARP-responsive signature. 

 
 

 Assets: 

o Established reliable method of developing primary ovarian cancer xenografts into 

SCID mice that may be an important tool for future studies, such as examination 

of methodologies for testing personalized medicine.  

o Have approximately 25 primary xenografts maintained in mice without having 

ever been cultured in vitro. 

 

CONCLUSIONS:  
 

These data demonstrate that ALDH1A1-positive cells are more tumorigenic than ALDH1A1-

negative cells, contribute to poor patient outcomes, and contribute to chemoresistance. 

Importantly, these effects can be reversed by downregulating ALDH1A1 expression with 

nanoparticle-delivered siRNA. Additionally, we have shown that increased tumorigenicity is not 

only an important ex vivo assessment of CSCs, but that they are clinically significant as well, in 

that chemoresistant tumors have increased density of ALDH and CD133 cells. This suggest that 

they represent at least part of the chemoresistant population within a heterogeneous tumor. 

Importantly, they do not seem to explain the entire story, as there are still many CSC-negative 

cells present at the conclusion of treatment. Additional studies will be performed to determine 

which other cell types may be present in chemoresistant tumors, and which pathways or 

mechanisms may be mediating this resistance. In addition, more efficient methods of delivering 

siRNA will be explored so that when such pathways are identified, methods will be in place to 

target them without the need for cumbersome and expensive drug development. 
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Cancer Therapy: Clinical

Stem Cell Pathways Contribute to Clinical Chemoresistance
in Ovarian Cancer

Adam D. Steg1, Kerri S. Bevis1, Ashwini A. Katre1, Angela Ziebarth1, Zachary C. Dobbin1,
Ronald D. Alvarez1, Kui Zhang2, Michael Conner3, and Charles N. Landen1

Abstract
Purpose:Withinheterogeneous tumors, subpopulations often labeled cancer stemcells (CSC) have been

identified that have enhanced tumorigenicity and chemoresistance in ex vivo models. However, whether

these populations are more capable of surviving chemotherapy in de novo tumors is unknown.

Experimental Design: We examined 45 matched primary/recurrent tumor pairs of high-grade ovarian

adenocarcinomas for expression of CSC markers ALDH1A1, CD44, and CD133 using immunohistochem-

istry. Tumors collected immediately after completion of primary therapy were then laser capture micro-

dissected and subjected to a quantitative PCR array examining stem cell biology pathways (Hedgehog,

Notch, TGF-b, and Wnt). Select genes of interest were validated as important targets using siRNA-mediated

downregulation.

Results: Primary samples were composed of low densities of ALDH1A1, CD44, and CD133. Tumors

collected immediately after primary therapy weremore densely composed of eachmarker, whereas samples

collected at first recurrence, before initiating secondary therapy, were composed of similar percentages of

each marker as their primary tumor. In tumors collected from recurrent platinum-resistant patients, only

CD133 was significantly increased. Of stem cell pathway members examined, 14% were significantly

overexpressed in recurrent compared with matched primary tumors. Knockdown of genes of interest,

including endoglin/CD105 and the hedgehogmediators Gli1 and Gli2, led to decreased ovarian cancer cell

viability, with Gli2 showing a novel contribution to cisplatin resistance.

Conclusions: These data indicate that ovarian tumors are enriched with CSCs and stem cell pathway

mediators, especially at the completion of primary therapy. This suggests that stem cell subpopulations

contribute to tumor chemoresistance and ultimately recurrent disease. Clin Cancer Res; 18(3); 869–81.

�2011 AACR.

Introduction

Ovarian cancer is the leading cause of death from a
gynecologic malignancy. Although ovarian cancer is
among the most chemosensitive malignancies at the time
of initial treatment (surgery and taxane/platinum-based
chemotherapy), most patients will ultimately develop
tumor recurrence and succumb to chemoresistant disease
(1). Evaluation of multiple chemotherapy agents in several
combinations in the last 20 years has yielded modest

improvements in progression-free survival but no increases
in durable cures. This clinical course suggests that a popu-
lation of tumor cells has either inherent or acquired resis-
tance to chemotherapy that allows survival with initial
therapy and ultimately leads to recurrence. Targeting the
cellular pathways involved in this resistance may provide
new treatment modalities for ovarian cancer.

In several hematologic and solid tumors, subpopulations
of cells termed cancer stem cells (CSC) or tumor-initiating
cells (TIC) have been identified as representing the most
tumorigenic and treatment-resistant cells within a hetero-
geneous tumor mass. Usually defined by their enhanced
ability to generate murine xenografts and give rise to het-
erogeneous tumors that are composed of both CSC and
non-CSC populations, these cells may also be more che-
moresistant and depend on unique biologic processes com-
pared with the majority of tumor cells (2, 3). In ovarian
cancer, many of these properties have been identified in
populations of CD44-positive cells (4, 5), CD133-positive
cells (6–8), Hoechst-excluding cells (the side population;
ref. 9), and aldehyde dehydrogenase (ALDH1A1)-positive
cells (10–13) and are associated with poor clinical
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outcomes. It is acknowledged that these markers are not
identifiers of pure populations with all capabilities of con-
ventional stem cells but rather enrich for a population with
some stem cell properties.

Whether or not these populations actually have prefer-
ential survival in de novo tumors and thus contribute to
recurrent disease is not known.An increaseddensity of these
populations in recurrent or chemoresistant tumors would
suggest their importance to the clinical course of ovarian
cancer and suggest that these populations would have to be
targeted to achieve durable cures. In the current study, we
used a unique cohort ofmatched primary/recurrent ovarian
cancer specimens to determine whether putative CSC sub-
populations comprise a larger percentage of recurrent
tumors and to examine other known mediators of stem
cell biology that might correlate with contributors to recur-
rence. In addition, novel genes were revealed to be highly
expressed in recurrent samples, specifically endoglin
(CD105) and the Hedgehog mediator Gli2, and were tar-
geted in validation studies to confirm that stem cell pathway
members represent novel therapeutic targets in ovarian
cancer.

Methods

Immunohistochemical staining and clinical
correlations

Immunohistochemical (IHC) analysis was conducted
using standard techniques (14) on samples collected from
matched primary and recurrent tumors taken from 45
patients with ovarian adenocarcinoma, and with Institu-
tional Review Board approval, clinical information was

collected. Pathology was confirmed and formalin-fixed,
paraffin-embedded (FFPE) slides were cut at 5 or 10 mm.
Antigen retrieval was carried out in citrate buffer (pH 6.0)
for 45 minutes in an atmospheric pressure steamer. Slides
were then stained using antibodies against ALDH1A1
(Clone 44; BD Biosciences), CD44 (Clone 2F10; R&D
Systems), or CD133 (Clone C24B9; Cell Signaling Tech-
nology) at 1:500 dilution in Cyto-Q reagent (Innovex
Biosciences) overnight at 4�C. Primary antibody detection
was achieved with Mach 4 HRP polymer (Biocare Medical)
for 20 minutes at room temperature, followed by 3,30-
diaminobenzidine (DAB) incubation. After IHC staining,
the number of tumor cells positive for ALDH1A1, CD44, or
CD133were counted by two independent examiners (and a
third if there was >20% discrepancy) blinded to the setting
inwhich the tumorwas collected (primary or recurrent) and
expressed as a percentage of all tumor cells. To be consistent
withprior identificationof putativeCSCs identified through
surface expression with flow cytometry, in the case of CD44
and CD133, only strong expression at the surface mem-
brane was considered positive. Intensity was not scored
separately, staining was considered only positive or nega-
tive, with the primary endpoint percentage of positive
tumor cells across the entire slide. The average number of
positive cells for each marker among the 45 primary sam-
ples was compared with the average among recurrent sam-
ples, with additional subgroup analyses conducted as
described in the Results section. A subgroup analysis of
IHC staining using an antibody against endoglin (Sigma)
was also conducted.

Laser capture microdissection
Ten-micrometer thick FFPE sections were prepared from

12 matched pairs of samples from patients with ovarian
adenocarcinoma, in whom the recurrent tumors had been
collected within 3 months of completion of primary ther-
apy. Sections were rapidly stained with hematoxylin and
eosin. Three to five thousand tumor epithelial cells were
microdissected from each sample using a PixCell II Laser
Capture Microdissection system (Arcturus Engineering).
Carewas taken to ensure that no stromal cells were collected
(see Supplementary Fig. S1). RNA was extracted using the
RecoverAll Total Nucleic Acid Isolation Kit (Applied Bio-
systems) optimized for FFPE samples.

