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Abstract

Waltz is a typical example of physical human-human interaction (pHHI) in a
well-structured environment, which makes waltz a good start point for under-
standing pHHI and physical human-robot interaction (pHRI). Waltz involves
two dancers. Understanding of the female dancer’s abilities in dancing may
help designing robots that can physically interact with human in intuitive
ways. Therefore, our goal is to reproduce the female dancer’s abilities with
a robot in pHRI. We focus on the lower level interaction in pHRI, i.e., cou-
pled dynamics. We propose a framework which covers modeling, analysis,
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human state sensing and robot control in developing a cooperative female
robot dancer. We model the two dancers’ coupled dynamics as two physi-
cally connected inverted pendulums. Stability of this two-pendulum system
is analyzed. The human state is measured by two laser range sensors, while
the measurement noise and bias are corrected by a Kalman filter. Several
candidate robot controllers are discussed and evaluated in experiments. Our
contributions include:

1. A model for describing dancers’ coupled dynamics in waltz;

2. Implementation of poly-quadratic stability condition in proving the
two-LIPM system’s stability;

3. A novel method which uses LRF to infer human’s timing in pHRI, and
a Kalman-filter-based method for estimating the state of human;

4. Analysis and validation of several robot controllers.

1 Introduction

Today, a vast variety of robots have been created to help human. To realize
this design goal, robots must interact with the external world. Depending
on the requirements of tasks, robots may interact with diversified objects,
including human. Because of the extremely complicated nature of human, a
large field of study is dedicated to understanding, designing, and evaluating
robot systems for human-robot interaction (HRI) [1].

HRI can be on the cognitive level (cognitive human-robot interaction,
cHRI [2]) and physical level (physical human-robot interaction, pHRI [3]).
As in the near future human and robot are expected to cooperate within the
shared workspace in industrial and domestic applications, pHRI is drawing
increasing attention and has become one of the major focuses in robotics
research.

Because human has the strong ability to cooperate with each other, we
could assume that for the same task, the pHHI (physical human-human inter-
action) may have superior performance than the pHRI. Besides performance,
we may have more “natural” user experience in pHHI than in pHRI. Due to
the above reasons, understanding the pHHI could help the researchers to
create more cooperative robots to enhance the pHRI performance [4].

Among the millions of pHHI, we select waltz as the subject of our study.
One reason is that waltz is a real-world, interesting pHHI; a waltz partner
robot which has desired pHRI performance has the potential to be socially
adopted for entertainment and rehabilitation purposes [5]. Another reason
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Figure 1: One developed dance partner robot [6]

is that waltz is the pHHI in well-structured environment, the simple envi-
ronment and simple context knowledge make waltz a good start point for
understanding pHHI and pHRI. Therefore, the pHHI and pHRI of waltz
have attracted our attention.

Waltz involves a male dancer (usually the leader) and a female dancer
(usually the follower). Understanding the female dancer’s ability in pHHI
may help improving a robot’s performance in pHRI; Therefore, our research
is to develop a robot which can cooperatively dance with a human leader
with playing the female dancer’s role. A prototype developed in earlier stage
is shown in Fig. 1 [6].

The pHHI and the pHRI can be divided into two levels:

Intention estimation Waltz has a fixed set of motion patterns, i.e., dance
steps. During dancing, when the leader selects the next step, the fol-
lower must estimate the leader’s intention.

Coupled dynamics The follower’s body dynamics are coupled with the
leader’s, hence the follower must adapt herself to the coupled body
dynamics.

To reproduce the pHHI of waltz in pHRI, the dance partner robot should
also be able to carry on the two tasks.

The higher level interaction, i.e., intention recognition, has been inten-
sively investigated in our earlier work [6, 7] and other researchers’ stud-
ies [8–11]. In contrast, the lower level interaction, i.e., coupled dynamics,
is still not well-understood. In the field of robotics, some dance robots that
can interact with human have also been demonstrated by Khatib et al. [12],
Oudeyerand et al. [13], and Setiawan et al. [14], etc. These works have real-
ized pHRI from the engineering perspective. At the same time, model and
analysis of the coupled dynamics are still not investigated.
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Figure 2: Dancers’ coupled body dynamics in sagittal plane are studied

Aside from the pHRI in dance, numerous methods have been proposed
in other pHRI-related applications. Colgate et al. analyzes the coupled sta-
bility between a linear manipulator and a linear, passive environment, but
the explicit modeling of human dynamics is not implemented [15]. Kazerooni
models the pHRI between a human arm and a robot extender, and uses small
gain theorem to design the robot controller which has the guaranteed sta-
bility, but only the human arm is modeled, with linear, low-pass-filter type
transfer functions [16]. The coupled dynamics in pHRI has been intensively
investigated in the field of haptics (between a human operator and a hap-
tic display), teleoperation (between a human operator and a robot master),
and human assistance [17–23], in which coupled dynamics in pHRI has been
thoroughly, quantitatively studied and used for controller designs. However,
because of their specific applications, only human arm dynamics are mod-
eled with some passive, impedance-type models, while the arm dynamics are
very different from a dancer’s body dynamics in waltz. In contrast, human’s
body dynamics in waltz are close to a walking biped, whose dynamics are
not strictly stable or passive.

Therefore, to understand the dancers’ coupled dynamics in waltz and
utilize the knowledge obtained to enhance pHRI, new models, new analysis
and design approaches are needed.

On modeling the coupled dynamics in waltz, we focus on two dancers’
body dynamics in sagittal plane (Fig. 2). Hence the limitation of the sim-
plification is that dancers’ rotational motions are not considered; however,
this one-dimensional simplified case enable us to better understand the fun-
damentals in pHHI and pHRI. Similar one-dimensional simplifications also
appeared in literature in coordinated teleoperation [24], haptic human-robot
interaction [25], and human-robot-human cooperation [4], etc.

Because our goal is developing a dance partner robot, we aim to address
three issues:
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Figure 3: Illustration of terms related with walking

Modeling: The coupled dynamics in waltz are to be modeled;

Analysis: System characteristics of the model are to be analyzed;

Control: Based on the characteristics of the coupled dynamics, robot con-
trollers are to be designed.

2 Approach and Results

2.1 Modeling

2.1.1 A single dancer’s model

Human’s body dynamics in waltz can be described by a bipedal walking
model; therefore here we briefly list some terms related with walking:

Single-support phase: The period of time when only one foot is in contact
with ground, as shown in Fig. 3(b).

Double-support phase: The period of time when both feet are in contact
with ground, as shown in Fig. 3(a).

Support leg: During single-support phase, the support leg is in contact
with ground while supporting the body weight, as shown in Fig. 3(b).

Swing leg: During single-support phase, the swing leg is traveling in the
air; the swing leg has no contact with the ground, as shown in Fig.
3(b).

Center of mass (CoM): The weighted average position of all the mass in
human body, as shown in Fig. 3.
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Figure 4: LIPM as a simplified model

Center of pressure (CoP): The weighted average position of all the pres-
sure on the contact surface between human’s support foot and ground,
as shown in Fig. 3(b).

A simplified model of walking is linear inverted pendulum (LIPM, [26]).
Consider a simplified human body model in sagittal plane (Fig. 4(a)). The
origin of the coordinate frame is at human’s CoP (center of pressure). By
applying several constraints on the walking system [26], we can convert the
system into an inverted pendulum as shown in Fig. 4(b). This system has
linear dynamics defined by [26]

ẍ =
g

z
x+

1

m
f (1)

where x is the position of LIPM’s CoM (center of mass) with respect to
LIPM’s CoP, z is the height of CoM, g is gravity acceleration, m is mass of
the body, and f is the external force.

Because of the instability of LIPM, a balance controller is needed. The
balance controller intermittently resets x, i.e., this inverted pendulum can
instantaneously reset its CoP to keep balance. Let {tk} be the set of moments
at which the CoP resets; let ẋ−, ẋ+ be the CoM velocity before and after
tk; let x−, x+ be the CoM’s relative position (with respect to CoP) before
and after tk. The LIPM with its controller can be viewed as an impulsive
dynamical system [27]:{

ẍ = (g/z)x, t 6∈ {tk}
x+ = hbal(x

−, ẋ), t ∈ {tk}
(2)

The function hbal in (2) is the balance controller. There are many candidates
for the balance controller hbal. Here a proposed controller [28] is implemented,
with x is reset by

x+ = −tτCτ
Sτ

ẋ(kT ) +
tτ
Sτ
vd(k + 1) (3)
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Figure 5: Dancers’ model as two inverted pendulums

where vd(k+1) = ẋ(kTp+Tp) is a reference input which represents the desired

velocity at tk+1; tτ =
√
z/g, Cτ = cosh(Tp/tτ ), Cτ = cosh(Tp/tτ ), and Tp is

the period of the CoP reset.
To test whether the LIPM can be used in modeling a waltz dancer, we

compare a professional female dancer’s motions with the model-generated
trajectories. Results of comparison support the use of LIPM, while details
of the experiments can be found in [29].