RT2 profiler PCR array
RNA extracted from microdissected samples was con-

verted to cDNA and amplified using the RT2 FFPE PreAMP
cDNA Synthesis Kit (SABiosciences). Quality of cDNA was
confirmed with the Human RT2 RNA QC PCR Array
(SABiosciences), which tests for RNA integrity, inhibitors
of reverse transcription and PCR amplification, and geno-
mic and general DNA contamination (15). Gene expression
was then analyzed in these samples using the Human Stem
Cell Signaling RT2 Profiler PCR Array (SABiosciences),
which profiles the expression of 84 genes involved in
pluripotent cell maintenance and differentiation (16).
Functional gene groupings consist of the Hedgehog, Notch,

Translational Relevance

Most patients with ovarian cancer will have an excel-
lent response to initial surgical debulking and chemo-
therapy, but about 75% of patients will later recur and
succumb to disease. Primarily on the basis of ex vivo
models, subpopulations of cancer cells, often described
as cancer stem cells, have been hypothesized to represent
the most tumorigenic and treatment-resistant cells with-
in a heterogeneous tumor mass. Using a unique cohort
of matched primary/recurrent ovarian tumors, we have
shown that the expression of putative cancer stem cell
markers ALDH1A1, CD44, andCD133 and several addi-
tionalmediators of stemcell pathways are upregulated in
recurrent, chemoresistant disease compared with prima-
ry tumor. Further development revealed novel mechan-
isms of the TGF-b coreceptor endoglin (CD105) and the
Gli2 hedgehog transcription factor in platinum resis-
tance. Our findings highlight the importance of stem cell
pathways in ovarian cancer recurrence and chemoresis-
tance and show that therapies targeting these pathways
may reverse platinum resistance in ovarian cancer.
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TGF-b, andWnt signaling pathways. PCR amplification was
conducted on an ABI Prism 7900HT sequence detection
system, and gene expression was calculated using the com-
parative CT method as previously described (17).

Cell lines and culture
The ovarian cancer cell lines A2780ip2, A2780cp20,

ES2, HeyA8, HeyA8MDR, IGROV-AF1, OvCar-3, and
SKOV3ip1 (18–27) were maintained in RPMI-1640 medi-
um supplemented with 10% FBS (Hyclone). All cell lines
were routinely screened for Mycoplasma species (GenP-
robe detection kit; Fisher) with experiments carried out at
70 to 80% confluent cultures. Purity of cell lines was
confirmed with short tandem repeat genomic analysis,
and only cells less than 20 passages from stocks were used
in experiments.

RNA extraction from cell lines
Total RNA was isolated from ovarian cancer cell lines

using TRIzol reagent (Invitrogen) per manufacturer’s
instructions. RNA was then DNase treated and purified
using the RNEasy Mini Kit (QIAGEN). RNA was eluted in
50 mL of RNase-free water and stored at �80�C. The con-
centration of all RNA samples was quantified by spectro-
photometric absorbance at 260/280 nm using an Epoch
microplate spectrophotometer (BioTek Instruments).

Reverse transcription and quantitative PCR
Prior to reverse transcription, all RNA samples were

diluted to 20 ng/mL using RNase-free water. The cDNA was
prepared using the High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems). The resulting cDNA samples
were analyzed using quantitative PCR. Primer and
probe sets for ABCG2 (Hs01053790_m1), ALDH1A1
(Hs00946916_m1), CD44 (Hs01075861_m1), CD133
(Hs01009259_m1), GLI1 (Hs00171790_m1), GLI2
(Hs00257977_m1), and RPLP0 (Hs99999902_m1; house-
keeping gene) were obtained from Applied Biosystems;
primers for endoglin (ENG; PPH01140F) were obtained
from SABiosciences and used according to manufacturer’s
instructions. PCR amplification was conducted on an ABI
Prism 7900HT sequence detection system, and gene expres-
sion was calculated using the comparative CT method.

siRNA transfection
To examine knockdown of endoglin, Gli1, or Gli2 with

siRNA, cells were exposed to control siRNA (target
sequence: 50-UUCUCCGAACGUGUCACGU-30; Sigma),
one of 2 tested endoglin-targeting constructs (ENG_A
siRNA: 50-CAAUGAGGCGGUGGCAAU-30 or ENG_B
siRNA: 50-CAGAAACAGUCCAUUGUGA-30; Sigma), one of
2 tested Gli1-targeting constructs (GLI1_A siRNA: 50-CUA-
CUGAUACUCUGGGAUA-30 or GLI1_B siRNA: 50-GCAA-
AUAGGGCUUCACAUA-30), or one of 2 tested Gli2-target-
ing constructs (GLI2_A siRNA: 50-CGAUUGACAUGCGA-
CACCA-30 or GLI2_B siRNA: 50-GUACCAUUACGAGCCU-
CAU-30) at a 1:3 siRNA (pmol) to Lipofectamine 2000 (mL)
ratio. Lipofectamine and siRNA were incubated for 20

minutes at room temperature, added to cells in serum-free
RPMI to incubate for 6 to 8 hours, followed by 10% FBS/
RMPI thereafter. Transfected cells were grown at 37�C for an
additional 48 hours and then harvested for quantitative
PCR or Western blot analysis.

Western blot analysis
Cultured cell lysates were collected in modified radio-

immunoprecipitation assay (RIPA) lysis buffer with prote-
ase inhibitor cocktail (Roche) and subjected to immuno-
blot analysis by standard techniques (14) using anti-endo-
glin antibody (Sigma) at 1:500 dilution overnight at 4�C; or
anti-b-actin antibody (Clone AC-15, Sigma) at 1:20,000
dilution for 1 hour at room temperature, which was used to
monitor equal sample loading. After washing, blots were
incubated with goat anti-rabbit (for endoglin) or goat anti-
mouse (for b-actin) secondary antibodies (Bio-Rad) con-
jugated with horseradish peroxidase. Visualization was
conducted by the Enhanced Chemiluminescence Method
(Pierce Thermo Scientific).

Assessment of cell viability and cell-cycle analysis
following siRNA-mediated knockdown

For effects of siRNA-mediated downregulation on cell
viability, cells were first transfected with siRNA (5 mg) for
24 hours in 6-well plates (2.5 � 105 cells per well),
trypsinized, and then replated on a 96-well plate at
2,000 cells per well. After 4 to 5 days, cell viability was
assessed by optical density measurements at 570 nm
using 0.15% MTT (Sigma) in PBS. For cell-cycle analysis,
5 � 105 cells in a 60-mm dish were transfected with
siRNAs and then cultured in RPMI/10% FBS at 37�C for
an additional 48 hours. Cells were then trypsinized,
washed in PBS, and fixed in 100% ethanol overnight.
Cells were then centrifuged, washed in PBS, and resus-
pended in PBS containing 0.1% Triton X-100 (v/v), 200
mg/mL DNase-free RNase A, and 20 mg/mL propidium
iodide (PI). PI fluorescence was assessed by flow cyto-
metry, and the percentage of cells in sub-G0, G0–G1, S,
and G2–M phases was calculated by the cell-cycle analysis
module for Flow Cytometry Analysis Software (FlowJo
v.7.6.1). For effects of siRNA-mediated downregulation
on cisplatin IC50, cells were first transfected with siRNA
(5 mg) in 6-well plates, trypsinized, and then replated on a
96-well plate at 2,000 cells per well, followed by addition
of chemotherapy after attachment. IC50 was determined
by finding the dose at which the drug had 50% of
its effect, calculated by the equation [(OD570max �
OD570min)/2) þ OD570min].

Statistical analysis
Comparisons of continuous variables were made using a

two-tailed Student t test, if assumptions of data normality
were met. Those represented by alternate distribution were
examined using a nonparametric Mann–Whitney U test.
Differences between groups were considered statistically
significant at P < 0.05. Error bars represent SD unless
otherwise stated.
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Results

ALDH1A1, CD44, and CD133 expression in primary
human ovarian cancer specimens

We identified a cohort of 45 patients with either
papillary serous or endometrioid high-grade ovarian
cancer for whom tumor specimens were collected at
primary therapy and at the time of recurrent disease.
The clinical characteristics of these patients are
described in Supplementary Table S1 and represent the
typical clinical profiles of patients with ovarian cancer.
All patients were initially treated with combination
platinum (either cisplatin or carboplatin) and taxane
(either paclitaxel or docetaxel) by intravenous in-
fusion. We first examined baseline expression of
ALDH1A1, CD44, and CD133, the markers most con-
sistently showing a putative CSC population in ovarian
cancer. The percentage of positive ALDH1A1, CD44,
and CD133 cells in primary samples averaged 23.4%,
6.2%, and 7.1%, respectively (Fig. 1A). Representations
of high and low distribution patterns are shown in
Fig. 1B and for CD44 and CD133 high-power views
in Fig. 1C. For all 3 proteins examined, staining was
typically strong in some cells and negative in others,
rather than having a range of intensity across all tumor
cells, signifying distinct heterogeneity within the
tumor. There was no distinct pattern to the location
of the positive cells (such as around vasculature, or
on the leading edge of the tumor) but positive cells
did tend to cluster together. Staining was appropriately
noted intracellularly for ALDH1A1 and on the cell
membrane for CD44 and CD133. Interestingly, CD133
expression was usually noted at cell–cell borders rather
than circumferentially, suggesting a polarity to expres-
sion and possible participation in cell–cell interactions
(Fig. 1C).