2.1.2 Model of the coupled dynamics

The physical interaction of waltz involves two dancers. If each dancer is mod-
eled by an LIPM, then the two physically coupled dancers can be modeled
by two spring-damper-connected LIPMs, as shown in Fig. 5. Without loss of
generality, we can consider the left LIPM as the leader, and the right LIPM
as the follower. Let xgl and xgf be the leader’s and the follower’s CoM posi-
tions . Let pgl and pgf be their CoP positions, all with respect to the global
frame. Defining a state vector x:

x = [xl, ẋl, xf , ẋf , q]
T (4)

where xl = xgl − p
g
l , xf = xgf − p

g
f are the leader’s and the follower’s relative

positions of CoM with respect to their CoPs. q = xgf − x
g
l − dspring, dspring

is the spring’s natural length. kc and dc are constants of the spring and the
damper. Dynamics of the two-LIPM system are:

ẋ = Ax, t 6∈ {tlk} ∪ {t
f
k}

x+ = Hlx
− + Blv

l
d, t ∈ {tlk}

x+ = Hfx
− + Bfv

f
d , t ∈ {t

f
k}

(5)

where {tlk} and {tfk} are the leader’s and the follower’s respective CoP reset

moments. vld and vfd are the leader’s and the follower’s desired velocities at
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{tlk} and {tfk}, respectively. Matrix A is defined as

A =


0 1 0 0 0
g
zl
− dc
ml

0 dc
ml

kc
ml

0 0 0 1 0
0 dc

mf

g
zf
− dc
mf
− kc
mf

0 −1 0 1 0

 (6)

where zl, zf are the leader’s and the follower’s CoM heights and ml, mf are
their body mass. Hl, Hf , Bl, and Bf are the matrix forms of (3), with

Hl =

 0 −Cltτl/Sl
0 1

02×3

03×2 I3×3

 (7)

Hf =


I2×2 02×3

03×2

0 −Cf tτf/Sf 0
0 1 0
0 0 1

 (8)

and Bl = [tτl/Sl, 0, 0, 0, 0]T , Bf = [0, 0, tτf/Sf , 0, 0]T . HlHf = HfHl = H .
Symbols like tτl,f , Cl,f and Sl,f are defined similarly as in (3). Interaction
force between the two LIPMs is denoted by f , with f = ccx, where

cc = [0, dc, 0,−dc,−kc] (9)

2.2 Analysis

2.2.1 System model with synchronization errors

Since the coupled dynamics have been modeled by (5), we can analyze sys-
tem stability. In our earlier work, by assuming two dancers’ CoP resets
are precisely synchronized, stability of the simplified dynamics has been an-
alyzed [30]. However, in real applications two dancers’ timing errors (or
synchronization error) are inevitable. Therefore, it is necessary to consider
the effect of timing error on system stability.

Let the leader’s and the follower’s k-th CoP reset moment be tlk and tfk
(Fig. 6). Because in pHRI the follower is a robot, we can keep tfk > tlk for all
k, i.e.,

0 < tfk − t
l
k , δtfk ≤ δtf ,∀k (10)

where δtfk is the follower’s timing error in following the leader, and δtf is δtfk ’s
upper bound.
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Figure 6: Timing errors of the leader and the follower

Consider the timing error of the human leader and the robot following,
we have

− δtl/2 ≤ δtlk+1 , tlk+1 − t
f
k − Tp ≤ δtl/2,∀k (11)

The assumptions of bounded timing errors, i.e., 0 < δtfk ≤ δtf and

−δtl/2 ≤ δtlk ≤ δtl/2 are reasonable because if δtfk or δtlk grows unbounded,
the two dancers would be unable to dance together.

System dynamics from tf+k to tf+k+1 consists four transitions, namely

1. From tf+k to tl−k+1, during which there is no CoP reset moment; system
dynamics are continuous;

2. From tl−k+1 to tl+k+1, the leader’s CoP reset moment with impulsive dy-
namics;

3. From tl+k+1 to tf−k+1, continuous dynamics;

4. From tf−k+1 to tf+k+1, the follower’s CoP reset moment with impulsive
dynamics.

According to (5), (10), (11), we have

x(tf+k+1) = Hfe
Aδtfk+1Hle

A(Tp+δtlk+1)x(tf+k )

+Hfe
Aδtfk+1Blv

l
d + Bfv

f
d (12)

Equation (12) describes a discrete linear system. Its homogeneous form
is:

x(tf+k+1) = A∗d(δtlk+1, δt
f
k+1)x(tf+k ) (13)

where
A∗d(δtlk+1, δt

f
k+1) = Hfe

Aδtfk+1Hle
A(Tp+δtlk+1) (14)

and the entries of A∗d(δtlk+1, δt
f
k+1) depend on δtlk+1 and δtfk+1, which are both

time-varying.
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2.2.2 Stability of the coupled dynamics

To analyze the stability of the uncertain, time-varying system in (13), we
introduce a stability condition proposed by Daafouz et al. [31]. To apply
this stability condition, firstly the time-varying matrix A∗d(δtlk, δt

f
k) is to be

converted into a linear matrix polytope with the following form:

A∗d(δtlk, δt
f
k) =

N∑
i=1

ξi(k)Ai (15)

ξi(k) ≥ 0,
N∑
i=1

ξi(k) = 1 (16)

Details of the conversion can be found in [28]; finally A∗d is converted into
(15), with

A1 = A′1 −
δtl
2
A′2 −

δtlf
2

A′4,

ξ1(k) = 1− ξ2(k)− ξ3(k)− ξ4(k)

A2 = A1 + 3δtlA
′
2, ξ2(k) =

δtlk + δtl/2

3δtl

A3 = A1 + 3δtfA
′
3, ξ3(k) =

δtfk
3δtf

A4 = A1 + 3δtlfA
′
4, ξ4(k) =

δtlkδt
f
k + δtlf/2

3δtlf
(17)

where

A′1 = HfHle
ATp

A′2 = HfHle
ATpA

A′3 = HfAHle
ATp

A′4 = HfAHle
ATpA (18)

The above system is poly-quadratically stable, if and only if there exist
four symmetric positive definite matrices S1 . . .S4 > 0, and four regular ma-
trices G1 . . .G4, which satisfy the following linear matrix inequality (LMI):(

Gi + GT
i − Si GT

i A
T
i

AiGi Sj

)
> 0 (19)

for all i = 1, . . . , 4 and j = 1, . . . , 4. In another word, testing stability of the
two-LIPM system is equivalent to examining the feasibility of (19).
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Figure 7: Poly-quadratic stability with respect to δtf (z-axis), kc (y-axis),
and dc (x-axis); regions that have “temperature” greater than 0 correspond
to the stable combinations of δtf , kc and dc

2.2.3 Numerical results

Because the stability test involves the process of numerically solving the
LMI problems, it is extremely difficult to find a closed-form expression which
describes the relationship between stability and synchronization error’s upper
bound (δtl and δtf ). Therefore, we numerically analyze system stability
under different conditions.

As system stability involves 4 factors (δtl, δtf , kc, and dc) which are
difficult to be visualized in a 3-D Cartesian space, we assume δtl = 0.1 s (i.e.,
the human leader’s period error is smaller than 0.1 s, which is a reasonable
assumption) and visualize the other 3 factors in Fig. 7.

Three contours with different δtf are shown in Fig. 8.
According to Fig. 7 and Fig. 8, smaller δtf leads to larger stable region

of kc and dc, which is in line with our intuition [28].

11



0

01

Connection damping (Ns/m)

C
on

ne
ct

io
n 

st
iff

ne
ss

 (
N

/m
)

10 20 30 40

10

20

30

40

50

60

(a) δtl = 0.1 s, δtf = 0.2 s

0

0

0

01

Connection damping (Ns/m)
C

on
ne

ct
io

n 
st

iff
ne

ss
 (

N
/m

)

10 20 30 40

10

20

30

40

50

60

(b) δtl = 0.1 s, δtf = 0.1 s

0

0

0

11

1

11 2234

2

5

1

67

3

2

89

Connection damping (Ns/m)

C
on

ne
ct

io
n 

st
iff

ne
ss

 (
N

/m
)

10 20 30 40

10

20

30

40

50

60

(c) δtl = 0.1 s, δtf = 0 s

Figure 8: Contours of poly-quadratic stability with respect to kc and dc;
dark-colored area inside the 0 border corresponds to poly-quadratically stable
combinations of kc and dc