Change in expression of ALDH1A1, CD44, and CD133
from primary to recurrent ovarian cancer

To determine whether recurrent ovarian tumors have
altered expression of ALDH1A1, CD44, and CD133, we
compared the average number of positive cells for each
marker among the 45 primary samples to that of the
recurrent samples taken from the same patients (Fig. 1D).
There was a modest increase in ALDH1A1-positive cells
(from 23.4% to 29.2%, P ¼ 0.28) and CD44-positive
cells (from 6.2% to 11%, P ¼ 0.11); however, CD133-
positive cells were significantly higher (from 7.1% to
29.6%, P ¼ 0.0004) in recurrent than in primary samples.
To appreciate the change in each subpopulation for each
patient, in addition to the mean of the entire group, the
change for each tumor is graphically presented in Fig. 1E.
For ALDH1A1 and CD44, both increases and decreases
were noted for different patients. However, for CD133,
the change was almost always an increase. The percentage
of CD133-positive cells increased by more than 2-fold
in 58% of recurrent samples than in matched primary
samples.

Subgroup analysis of ALDH1A1, CD44, and CD133
based on setting of recurrent tumor collection

If the CSC hypothesis is clinically significant, then sur-
viving cells would be expected to give rise again to both
resistant CSCs anddifferentiated chemosensitive cells. Clin-
ically this is seen asmost patients will again have a response
to treatment at first recurrence. Therefore, we examined the
pairs on the basis of when their recurrent tumor was
collected: (i) in patients who were clinically without evi-
dence of disease but had other indications for surgery
conducted within 3 months of completion of primary
therapy, termed persistent tumor; (ii) in patients who
recurred more than 6 months after completion of primary
therapy and had tumors collected prior to second-line
chemotherapy, termed untreated recurrence; and (iii) in
the setting of recurrent, chemoresistant disease, termed
treated recurrence. Among persistent tumors, there was an
evenmore pronounced increase in ALDH1A1-positive cells
(from 29.7% to 54.9%, P ¼ 0.018), CD44-positive cells
(from 8.3% to 21.2%, P ¼ 0.16), and CD133-positive
cells (from 6.6% to 53.9%, P¼ 0.001; Fig. 2A). In contrast,
samples collected at first recurrence before initiating sec-
ondary therapy were composed of similar percentages of
each marker as their primary tumor ( Fig. 2B), suggesting
that the tumor was repopulated with marker-negative dif-
ferentiated cells. In tumors collected from recurrent plati-
num-resistant patients, only CD133 was significantly
increased in expression (from 6.3% to 34.5%, P ¼
0.027; Fig. 2C). The percentage of CD133-positive cells
increased by more than 2-fold in 50% of treated recurrence
samples than in matched primary.

Table 1 illustrates the changes in ALDH1A1, CD44, and
CD133 staining from primary to persistent tumor in indi-
vidual patients. Overall, the percentage of ALDH1A1-,
CD44-, and CD133-positive cells increased by more than
2-fold in 64%, 67%, and 89% of persistent tumor speci-
mens, respectively, than in matched primary samples.
While the expression of at least 2 of the 3 markers was
elevated in the majority of specimens, only 4 patients had
increased expression of all 3 markers. This suggests that
certain mediators may be more active than others in dif-
ferent patients, and there may be other markers of treat-
ment-resistant cells yet to be identified.

Expression of genes involved in human stem cell
signaling is increased in recurrent compared with
matched primary ovarian tumors

Building on the model that tumor samples present at the
completion of primary therapy represent the cells respon-
sible for recurrent disease and are therefore most relevant
for study, we laser capture microdissected tumor cells from
the 12 patients with persistent tumor analyzed above (Sup-
plementary Fig. S1). Gene expression of putative CSC mar-
kers (ALDH1A1, CD44, CD133, and ABCG2) as well as 84
genes involved in pluripotent cell maintenance and differ-
entiation was analyzed in these matched samples by qPCR
or qPCR array. As shown in Table 2, expressionofALDH1A1
(2.5-fold, P ¼ 0.23) and CD44 (4.1-fold, P ¼ 0.0023) was
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Figure 1. Change in expression of
ALDH1A1, CD44, and CD133 from
primary to recurrent ovarian cancer.
A, ALDH1A1, CD44, and CD133
expression in 45 high-grade ovarian
adenocarcinomas was examined
using immunohistochemistry. The
estimated percentage of positive
cells for each sample, with mean
(black bars) and median are shown.
B, for all 3 proteins examined,
staining was heterogeneous, rather
than diffusely positive. Examples of
high and low frequency expression
for each are shown (black bar,
100 mm). C, a higher magnification of
CD44 and CD133 expression in
primary ovarian cancer specimens,
showing cell surface expression. D,
the average number of positive cells
for ALDH1A1, CD44, and CD133
among the 45 primary samples was
compared with the average among
matched recurrent samples. Only
CD133 was significantly higher in
recurrent samples. Error bars
represent SEM. �, P < 0.001. E, to
evaluate the change in each
subpopulation for each patient, in
addition to the mean of the entire
group, the change for each tumor is
shown in individual graphs.
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elevated in persistent tumors compared with matched pri-
mary samples, similar to IHC analysis. Expression of breast
cancer resistance protein (ABCG2/BCRP), a well-character-
ized drug efflux transporter that has been associated with
stem cell phenotype (9, 28), was also increased in persistent
tumors (7.7-fold, P¼ 0.0163). Attempts to optimize exper-
imental conditions to examine BCRP by immunohis-
tochemistry failed and therefore we could not validate this
increase at the protein level. CD133 mRNA expression was
virtually undetectable in both primary and persistent tumor
samples. This suggests that increasedCD133protein expres-
sion in recurrent tumors noted by immunohistochemistry
may be due to posttranscriptional or posttranslational
regulation.

Of the 84 genes examined by the Human Stem Cell
Signaling RT2 Profiler Array (16), we found that 12 of these
genes (14%) were significantly increased in persistent com-

pared with matched primary tumor. Members of the TGF-b
superfamily signaling pathway (ENG, ZEB2, LTBP4,
TGFBR2, RGMA, ACVR1B, and SMAD2) were most com-
monly significantly increased as well as members of the
Hedgehog (GLI1 and GLI2), Notch (PSEN2), and Wnt
(FZD9 and BCL9L) pathways. Of particular interest, the
TGF-b coreceptor endoglin (ENG) was, on average, 3.77-
fold (P ¼ 0.0023) higher in persistent tumors and more
than 2-fold higher in 9 of the 12 samples. All of the tumors,
either primary or recurrent, expressed endoglin. This pro-
tein is a recognized marker for angiogenesis, primarily
expressed on endothelial cells (29, 30), but increased
expression specific to tumor cells in our laser-microdis-
sected tissues suggest that it may play a role in tumor cell
chemoresistance and could be targeted for therapy. IHC
staining of these specimens for endoglin expression
confirmed that recurrent tumors had a greater density of
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ALDH1A1, CD44, and CD133
based on setting of recurrent tumor
collection. Expression of
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endoglin positivity than in thematched primary tumor and
that expression was definitively present in tumor cells not
just the in vasculature (Fig. 3A). In addition, endoglin and
CD133 expression significantly correlated (r ¼ 0.62, P ¼

0.006), as did Gli1 and CD133 expression (r ¼ 0.54, P ¼
0.022), suggesting that the increase in CD133 positivity
observed in recurrent compared with matched primary
tumors is accompanied by an increase in markers of stem
cell signaling.

Endoglin is expressed in ovarian cancer cell lines and
its downregulation leads to decreased cell viability

To further explore the potential role of endoglin in
ovarian cancer, we first examined gene expression in cell
lines. These includedES2, IGROV-AF1,OvCar-3, SKOV3ip1
and 2 pairs of parental and chemoresistant ovarian cancer
cell lines: A2780ip2/A2780cp20 (20-fold increased cisplat-
in resistance and 10-fold increased taxane resistance) and
HeyA8/HeyA8MDR (500-fold taxane resistant). As shown
in Fig. 3B, mRNA expression of endoglin was prominent in
ES2, HeyA8, and HeyA8MDR cells. Minimal expression of
endoglin was detected in the A2780ip2, A2780cp20,
IGROV-AF1, OvCar-3, and SKOV3ip1 cell lines. Protein
expression was assessed by Western blot and correlated
with mRNA quantification (data not shown).

To determine whether endoglin might be a target for
tumor-specific therapy, 2 different siRNA constructs
(ENG_A siRNA and ENG_B siRNA) were identified with
variable efficacy in reducing endoglin expression (95%–
99% reduction with construct A, 50% reduction with con-
struct B), as determined byWestern blot ( Fig. 3C). ES2 and
HeyA8MDR cells transiently transfected with these

Table 1. Changes in ALDH1A1, CD44, and
CD133 staining from primary to persistent
ovarian tumor

Patient ALDH1A1a CD44a CD133a

502 " # "
505 " NM NM
510 # # "
511 " " "
522 NC " NC
525 " " "
535 " " "
540 NC NC "
544 " NM NM
548 " " "
549 NC " "
Abbreviations: NC, density of cells did not change by more
than2-fold;NM, notmeasuredbecauseof insufficient tumor.
aAn increase or decrease more than 2-fold designated by
arrow.