2.3 Sensing Human

Besides interaction force in pHRI, the robot also needs extra information to
cooperate with the human dancer. The information can be divided into two
categories:

1. Timing of dance: The robot needs to know the timing of dance to reset
its CoP;

2. State of human dancer: The robot needs to know the human dancer’s
state, e.g., CoM velocity and position.

Additional sensors are needed to measure those information. In the subse-
quent part we will introduce how to sense the timing of dance

2.3.1 Sensing timing of dance

Two laser range finders (LRF, Hokuyo UBG-04LX-F01, [32]) are installed on
the robot, as shown in Fig. 9. One LRF is installed (at human’s waist height)
for measuring human’s waist position, while the other LRF is installed (at
human’s ankle height) for measuring ankles’ positions.

With the two LRFs, human’s waist and ankles can be identified; their
centroids are computed to represent their positions, as shown in Fig. 10.

When human is walking, the CoP reset corresponds to the landing of the
swing foot, while the landing of the swing foot can be detected by analyz-
ing the spatial information of human’s ankles. Actually, by observing the
trajectories of the two ankles with LRFs, the robot can sense much human

12



Hx x Rx

f

Hk

Hd

Rk

Rd

Hm Rm
1

2
3

x

z

x

z

1
2 3

x

z

1p 2p 3p

x

z

1p 2p

d

x

z

1p 2p

kd

1 2
3

x

z

1p 2p

gX

gZ

g
lp

g
fp

g
lx

g
fx

gO

t
l
kt 1

l
kt +

f
kt 1k

ft +
f
ktδ 1

f
ktδ +

1
l

p ktT δ ++

LRF
Force sensor

LRF

Figure 9: The robot has implemented one force/torque sensor in waist, and
two LRFs at ankle and waist height

−400 −200 0 200 400

100

200

300

400

500

600

700

Frontal plane (y) direction (mm)

S
ag

itt
al

 p
la

ne
 (x

) d
ire

ct
io

n 
(m

m
)

left ankle

Upper body
Spurious points

right ankle

Figure 10: A combined range image. Image of two ankles are obtained from
the LRF on the ankle height, while the upper body image is from another
LRF installed at the waist height. The markers are the respectively computed
centroids of the waist and the ankles

13



1360 1380 1400 1420
0

0.5

1

1.5

2

2.5

A
nk

le
 v

el
oc

ity
 (

m
/s

)

Detected moments

Sample number (sample period: 28 ms)

Figure 11: Detecting foot landing/swinging moments from ankle velocities.
Black curves: ankle velocities. Red impulses: detected landing/swinging
moments, moments between the paired impulses are double-support phases

dancer’s information. Besides CoP reset moments, we are also interested in
inferring human’s single-support phase and double-support phase.

The beginning of double-support phase is represented by the landing mo-
ment of the swing foot; similarly, the ending of this phase is related with the
initiated motion of the (previous) support foot. Therefore, the two ankles’
velocity curves are used to estimate the beginning and ending moments of
double-support phase. Using the two ankles’ velocity information, we can in-
fer human’s timing (i.e., the beginning and ending of double-support phase)
with a simple threshold-based method. The idea of this method is to find
the “falling edge” and “rising edge” on the velocity curves of the swing foot
and the support foot, respectively. The detected moments are shown in Fig.
11.

2.3.2 Sensing state of human

With the two LRFs, we can get positions and velocities of the centroids of
human’s waist and ankles. Let pwst and ṗwst be the position and velocity of
the waist centroid (in sagittal plane); let pspt be the centroid position of the
support foot. To get human’s state as an LIPM (including x and ẋ), one
straightforward method is to use

[x, ẋ]T = [pwst − pspt − dLRF, ṗwst]
T (20)

where dLRF is the two LRFs’ installation offset, which can easily be measured
or calibrated.

However, the method given in (20) is not practical due to the following
problems:
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1. pwst is not the real CoM position. The real CoM position cannot be
directly measured by LRF, instead, LRF can only measure the surface
points on human body; there is a bias between their centroid and the
real CoM position; this bias could be time-varying. We denote this
bias with dsrf + δsrf, where dsrf is its static component, and δsrf is the
time-varying compoment;

2. pspt is not the real CoP position. During walking, human CoP is “trav-
eling” in the contact surface between the foot and the floor. This error
is denoted by δCoP

3. pwst, ṗwst, and pspt contain large noises.

The listed problems can be formulated in the following way. Firstly, we
define the sensors’ observation as

yout =

(
pwst − pspt − dLRF − dsrf

ṗwst

)
(21)

Assuming the sensors’ measurement noise is [v1, v2]
T , then

yout =

(
pwst − pspt − dLRF − dsrf

ṗwst

)
=

(
x+ δsrf + δCoP

ẋ

)
+

(
v1
v2

)
(22)

LIPM’s state is x = [x, ẋ]T . Define δo = δsrf + δCoP, the LIPM’s dynamics
in single-support phase are

ẋ =

(
0 1
g/z 0

)
x + [0, 1/m]Tf + [w1, w2]

T

yout = [x+ δo, ẋ]T + [v1, v2]
T (23)

where w1, w2 are process noises, representing the unmodeled dynamics of
human dancer.

According to (23), inferring human’s state is equivalent to observing x
from yout, which contains unknown, time-varying offset δo and measurement
noise v1, v2. x can be observed by combining the model knowledge and the
sensor measurements; this is realized by implementing a Kalman filter. At the
same time, the Kalman-filter-based estimation are only valid when human is
in single-support phase; when the human leader is in double-support phase,
the Kalman filter is paused.

To evaluate whether the Kalman filter can be used for estimating the
human leader’s state, two experiments are directed. In both experiments,
human’s body configurations are measured and recorded by a motion capture
system (8 Raptor-E cameras from Motion Analysis Corp.) at the rate of
100 Hz. The difference between the two experiments are:

15



Force plate

Human
Robot

Measured CoP
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Figure 12: Motion capture system is used to measure human’s body config-
uration; a force plate is used to measure the accurate CoP position of the
human

1. In the first experiment, a force plate (Kistler 9286A) is used to measure
the traveling of human’s CoP; due to the limited size of the force plate,
the human stays on the force plate, with the left foot supporting the
body and the right foot swinging back and forth for a couple of times
(Fig. 12). This experiment tests the performance of the Kalman filter
on observing ẋ and δo.

2. In the second experiment, the robot moves passively in admittance
control mode (which will be discussed later in Section 2.4.1). Human’s
motions are not restricted by specific patterns: he can arbitrarily choose
his stride length and walking speed. This experiment tests whether the
Kalman filter can properly work when being intermittently disturbed
by human’s double-support phase.

Results of the first experiment are shown in Fig. 13. We can see that the
CoM velocity ẋ has been accurately estimated, while the variation of offset
δo has also been estimated with approximately 0.2 s phase delay.

Result of the second experiment is shown in Fig. 14. This result shows
that, although the Kalman filter is intermittently disturbed by human’s
double-support phase, the proposed method can still keep estimating hu-
man’s state in single-support phase.

According to the validation results, the proposed filter-based method can
be used in state estimation of the human dancer.

2.4 Control

A schematic diagram of the coupled dynamics in waltz is illustrated in Fig.
15. The system involves three components: the human body, the human
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Figure 15: Block diagram of the human-robot system in waltz. xl and xf

are human’s and robot’s spatial states (e.g., position, velocity, etc). f is the
interaction force.
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Figure 16: Illustration of the admittance controller

arm, and the robot follower. Among the three components, robot is the only
component that can be “manipulated” by a designer. Therefore, to enhance
the pHRI of waltz, a robot controller is to be implemented. Depending on
how the inputs are used to generate the output, there are infinite candidate
controllers, while in this section several of them are introduced.

2.4.1 Admittance controller

Admittance controller is a widely adopted in pHRI [34]. This controller only
uses interaction force as the input; the idea of the implemented admittance
controller is that the robot is emulating a mass driven by interaction force
and dragged by virtual ground friction, as illustrated in Fig. 16.

Suppose the emulated mass is mf and the emulated viscosity coefficient
is df ; dynamics of the admittance controller are:

ẍgf = − df
mf

ẋgf +
f

mf

(24)

where xgf , ẋ
g
f , and ẍgf are the robot’s position, velocity, and acceleration with

respect to the global coordinate frame.
When the admittance controller is implemented, human’s estimated state

is not utilized (i.e., consider the blue dash in Fig. 15 does not exist), the inter-
connected human arm and robot dynamics form a closed “loop”, as shown in
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Figure 18: Illustration of the admittance controller with a virtual coupling

Fig. 17. Because the human arm model has large uncertainty, conservative
stability conditions (e.g., small gain theorem) are usually introduced in de-
signing the robot controller [16]. Because of the conservativeness in stability,
performance is sacrificed.