Table 2. Quantitative PCR analysis of putative CSC markers and stem cell pathways in matched primary/
persistent ovarian cancers (n¼12)

Gene name (symbol) Signaling
pathway

Mean No. of
decreased

No. of
increased

Fold changea Pb >50% >2-fold

Putative CSC markers
Aldehyde dehydrogenase 1A1 (ALDH1A1) 2.46 0.2343 3 6
CD44 molecule (CD44) 4.08 0.0023 2 9
Prominin 1 (PROM1/CD133) 1.11 0.8877 4 5
ATP-binding cassette, sub-family G, member 2 (ABCG2/BCRP) 7.65 0.0163 1 5

Human Stem Cell Signaling RT2 Profiler PCR Array
Endoglin (ENG) TGF-b 3.77 0.0023 0 9
Zinc-finger E-box–binding homeobox 2 (ZEB2) TGF-b 3.66 0.0062 1 9
Presenilin 2 (PSEN2) Notch 3.30 0.0071 0 7
GLI family zinc finger 1 (GLI1) Hedgehog 10.21 0.0076 1 10
GLI family zinc finger 2 (GLI2) Hedgehog 7.61 0.0111 2 9
Latent transforming growth factor-b binding protein 4 (LTBP4) TGF-b 4.69 0.0146 1 9
Transforming growth factor-b receptor II (TGFBR2) TGF-b 2.76 0.0190 0 8
RGM domain family, member A (RGMA) TGF-b 7.84 0.0204 2 9
Activin A receptor, type IB (ACVR1B) TGF-b 2.20 0.0275 0 4
Frizzled homolog 9 (FZD9) Wnt 10.43 0.0393 2 8
SMAD family member 2 (SMAD2) TGF-b 1.79 0.0435 1 6
B-cell CLL/lymphoma 9-like (BCL9L) Wnt 2.06 0.0463 1 6

aPersistent compared with primary tumor.
bCalculated using paired Student t test.
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endoglin-targeting siRNAs showed a significant reduction
in viability, as determined by MTT assay (Fig. 3D). This
effect on viability correlated with the degree of endoglin

downregulation, as ENG_A siRNA reduced cell viability by
50% to 84% (in ES2 and HeyA8MDR, respectively, P <
0.001), whereas ENG_B siRNA had no effect on ES2 and a
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Figure 3. Endoglin is expressed in
persistent ovarian tumor and
ovarian cancer cell lines, and its
downregulation leads to
decreased cell viability. A,matched
primary/persistent ovarian tumor
pairs (n ¼ 12) were subjected to
IHC analysis of endoglin to
evaluate changes in expression.
Persistent tumors were found to
have a higher density of endoglin
staining than in primary specimens.
Representative histologic sections
are shown for a matched pair
(black bar, 100 mm). B, mRNA
expression of endoglin was
quantified in 8 different ovarian
cancer cell lines using quantitative
PCR. Gene expression is shown as
log2 transformed DCT values
[difference between theCT value of
the gene of interest (endoglin) and
that of the housekeeping gene
(RPLP0)]. C, downregulation of
endoglin in ES2 and HeyA8MDR
cells using 2 different siRNA
constructs was determined by
Western blot analysis. b-Actin was
used as a loading control. D, ES2
and HeyA8MDR cells transiently
transfected with anti-endoglin
siRNAs had decreased viability as
determined by MTT assay. E, cell-
cycle analysis (PI staining) revealed
that downregulationof endoglin led
to anaccumulationof bothES2and
HeyA8MDR cells in the sub-G0 or
apoptotic fraction. Data are
representative of 3 independent
experiments. �, P < 0.001.
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64% reduction inHeyA8MDR (P<0.001). The variability in
effects on the 2 cell lines may reflect their dependency
on endoglin, as HeyA8MDR cells have 3.7-fold higher
endoglin expression than ES2 cells. In addition, ES2 cells
may have compensatory pathways active at a baseline that
reduce their dependency on endoglin. Additional studies
will be required to fully elucidate these mechanisms.
To determine the mechanism by which endoglin down-

regulation may affect cell viability, cell-cycle analysis was
conducted in a separate experiment. ES2 and HeyA8MDR
cells were exposed to control or anti-endoglin siRNA
(ENG_A), allowed to grow for a total of 72 hours, and
examined for DNA content by PI staining (Fig. 3E). In both
ES2 and HeyA8MDR, endoglin knockdown resulted in a
significant accumulation of cells in the sub-G0/apoptotic
fraction comparedwith cells transfectedwith control siRNA
(from20% to 31%;P<0.05 and from42% to 69%; P<0.01,
respectively).

Targeting of Gli1 and Gli2 in ovarian cancer cells
Analysis of stem cell genes upregulated in recurrent

tumors reveals both primary mediators of the Hedgehog
pathway to be increased after chemotherapy (Table 2). The
Hedgehog pathway has previously been implicated in the
survival of CSCs (31). To validate its targetability in ovarian
cancer, we first examined gene expression ofGLI1 andGLI2
in the same cell lines as mentioned above. As shown in
Fig. 4A, there was no correlation between GLI1 and GLI2
expression among the cell lines examined, although all cell
lines expressed GLI1, GLI2, or both. Of note, A2780cp20
cells were found to express GLI1 2.05-fold higher and GLI2
1.40-fold higher (P < 0.001) than their parental line
(A2780ip2), suggesting that these Hedgehog pathway
members may be involved in mediating platinum
resistance.
A2780cp20 (Gli1þ/Gli2þ) and ES2 (Gli1�/Gli2þ) cells

were subsequently used for examining the biologic effects of
Gli1/2 knockdown. Downregulation of Gli1/2 in these cell
lines was achieved using 2 different siRNA constructs as
confirmed by quantitative PCR (Fig. 4B). Importantly, each
siRNA construct showed selectivity for the GLI gene to
which it was designed against (i.e., GLI1 siRNAs had no
effect onGLI2 expression andGLI2 siRNAs had no effect on
GLI1 expression). As shown in Fig. 4C, knockdown of Gli1
or Gli2 alone significantly decreased A2780cp20 cell via-
bility [by up to 65% (P < 0.001) and 61% (P < 0.001),
respectively], whereas in ES2 cells, knockdown of Gli2, but
not Gli1, significantly reduced cell viability (by up to 82%,
P < 0.001). The lack of an effect ofGLI1 downregulation on
ES2 cells would be expected as these cells have little to no
detectable GLI1 expression. Interestingly, an increased
sensitivity to cisplatin was observed in both A2780cp20
and ES2 cell lines after knockdown of Gli2, but not Gli1
(Fig. 4C). Cisplatin IC50 decreased from 4 to 0.8 mmol/L
(5.0-fold change) in A2780cp20 cells and from 0.7 to 0.15
mmol/L (4.7-fold change) in ES2 cells. Taken with the
demonstration of increased Gli2 expression in samples
collected immediately after platinum-based chemotherapy

(Table 2), these datamake a compelling argument that Gli2
plays a role in platinum resistance, which can be at least
partially overcome with Gli2 downregulation. However,
Gli1 only appears to contribute to absolute viability, with
no platinum-sensitizing effects.

To determine the mechanism by which Gli1/2 down-
regulation may affect cell viability and/or platinum
sensitivity, cell-cycle analysis was conducted in a separate
experiment. A2780cp20 cells were exposed to control, anti-
Gli1 (GLI1_B), or anti-Gli2 (GLI2_B) siRNA, allowed to
grow for a total of 72 hours, and examined for DNA content
by PI staining. As shown in Fig. 4D, downregulation of Gli1
had little effect on the cell-cycle distribution of A2780cp20
cells, with a modest accumulation in the sub-G0 or apo-
ptotic fraction compared with control siRNA (8%–12%, P <
0.05). This suggests that the observed decrease in cell
viability followingGli1 knockdownmay be due tomechan-
isms independent of the cell cycle. Alternatively, down-
regulation of Gli2 had a greater impact, with a 4-fold
increase (8%–32%, P < 0.001) in induction of apoptosis
than in control siRNA. This further suggests thatGli2 plays a
critical role in ovarian cancer cell survival.

Discussion

We have found that recurrent tumors are more densely
composed of putative CSCs as characterized by ALDH1A1,
CD44, and CD133 than their matched primary ovarian
cancer specimens, suggesting that their expression is clin-
ically significant and may correlate with residual chemore-
sistant populations that must be present at the end of
primary therapy. Presumably targeting these populations
with some other treatment modality would be required to
achieve durable cures in patients with ovarian cancer. In
addition,we identified several genes froma largepanel of 84
genes involved in stem cell biology to be significantly
overexpressed in recurrent patient samples, further suggest-
ing that resistant tumors are enrichedwith genes involved in
stem cell pathways. With this methodology, the TGF-b
coreceptor endoglin was found to be overexpressed in
residual tumor cells and thus important to the chemore-
sistant cancer cell population. This represents a previously
unrecognized function of this gene as amediator of survival
in tumor cells, in addition to its known role in angiogenesis.
Moreover, the Hedgehog transcription factor Gli2 was also
overexpressed and functional in the chemoresistant popu-
lation and, with correlative in vitro data, was found to play a
novel role in platinum resistance.

It is hypothesized thatCSCsmaybe responsible for tumor
initiation or recurrent disease. There are many facets of this
hypothesis that are still under debate, including what level
of stemness such populations may have, how best to iden-
tify the true stem cell population, and whether these mark-
er-defined cells are also the ones surviving initial chemo-
therapy (32). However, there clearly are subpopulations
within a heterogeneous tumor that have more aggressive,
chemoresistant features than others in ex vivo and now de
novo models (2, 33). This is clinically evident in the
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Figure 4. Downregulation of Gli1/2
leads to decreased cell viability and
downregulation of Gli2, but not
Gli1, sensitizes ovarian cancer
cells to cisplatin in vitro. A, mRNA
expression of GLI1 and GLI2 was
quantified in 8 different ovarian
cancer cell lines using quantitative
PCR (qPCR). Gene expression is
shown as log2 transformed DCT

values. B, downregulation of Gli1/2
inA2780cp20 andES2cells using2
different siRNA constructs was
determined by quantitative PCR.
Each siRNA construct showed
selectivity for theGLIgene towhich
it was designed against. ND, not
detectable; �, P < 0.01. C,
knockdown of GLI1 or GLI2 alone
diminished A2780cp20 cell
viability, whereas only knockdown
ofGLI2 diminishedES2cell viability
as determined by MTT assay.
Increased sensitivity to cisplatin
(CDDP) was noted in A2780cp20
andES2cells transfectedwithGLI2
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cell-cycle analysis (PI staining) of
A2780cp20 cells exposed to
control siRNA,GLI1 siRNA, orGLI2
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Downregulation of Gli2 and, to a
lesser extent Gli1, led to an
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representative of 3 independent
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observation that patients often have outstanding initial
responses to chemotherapy, suggesting that the majority
of primary tumor is actually chemosensitive. It is important
to note that although we do see an increase in these
populations, recurrent tumors are not completely com-
posed of these cells. This indicates that either additional
chemoresistant populations are yet to be identified, or these
cells have such differentiating capacity that they rapidly
produce marker-negative cells, or both. An additional lim-
itationof our analysis is the specific examinationof stemcell
pathways. Other pathways almost certainly play important
roles in mediating survival of the therapy-resistant popu-
lation; one example being altered DNA repair mechanisms.
Recent evidence suggests that ovarian cancers can arise from
specific defects in DNA repair pathways, and that inhibitors
of the proteins involved in these pathways, such as PARP,
could be used to reverse chemoresistance (34), It is reason-
able to postulate that CSCs, like normal stem cells, would
have enhanced mechanisms of DNA repair, allowing for
survival with prolonged exposures to DNA-damaging
insults. Analysis of RNA from FFPE samples showed that
the extract was of quality appropriate for qPCR analysis, but
not enough samples had sufficient quality for full micro-
array analysis, which could be used in future studies to
examine the role of DNA repair or other pathways in
mediating chemoresistance. Further characterization of the
recurrent chemoresistant tumors with evolving high-
throughput methods that can be conducted on FFPE sam-
ples, or identification of a cohort of patients with snap
frozen tumors, would be required to fully characterize this
aggressive population.
Whether the chemoresistant population is composed of

predominantly cancer cells with stem cell biology or not, we
propose a model of how such a population may comprise
the overall tumor during different clinical settings. Because
most patients have an initial positive response to chemo-
therapy, the presenting tumormust be composed of mostly
therapy-sensitive cells (TSC), with a small component of
therapy-resistant cells (TRC). Treatment selectively kills
TSCs, resulting in predominantly TRCs, but in a small
enough volume that they are not clinically detectable (per-
sistent tumor). Therefore, the patient is observed, but in
about 75% of cases, tumors will recur 18 to 24months after
completion of therapy (with an untreated recurrent tumor).
Because of the differentiation capacity of the resistant cells,
this tumor has become repopulated with CSC marker–
negative differentiated cells and is again heterogeneous,
with a significant portion of chemosensitive cells. This
would seem to be the case, given the observed 50% response
rate seen in patients receiving second-line chemotherapy.
However, either because of genetic changes in genetically
unstable tumor cells or further selective growth of the
therapy-resistant population, ultimately the TRCs domi-
nate, patients get no further response with multiple agents
and succumb to tumor burden (treated recurrent tumor).
The observed increase in CSC marker staining, particularly
ALDH1A1 and CD133, in samples collected immediately at
the completion of primary therapy suggests these cells have

preferential survival and can go on to give rise to recurrent
disease. These cells may represent a population that could
be targeted to achieve increased response rates and survival
in patients with ovarian cancer.

It is an interesting finding that CD44þ cells were less
dense in recurrent tumors than in CD133 and ALDH1,
despite multiple studies showing that CD44þ cells have
CSC properties. Many of these studies have used CD44 in
combination with other markers, such as c-kit (4), MyD88
(5), CD133 (6), and CD24 (35). It is for this reason that we
examinedCD44by itself as potentially important, but at the
same time may have introduced a limitation by not being
able to evaluate dual-positive populations. It is yet to be
determined the degree of crossover between individual
markers. Likely, the combination of markers will identify
a more aggressive population than either alone, as previ-
ously shown with CD133 and ALDH1 (11), but it is
unknown whether such combinations then exclude other
aggressive populations. This disparity, however, highlights
the limitations in defining the key population by marker
status alone, instead relying on clinical behaviors such as
resistance to chemotherapy.

Recent studies have shown that developmental pathways
(such as Notch, Wnt, Hedgehog, and TGF-b) play an
important role in the self-renewal andmaintenance of CSCs
and that inhibiting these pathways may provide useful
therapeutic strategies both alone and in combination with
traditional chemotherapies (36, 37). In our study, genes
identified as being significantly overexpressed in persistent
tumors included endoglin (a member of the TGF-b super-
family) and the primary mediators of hedgehog transcrip-
tion, GLI1 and GLI2, among others (Table 2). The most
significant and consistent increase in expression from pri-
mary to persistent tumor occurred in endoglin (CD105), a
TGF-b coreceptor. Thismolecule interacts with TGF-b recep-
tor II [TGFBR2, which was also significantly increased in
persistent tumors (2.76-fold, P ¼ 0.0190)], both depen-
dently and independently of the TGF-b ligand (38). This
interaction subsequently promotes gene transcription
mediated by the Smad family of transcription factors
(Smad2 and 4). In contrast, a proteolytically cleaved, secret-
ed form of endoglin, known as soluble endoglin (Sol-Eng)
appears to inhibit TGF-b signaling by scavenging circulating
TGF-b ligands (39). Endoglin is a well-described marker of
angiogenesis whose expression is turned on in growing/
sprouting endothelial cells (such as those supplying vascu-
lature to tumors). This characteristic of endoglin hasmade it
a desirable target for antiangiogenic cancer therapy, with
monoclonal antibodies being developed for future clinical
use (29, 30). Previous studies have shown that endoglin
expression in the stroma of ovarian tumors is associated
with poor survival (40, 41), but the role of this receptor in
cancer cell biology remains largely unexplored.On the basis
of our data, it appears that endoglin plays a role in ovarian
cancer chemoresistance and recurrence. Moreover, endo-
glin appears to be important for continued ovarian cancer
cell survival as evidenced by our in vitro data. In a study
conducted by Li and colleagues, it was shown that endoglin
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prevents apoptosis in endothelial cells undergoing hypoxic
stress, either in the presence or absence of TGF-b ligand
(42). It could be speculated that endoglin serves a similar
antiapoptotic function in tumor epithelial cells and thereby
promotes ovarian cancer cell survival.Whether this is due to
the promotion of TGF-b signaling or through a TGF-
b–independentmechanism remains to be determined. Tak-
en together, these data suggest that inhibiting endoglin
could be used to target both the tumor and its developing
vasculature, thereby having a potentially greater therapeutic
benefit. Additional studies will determine the viability of
endoglin as a therapeutic target, as antibodies have been
developed that disrupt the interaction of endoglin and TGF-
b receptor II (43, 44).

Previous studies have implicated hedgehog signaling in
multidrug resistance (45, 46); however, the role of this
pathway in resistance to platinum-based compounds
remains largely unexplored. While both Gli1 and Gli2
appeared to mediate ovarian cancer cell survival in vitro,
only downregulation of Gli2 sensitized cells to cisplatin
in a synergistic fashion, with a 5-fold reduction in IC50

concentrations in two different cell lines. It is suggested
that the mechanism underlying this sensitization involves
apoptosis. Inhibition of apoptosis is known to mediate
cisplatin resistance (47), and Gli2 has previously been
shown to serve an antiapoptotic function through tran-
scriptional regulation of apoptotic inhibitor molecules
(48–50). In our study, we found that downregulation of
Gli2 alone induced apoptosis, and this may have con-
tributed to the increased sensitivity of ovarian cancer cells
to cisplatin in vitro. Interestingly, downregulation of Gli1
had no effect on cisplatin toxicity. Future studies on the

link between Gli2, apoptosis, and cisplatin resistance are
warranted.

Collectively, the data presented in this study show that
cells with stem cell properties enrich recurrent ovarian
tumors, especially in their more chemoresistant forms. The
varied density of these subpopulations in different clinical
scenarios provides insight into the dynamic heterogeneity
during the typical natural history of ovarian cancer progres-
sion. Additional stem cell pathways contribute to the
continued survival and chemoresistance of ovarian cancer,
and targeting these pathways may be necessary to achieve
durable clinical response in this disease. In addition, the
TGF-b coreceptor endoglin (CD105) and the Hedgehog
mediator Gli2 were found to be overexpressed in recurrent
ovarian tumors and are promising targets in overcoming
chemoresistance.
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Targeted therapy against aldehyde dehydrogenase in ovarian cancer 
American Association of Cancer Research, 2010 

 
Charles N. Landen1, Blake Goodman2, Alpa M. Nick2, Rebecca L. Stone2, Lance D. Miller3, 

Pablo Vivas Mejia4, Nicolas B. Jennings2, David M. Gershenson2, Robert C. Bast, Jr.5, Robert L. 