2.4.2 Admittance controller with virtual coupling

The compromise between stability and performance can be improved by in-
troducing human’s spatial information into the robot controller [35] as in Fig.
15. Based on the admittance controller, we can further implement a virtual
coupling, which is illustrated in Fig. 18.

The robot dynamics are defined by

ẍgf = − df
mf

ẋgf +
kv
mf

(x̂gl − x
g
f ) +

dv
mf

( ˙̂xgl − ẋ
g
f ) +

f

mf

(25)

where kv and dv are the stiffness and damping coefficient of the virtual cou-
pling; x̂gl and ˙̂xgl are estimated human CoM position and velocity. The trans-
fer function from x̂gl to xgf is

Xg
f (s)

X̂g
l (s)

=
dvs+ kv

mfs2 + (df + dv)s+ kv
(26)

This controller is in essence a low-pass filter. It is intuitive as it tries to
implement a virtual force to decrease the real interaction force (f); however,
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Figure 19: Illustration of the inverted pendulum controller with a virtual
coupling

the performance of this controller is also intrinsically restricted by its struc-
ture. Define the robot’s following error as E(s) = 1 − Xg

f (s)/X̂g
l (s), i.e.,

the complement of (26). We can observe that the parameter tuning of the
frequency response of E(s) is highly restricted; quantitative analysis of those
restrictions can be found in [36].

2.4.3 LIPM with virtual coupling

To better understand the pHHI between two human dancers, we use the
inverted pendulum presented in Section 2.1.1 as the robot model. At the
same time, the measurement of human’s state is continuously rectified by a
Kalman filter and used as the input to the robot controller. Diagram of this
controller is illustrated in Fig. 19.

Walking can be temporally divided into single-support phase and double-
support phase which have different dynamics, therefore, the robot controller
also has two phases:

1. When the robot detects that human is in single-support phase, the
robot emulates an LIPM with virtual coupling:

ẍf =
g

zf
xf +

kv
mf

(x̂gl − x
g
f ) +

dv
mf

( ˙̂xl − ẋf ) (27)

2. When human is in double-support phase, the robot switches to admit-
tance control mode (24).

In the following we explain how the virtual coupling appeared in (27) is
able to achieve interaction force reduction. Define the objective function as:

Fobj =

∫ tf+k +Tp

tf+k

f 2(t)dt =

∫ tf+k +Tp

tf+k

xT (t)cTc ccx(t)dt

= xT (tf+k )

(∫ Tp

0

(eAt)TcTc cce
Atdt

)
x(tf+k )

= xT (tf+k )Wx(tf+k ) (28)
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which means we aim to minimize the interaction force throughout the single-
support phase.

The virtual coupling applies a virtual force on the robot. Recall the two-
LIPM system in Section 2.1.2, its state matrix A is defined in (6), with the
virtual coupling, the state matrix A is replaced by Av, with

Av =


0 1 0 0 0
g
zl
− dc
ml

0 dc
ml

kc
ml

0 0 0 1 0
0 dc+dv

mf

g
zf
−dc+dv

mf
−kc+kv

mf

0 −1 0 1 0

 (29)

Define

Wv =

∫ Tp

0

(eAvt)TcTc cce
Avtdt (30)

Then the reduction of Fobj is

δF = xT (tf+k ) (W −Wv)x(tf+k ) = xT (tf+k )∆vx(tf+k ) (31)

If ∆v is positive definite, then δF > 0 for all x(tf+k ); the interaction force
reduction is guaranteed. One may think that a positive definite ∆v can
be formulated by carefully adjusting parameters (kv and dv) of the virtual
coupling; unfortunately, this ideal situation is difficult to meet. We illustrate
this situation with an numerical example in Fig. 20. According to Fig. 20, it
is quite difficult to find these parameters; generally, ∆v is indefinite, hence
the performance of interaction force reduction also depends on the initial
condition x(tf+k ).

Therefore, the implementation of the virtual coupling cannot guarantee
that Fobj is always reduced; instead, the virtual coupling is used to reduce
interaction force in most cases. Without loss of generality, we assume both
dancers are moving along the positive direction of x-axis. Their velocities
are assumed to be evenly distributed between [0, 1.5]m/s; their relative CoM
positions are assumed to be evenly distributed between [−0.4, 0]m; their dis-
tance variation q is assumed to be evenly distributed between [−0.2, 0.2]m.
Performance of the proposed controller is evaluated with Monte Carlo method.
106 random x(tf+k ) are tested.