Coleman2, Gabriel Lopez-Berestein4,6,7, and Anil K. Sood2,6,7  

 

OBJECTIVE. Aldehyde dehydrogenase-1 (ALDH1) expression characterizes a subpopulation of 

cells with enhanced tumor initiating and differentiating properties in some cancers. We have 

examined the association of ALDH1 with chemoresistance and whether downregulation of 

ALDH1 sensitizes cells to chemotherapy in models of ovarian cancer. 

METHODS. Microarray profiling was performed on SKOV3ip1 and the taxane-resistant 

SKOV3TRip2 cell lines. Primary ovarian cancer xenografts with and without cisplatin exposure 

were examined for selection of ALDH1-positive cells. Small interfering RNA (siRNA) was used 

to downregulate ALDH1 in vitro, and in vivo by incorporation into neutral DOPC liposomes, for 

evaluation of chemosensitization in an orthotopic model of ovarian cancer. 

RESULTS. Microarray analysis found 29 genes upregulated and 18 genes downregulated by 

more than 10-fold when comparing the taxane-resistant SKOV3TRip2 ovarian cancer line 

compared to its parental SKOV3ip1 line. Included among these was a 92.7-fold higher ALDH1 

signature. Increased expression and activity of ALDH1 was confirmed by Western blot and the 

ALDEFLUOR assay (58% of cells ALDH1-active). In primary ovarian cancer xenografts in NOD-

Scid mice, cisplatin treatment resulted in an increase in ALDH1-positive cells, from a baseline of 

1% to 38% with therapy (p<0.001%). ALDH1-positive cells were not limited to perivascular, 

hypoxic, or advancing edge regions of the tumor. SiRNA constructs downregulating expression 

of ALDH1 were identified, and reduced viability of SKOV3TRip2 cells in vitro by 49% (p<0.001). 

ALDH1 targeting also reduced the docetaxel IC50 from 178nM to 82nM. In the A2780cp20 cell 

line (a cisplatin-resistant cell line derived from A2780), ALDH1 siRNA alone reduced growth by 



just 16%, but sensitized cells to cisplatin with a reduction in IC50 from 5.1 to 2.0M. In an in vivo 

orthotopic model of ovarian cancer, we treated mice with control siRNA, ALDH1-siRNA 

incorporated into DOPC liposomes, chemotherapy, or combined chemo/ALDH1-siRNA-DOPC. 

ALDH1 alone or docetaxel alone had minimal effect on SKOV3TRip2 tumor growth, but ALDH1-

siRNA-DOPC plus docetaxel reduced growth by 89.8% compared to docetaxel/control siRNA 

(p=0.003). Similarly, in the A2780cp20 model, ALDH1-siRNA-DOPC alone or cisplatin had a 

nonsignificant reduction, while ALDH1-siRNA-DOPC plus cisplatin reduced tumor growth by 

73.4% compared to cisplatin/control siRNA (p=0.013). 

CONCLUSIONS. ALDH1 expression is associated with taxane and cisplatin chemoresistance in 

ovarian cancer cell lines. ALDH1 expression can be induced by cisplatin treatment in vivo, and 

targeting ALDH1 sensitizes resistant cell lines to taxane and platinum chemotherapy. This 

enzyme may be important for identification and targeting the chemoresistant population in 

ovarian cancer.  

 



Targeting hedgehog reverses taxane resistance by Gli-dependent and independent 

mechanisms in ovarian cancer 
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Objective:  Recent studies have implicated hedgehog signaling in the formation and 

continued growth of a variety of malignancies, including ovarian cancer.  Several 

inhibitors of the hedgehog pathway have been identified that block the activity of the 

Smoothened (Smo) receptor.  The goal of this study was to determine the in vitro and in 

vivo effects of Smo antagonists alone and in combination with chemotherapy in ovarian 

cancer.   

Methods:  Expression of hedgehog signaling components (Smo, Gli1 and Gli2) was 

assessed in 3 pairs of parental and chemotherapy-resistant ovarian cancer cell lines 

(A2780ip2/A2780cp20, SKOV3ip1/SKOV3TRip2, HeyA8/HeyA8MDR) using Western 

blot and qPCR.  Cell lines were exposed to increasing concentrations of two different 

Smo antagonists (Cyclopamine, LDE225) alone and in combination with carboplatin, 

paclitaxel, adriamycin, and topotecan.  Selective knockdown of Smo, Gli1 and Gli2 was 

achieved using siRNA constructs.  Cell viability was assessed by MTT assay and PARP 

cleavage was used as an indicator of apoptosis.  SKOV3TRip2 orthotopic xenografts 

were treated with vehicle, LDE225, paclitaxel or combination therapy for 5 weeks.  

Tumor weight for each treatment group was measured and compared using student’s t-

test. 

Results:  Expression of Smo and Gli1 was high in A2780ip2/A2780cp20, moderate in 

SKOV3ip2/SKOV3TRip2 and low/absent in HeyA8/HeyA8MDR.  Gli2 was high in 

SKOV3ip2/SKOV3TRip2, moderate in A2780ip2/A2780cp20 and low in 

HeyA8/HeyA8MDR.  Response to cyclopamine and LDE225 varied among the cell lines 

examined with IC50s ranging from 7.5 to >20 µM.  Both agents sensitized 

chemotherapy-resistant cell lines to paclitaxel (5- to 26-fold, including 

Smo[low]/Gli1[neg] HeyA8MDR), but not to carboplatin, adriamycin, or topotecan.  

Selective knockdown of Gli1 and Gli2 resulted in taxane sensitization only in Gli1/2-high 

A2780cp20 cells (2- to 8-fold).  A decrease in acetyl-α-tubulin confirmed microtubule-

specific effects of Smo targeting, supporting the taxane specificity of this effect.  In vivo, 

SKOV3TRip2 xenografts treated with LDE225 or paclitaxel alone had slightly less tumor 

burden than the control group (reduced by 28.1%, p=0.42 and 32.0%, p=0.40, 

respectively).  Those treated with combined LDE225 and paclitaxel, however, had 

significantly less tumor burden than those treated with vehicle (70.5% reduction, 

p=0.015). 

Conclusions:  Targeting the hedgehog pathway decreases cell viability and increases 

taxane sensitivity in taxane-resistant ovarian cancer models.  Interestingly, these effects 

were noted even in cells with little constitutive hedgehog activity.  This suggests both 

Gli-dependent and -independent mechanisms contribute to taxane resistance, expanding 

the potential use of hedgehog inhibitors to all taxane-resistant tumors.  
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Within heterogeneous tumors, subpopulations labeled cancer stem cells (CSCs) have been 
identified that have significantly enhanced tumorigenicity and chemoresistance in ex vivo 
models. However, whether these populations are truly more capable of surviving chemotherapy 
in de novo tumors is not known. We hypothesized that CSCs make up a greater portion of 
chemoresistant recurrent tumors, and therefore may represent the subpopulation within ovarian 
cancers predominantly contributing to chemoresistance and recurrent disease. We examined 45 
matched primary/recurrent tumor pairs of high grade ovarian adenocarcinomas and subjected 
specimens to immunohistochemistry (IHC) for populations shown to have CSC properties in ex 
vivo studies: CD44, CD133, and ALDH1. The percent of positive CD44, CD133, and ALDH1 
cells in primary samples averaged 6.2%, 7.1%, and 23.4%, respectively. When examining 
recurrent samples, there was a moderate increase CD44-positive cells (to 11.0%, p=0.11) or 
ALDH1-positive cells (to 29.2%, p=0.28). However, for CD133, there was a dramatic increase, 
with 29.6% of cells CD133-positive (p=0.0004). Interestingly, when patients were stratified 
based on the clinical scenario in which the recurrent tumor was sampled, the increases were 
more pronounced. Of tumors collected immediately after completion of primary therapy, 53.4% 
of cells were CD133-positive (p=0.001), 54.9% were ALDH1-positive (p=0.018), and 21.2% 
were CD44-positive (p=0.16). In tumors collected from recurrent platinum resistant patients, 
41.6% were CD133-positive (p=0.027).  Samples collected at first recurrence (before initiating 
secondary therapy) were composed of similar percentages of each population, suggesting the 
tumor was repopulated with marker-negative differentiated cells.  RNA extracted from laser 
microdissected tumor cells from a cohort of matched pairs (n=12) were subjected to a qPCR 
array to assess upregulation of stem cell pathways. Of 86 members of the Notch, Hedgehog, 
Wnt, and TGF- pathways examined, 16% were overexpressed in recurrent specimens.  These 
data indicate that chemoresistant tumor subpopulations are enriched in CD133 and ALDH1 
populations, suggesting a contribution of these subpopulations to surviving initial chemotherapy 
and ultimately recurrent disease. Expression profiling in recurrent samples supports the 
hypothesis that select subpopulations within a heterogeneous tumor have enhanced 
chemoresistance due, at least in part, to activation of stem cell pathways. 
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Introduction: Endoglin (ENG, CD105) is a TGFR co-receptor overexpressed on proliferating 

endothelial cells but rarely expressed on normal or malignant epithelial cells. Our objective was 

to evaluate ENG expression in ovarian cancer and examine its potential role in chemoresistance.   

Methods: Matched primary and persistent-disease ovarian cancer specimens (n=12 pair, 

recurrent specimens collected within 3 months of completion of primary therapy) were laser 

microdissected. mRNA was extracted from microdissected cancer cells and subjected to qPCR-

array analysis of stem cell family members (n=84). ENG immunohistochemistry was also 

performed on matched specimens. Western blot and qPCR were used to evaluate ENG 

expression in multiple ovarian cancer lines.  Anti-ENG siRNAs were used to downregulate 

expression in ES2 and HeyA8MDR cell lines. Effects of ENG-knockdown were evaluated by the 

MTT assay, cell-cycle analysis, alkaline comet assay, and γ-H2AX foci formation. In vivo, an 

orthotopic mouse model of advanced ovarian cancer was used to determine effects of chitosan-

encapsulated anti-ENG siRNA or control siRNA with and without carboplatin.  

Results:  Recurrent ovarian tumors showed upregulation of ENG expression by qPCR when 

compared to primary specimens (3.77-fold increase, p=0.0023). Tumor-specific expression was 

confirmed with immunohistochemistry. ENG was noted to be overexpressed in ES2 and 



 2 

HeyA8MDR cell lines, where siRNA-mediated downregulation decreased cell viability (by 50%, 

p<0.001, and 84%, p<0.001, respectively), increased apoptosis (10-27%, p<0.05) and increased 

cisplatin sensitivity (4.4- and 2- fold , respectively). In an orthotopic mouse model, anti-ENG 

siRNA/chitosan decreased tumor weight in ES2 and HeyA8MDR models when compared to 

control (by 41.2%, p=0.001; and 35.6%, p=0.014, respectively). ENG inhibition in combination 

with carboplatin was associated with even greater response when compared to control. Both in 

vitro and in vivo, ENG downregulation led to significant DNA damage, as measured by the 

comet assay and appearance of γ -H2AX foci, suggesting a previously-unrecognized mechanism 

by which ENG targeting might act synergistically with platinum agents. 

Conclusions: ENG appears to be upregulated in chemoresistant ovarian cancer. ENG 

downregulation promotes apoptosis, induces DNA damage and increases platinum sensitivity 

both in vivo and in vitro in ovarian cancer cells. Anti-ENG therapy may allow dual treatment 

with a direct effect on a subset of tumor cells with ENG-mediated enhanced chemoresistance and 

potentially on tumor associated endothelial cells.   
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Objective:  Preclinical models of ovarian cancer are often limited by their clonality, 
which lacks the heterogeneity present in patient tumors and limits their ability to 
predict efficacy of therapeutics. We describe a method for establishing primary 
xenografts in mice with high efficiency rates, and demonstrate that they retain 
tumor heterogeneity and demonstrate similar chemoresponsiveness to 
corresponding patient tumors. 
 
Methods and Materials:  With IRB and IACUC approval, omental metastatic tumors 
were collected at the time of primary tumor reductive surgery and implanted into 
SCID mice in one of four sites: subcutaneous (SQ, 20 sites), mammary fat pad (MFP, 
10 sites), subrenal capsule (SRC, 5 sites), and intraperitoneally (IP, 5 mice).  Growth 
in mice was followed with exam and CT scans.  Expression of tumor initiating cells 
(TICs) was evaluated by immunohistochemistry.  To determine biologic similarity, a 
subset of mice were treated with MTD carboplatin and paclitaxel weekly until at 
least 75% tumor reduction was noted. Descriptive statistics and student’s t-test 
were used for statistical analysis.   
 
Results:   
In the first 16 patients collected, tumors ultimately grew from 35% of SQ implants 
(105/300), 33.6% of MFP (46/137), 4% of SRC (2/50), and 3.1% of IP (2/65) 
injections (p<0.001). However, samples from 87.5% of patients developed at least 
one SQ tumor that could be collected and propagated into more mice.  The average 
time to tumor growth was 80.2 days.  Murine xenografts were similar to primary 
human tumors in regards to histology and percentage of TICs (17/20% ALDH1, 
2.3/5.5% CD44, and 10.8/3.3% CD133 for mean xenograft /patient TIC, 
respectively, p>0.05), confirming that xenografts were comprised of a 
heterogeneous cell set, not just aggressive subpopulations. In 6 xenograft cohorts, 
mice were treated with MTD dosing and followed for response. Response to 
treatment in the xenografts correlated to patient clinical response: the mean time to 
50% reduction in xenograft volume was 22.56 days in those with a complete 
response, versus 49.77 days in those with a partial response (p=0.015).  
   
Conclusions: Growth of primary xenograft transplants can be achieved with a high 
success rate after subcutaneous implantation. Xenografts maintain tumor 
heterogeneity in regards to TIC density and biologic response to chemotherapy. This 
preclinical model may provide a valuable mechanism by which to study tumor 
heterogeneity, chemoresistance, and novel therapeutics.   



Targeting the Hedgehog pathway reverses taxane resistance in ovarian cancer 

Annual Meeting of the Society of Gynecologic Oncologists, 2011 

 

Ziebarth, Steg, Bevis, Katre, Alvarez, Landen 

  

Objectives: The Hedgehog (Hh) pathway is known to play an important role in stem cell biology and 

multiple malignancies, but it is not clear what role it may play in chemoresistance. Our objective was 

to explore the effects of targeting the Hh pathway as a means to reverse taxane resistance in ovarian 

cancer. 

Methods:  Ovarian cancer cell lines A2780ip2, SKOV3ip2, Hey A8, and their taxol resistant 

derivatives A2780cp20 (also platinum resistant), SKTRip3, and HeyA8MDR were analyzed for 

expression of Hh pathway proteins (Smo, Gli 1) by Western blot and qPCR.  Cell lines were treated 

with three different Smo inhibitors: Cyclopamine (Cyp), LDE225 (Novartis), or CUR199691 (CUR, 

Genentech), alone and combined with paclitaxel. Knockdown of Smo, Gli1, and Gli2 was performed 

with siRNA.  Cell viability was assessed by MTT assay and apoptosis by PARP cleavage.  In vivo, 

SKTRip2 orthotopic xenografts were treated with vehicle, LDE225, paclitaxel, or combination therapy 

for 5 weeks, and IP tumor weights measured and compared using student’s t-test.  

Results:  Smo was strongly expressed in the A2780ip2/A2780cp20 and SKOV3ip1/SKTRip3 cell line 

pairs, but low expression was noted in HeyA8/HeyA8MDR. Gli1 expression was high in 

A2780ip2/A2780cp20, moderate in SKOV3ip1/SKOV3TRip3, and absent in HeyA8/HeyA8MDR. 

Cyp, LDE225, and CUR all inhibited growth in vitro with IC50’s in the range of 7 to 20µM for all cell 

lines. All agents also significantly sensitized all three taxane-resistant cell lines to paclitaxel, 5 to 45-

fold, even in the Smo[low]/Gli1[neg] HeyA8MDR cell line. With specific siRNA-mediated targeting, 

sensitization to paclitaxel was noted with Smo, Gli1, and Gli2 knockdown only in the in A2780cp20 

cell line (3 to 7-fold increased sensitivity, no effect noted on platinum sensitivity). In vivo, mice with 

SKOV3TRip3 xenografts treated with LDE225 or paclitaxel alone had slightly less tumor burden than 

the control group (reduction in size by 28.1%, p=0.42 and 32.0%, p=0.40, respectively). However, 

those treated with combined LDE225 and paclitaxel had significantly less tumor burden than those 

treated with vehicle (70.5% reduction, p=0.015). 

Conclusions: Inhibitors of the hedgehog pathway demonstrate significant antitumor activity in ovarian 

cancer, and reverse taxane resistance in vitro and in vivo. Significantly, these effects were noted even 

in cell lines with low constitutive Hh pathway activation, expanding its potential use to all taxane-

resistant tumors.  



Examination of matched primary and recurrent ovarian cancer specimens supports the cancer stem cell 
hypothesis 
Annual Meeting of the Society of Gynecologic oncologists, 2011 
Kerri S. Bevis MD, Ashwini A. Katre MS, Adam Steg PhD, Britt K. Erickson MD, Peter J. Frederick MD, 
Teresa K. Backes BS, Kui Zhang PhD,  Michael G. Conner MD, Charles N. Landen, Jr MD 
 
Objectives: 
Within heterogeneous tumors, subpopulations labeled cancer stem cells (CSCs) have been identified 
that have significantly enhanced tumorigenicity and chemoresistance in ex vivo models. However, 
whether these populations are truly more capable of surviving chemotherapy in de novo tumors is not 
known. We hypothesized that CSCs make up a greater portion of recurrent tumors, and therefore may 
represent the subpopulation within ovarian cancers predominantly contributing to chemoresistance and 
recurrent disease.  
 
Methods:  
45 matched primary/recurrent tumor pairs of high grade papillary serous or endometrioid ovarian 
adenocarcinomas were subjected to immunohistochemistry (IHC) for populations shown to have CSC 
properties in ex vivo studies: CD44, CD133, and ALDH1. Additionally, 12 pair in which recurrent tumors 
were collected immediately after completion of primary therapy were laser microdissected and 
analyzed with qPCR array for expression of stem cell pathway members. 
 
Results:  
The percent of positive CD44, CD133, and ALDH1 cells in primary samples averaged 6.2%, 7.1%, and 
23.4%, respectively. In recurrent samples, there was a moderate increase in CD44-positive cells (to 
11.0%, p=0.11) and ALDH1-positive cells (to 29.2%, p=0.28). However, for CD133, there was a dramatic 
increase, with 29.6% of cells CD133-positive (p=0.0004). Interestingly, when patients were stratified 
based on the clinical scenario in which the recurrent tumor was sampled, the increases were more 
pronounced. Of tumors collected immediately after completion of primary therapy, 53.4% of cells were 
CD133-positive (p=0.001), 54.9% were ALDH1-positive (p=0.018), and 21.2% were CD44-positive 
(p=0.16). Samples collected at first recurrence (before initiating secondary therapy) were composed of 
similar percentages of each population, suggesting the tumor was repopulated with marker-negative 

differentiated cells.  Of 86 members of the Notch, Hedgehog, Wnt, and TGF- pathways examined, 16% 
were overexpressed in recurrent specimens collected immediately after completion of primary therapy. 
 
Conclusions:  
These data indicate that chemoresistant tumor subpopulations are enriched in CD133 and ALDH1 
populations, suggesting a contribution of these subpopulations to surviving initial chemotherapy and 
ultimately recurrent disease. Expression profiling in recurrent samples supports the hypothesis that 
select subpopulations within a heterogeneous tumor have enhanced chemoresistance due, at least in 
part, to activation of stem cell pathways. 



An optimized primary ovarian cancer xenograft model mimics patient tumor biology and 

heterogeneity.  

 

Annual Meeting of the American Society of Clinical Oncology 

 

Zachary C. Dobbin, Ashwini A. Katre, Angela Ziebarth, Monjri M. Shah, Adam D. Steg, 

Ronald D. Alvarez, Michael G. Conner, Charles N. Landen.  

 

Background: Current xenograft and transgenic models of ovarian cancer are mainly 

homogeneous and poorly predict response to therapy. Use of patient tumors may 

represent a better model for tumor biology and offer potential to test personalized 

medicine approaches, but poor take rates and questions of recapitulation of patient tumors 

have limited this approach. We have developed a protocol for improved feasibility of 

such a model and examined its similarity to the patient tumor. 

 

Methods: Under IRB and IACUC approval, 23 metastatic  ovarian cancer samples were 

collected at the time of tumor reductive surgery. Samples were implanted either 

subcutaneously (SQ), intraperitoneally (IP), in the mammary fat pad (MFP), or in the 

subrenal capsule (SRC) and monitored for tumor growth. Cohorts from 8 xenolines were 

treated with combined carboplatin and paclitaxel or vehicle, and response to therapy 

compared between xenografts and patients. Expression of tumor-initiating cell (TIC) 

markers ALDH1, CD133, and CD44 was assessed by immunohistochemistry in tumors 

from patients and treated and untreated xenografts.  

 

Results: At least one SQ implanted tumor developed in 91.3% of xenografts, significantly 

higher than in the MFP (63.6%), IP (23.5%), or SRC (8%). Xenografts were similar in 

expression of putative TIC’s compared to patient tumors. The patients and the xenografts 

also have similar responses to chemotherapy in that xenografts from patients with a 

partial response responded more slowly than those from patients achieving a complete 

response (45 vs 21 days, p=.004). Treated xenografts were more densely composed of 

TICs. ALDH1 increased to 36.1% from 16.2% (p=0.002) and CD133 increased to 33.8% 

from 16.2% (p=0.026).  

 

Conclusions: Xenoline development can be achieved at a high rate when tumors collected 

from metastatic sites are implanted SQ. These xenografts are similar to patient tumors 

with regard to chemotherapy response and TIC expression.. This model may be a more 

accurate model for in vivo pre-clinical studies as compared to current models. Also, as 

treated xenografts become chemoresistant, this model is well positioned to evaluate 

targeted therapies aimed at the most aggressive populations in a heterogeneous tumor.  
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The Donald F. Richardson Prize Paper Award Presentation.  50th Annual Clinical Meeting of the American 
College of Obstetricians and Gynecologists, 5/2002. 

Neuroendocrine modulation of STAT3 in ovarian cancer.  Western Association of Gynecolgic Oncologic 
Oncologists, 5/2004. 

Genomic Instability is Associated with Lack of Telomerase Activation in Ovarian Cancer.  6th International 
Conference on Ovarian Cancer, MD Anderson Cancer Center, 12/2005. 

Therapeutic silencing of EphA2 by in vivo liposomal siRNA delivery.  American Association of Cancer Research 
Annual Meeting. Anaheim, CA, 4/2005. 

Targeting the αvβ3 integrin with a fully humanized antibody in ovarian cancer.  37th Annual Society of 
Gynecologic Oncologists Meeting, Palm Springs, CA, 3/2006. 

Overexpression of the centrosomal protein Aurora-A kinase is associated with poor prognosis in epithelial ovarian 
cancer patients.  37th Annual Society of Gynecologic Oncologists Meeting, Palm Springs, CA, 3/2006. 
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Perioperative factors associated with survival after secondary cytoreduction in patients with recurrent epithelial 
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Trial-based review of Management of Ovarian Cancer.  39th Annual Meeting of the Society of Gynecologic 
Oncologists, Tampa, Fl, 3/2008. 

Targeting the αvβ3 integrin in ovarian cancer.  Society of Gynecologic Investigation Annual Meeting, San Diego, 
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“Nanoparticle Delivery Systems for siRNA Therapy.” 3rd Annual Symposium on Ovarian Cancer Research, 
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University, Atlanta, GA, 9/2011. 
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Molecular Therapeutics of Cancer Research Conference, Princeton, NJ, 7/2010. 
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 “Therapeutic targeting of EphA2 in ovarian cancer.” Dept of Obstetrics and Gynecology Grand Rounds, 
Washington University, St. Louis, MO, 4/2007.  

 “In search of: Ovarian Cancer Stem Cells.” Lineberger Cancer Center, University of North Carolina at Chapel Hill, 
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“Translating Discovery to the Patient in Ovarian Cancer.” Dept of Obstetrics and Gynecology Grand Rounds, 
University of North Carolina at Chapel Hill, Chapel Hill, NC, 10/2008.  

“In search of: Ovarian Cancer Stem Cells.” Hellen Diller Comprehensive Cancer Center, University of California 
San Francisco, San Francisco, CA, 10/2008.  

“Update on screening and genetic susceptibility in gynecologic cancers.” The Gynecologic and Obstetrics Society, 
Medical University of South Carolina, 5/2011. 

“Cancer Stem Cells: Clinically significant or an experimental phenomenon?” Felix Rutledge Society, MD Anderson 
Cancer Center, 5/2011. 
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“Telomerase and Microsatellite Instability in Ovarian Cancer.” Dept of Gynecologic Oncology Grand Rounds, MD 
Anderson Cancer Center, 2/2004.  

“Neuroendocrine modulation of STAT3 in Ovarian Cancer.” Dept of Gynecologic Oncology Grand Rounds, MD 
Anderson Cancer Center, 4/2004.  

“Therapeutic silencing of EphA2 by in vivo liposomal siRNA delivery.” Dept of Gynecologic Oncology Grand 
Rounds, MD Anderson Cancer Center, 4/2005.  

“Therapeutic targeting of EphA2 in ovarian cancer.” Dept of Experimental Therapeutics, MD Anderson Cancer 
Center, Houston, TX, 4/2005.  

 “Trial-based review of Management of Ovarian Cancer.” Dept of Gynecologic Oncology, MD Anderson Cancer 
Center, 11/2007.  

“Cancer Stem Cells in Epithelial Ovarian Cancer.” Dept of Cancer Biology, MD Anderson Cancer Center, 4/2008.  
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“Important Aspects of Mentorship.” Dept of Gynecologic Oncology Grand Rounds, MD Anderson Cancer Center, 
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 “In search of... Ovarian Cancer Stem Cells.” Program in Experimental Therapeutics, University of Alabama at 
Birmingham, 1/2010.  

 “What’s New in Gynecologic Cancer Research.” Progress in OB/GYN Annual Meeting, University of Alabama at 
Birmingham, 2/2010. 

 “Independent targeting of the Notch pathway in tumor cells and tumor stroma.” Cancer Cell Biology seminar 
series, University of Alabama at Birmingham, 5/2010. 

“Neoadjuvant Chemotherapy in Ovarian Cancer.” Division of Gynecologic Oncology Grand Rounds, 7/2010. 

“Historical Vignettes in Obstetrics and Gynecology.” Department of Obstetrics and Gynecology Grand Rounds, 
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“Surgical Management of Gynecologic Malignancies.” Department of Radiology Grand Rounds, 7/2010. 
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