According to the Monte Carlo test, the proposed controller has reduced
Fobj in about 95% cases with best performance δF ≈ 2×104N2s, the controller
has failed in about 5% cases with worst performance δF ≈ −188 N2s. The
probability density function of δF is shown in Fig. 21.

This probability density function reveals that the proposed controller can
effectively reduce interaction force with 95% probability, while may also
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Table 1: Parameters of Controller Used in Experiments

Parameters used in admittance controller

mf (kg) 50

df (Ns/m) 40

Parameters used in admittance controller with virtual coupling

mf (kg) 50

df (Ns/m) 40

kv (N/s) 10

dv (Ns/m) 150

Parameters used in LIPM controller with virtual coupling

mf (kg) 45

zf (m) 0.9

kv (N/s) 0

dv (Ns/m) 225

slightly increase the interaction force with 5% probability. Therefore, the
proposed method is worth implementing.

2.4.4 Experiments

In experiments, we evaluate the above three robot controllers. Parameters
for controllers are listed in Table 1, which is obtained after a preliminary
test.

On the hardware level, the robot controller has two parallel control cycles:

1. Actuation of four omni-wheels are controlled by low-level PD controllers
with 1 ms cycle period. In this cycle, few computations are involved.

2. LRF data processing and Kalman filter calculation are handled in high-
level cycle; period of this cycle is 28 ms.

For the current hardware, the above computations approximately cost about
6.1 ms (shorter than the 28 ms high-level cycle). The real-time operating
system (QNX 6.1) ensures the 1 ms and 28 ms deadlines are satisfied.

Experiment results are shown in Fig. 22.
As discussed in Section 2.4.2, although being intuitively plausible, the

“admittance with virtual force” controller has poor performance in force
reduction (Fig. 22(c) and Fig. 22(d)).
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Figure 22: Experiment results. In (a), (c), and (e), curves with “+” markers
show robot’s trajectories while plain curves show the human’s. For each
robot controller, the motion is initiated with admittance control until the
end of the first double-support phase. In (e) and (f), the robot switches to
admittance mode after six steps.
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According to Fig. 22(b) with Fig. 22(f), we can see that the inverted
pendulum controller (Section 2.4.3) can reduce interaction force by utilizing
the the leader’s state estimation, which is being continuously rectified by the
Kalman filter. Therefore, the control scheme is supported by the results.

3 Conclusions

To develop a dance partner robot which can dance waltz with human, the
physical interaction between the two dancers is studied. In addressing mod-
eling, analysis, and control for enhancing pHRI, we make the following con-
tributions:

1. A model for describing dancers’ coupled dynamics in waltz;

2. Implementation of poly-quadratic stability condition in proving the
two-LIPM system’s stability;

3. A novel method which uses LRF to infer human’s timing in pHRI, and
a Kalman-filter-based method for estimating the state of human;

4. Analysis and validation of several robot controllers.

However, our study is limited as it only models human’s translational mo-
tions in sagittal plane; dancers’ rotational motions are not studied. As most
dance steps in waltz involve body rotations, further studies in understanding
and measuring human’s rotation are needed.
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Control of a Robot Dancer for Enhancing
Haptic Human-Robot Interaction in Waltz

Hongbo Wang, Student Member, IEEE, and Kazuhiro Kosuge, Fellow, IEEE

Abstract—Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum

model is used to approximate the human’s body dynamics. With the feedbacks from the force sensor and laser range finders, the robot

is able to estimate the human leader’s state by using an extended Kalman filter (EKF). To reduce interaction force, two robot

controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in

experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter

controller is validated by experiment results.

Index Terms—Physical/haptic human-robot interaction, dance, inverted pendulum, extended Kalman filter, laser range finder,

admittance control.

Ç

1 INTRODUCTION

WALTZ is not only an entertaining activity, but also a
typical example of haptic human-human interaction

(HHI) which involves human’s abilities in sensing, control,
and coordination. In waltz, two dancers are acting as a
leader (usually the male dancer) and a follower (usually the
female dancer), while the follower can interact with the
leader by “reading” the haptic signals passed through their
physical connection. Understanding of the follower’s ability
may help designing robots that can be intuitively controlled
through human-robot interaction (HRI). Therefore, the goal
of our research is to develop a robot follower that can dance
with the human leader by utilizing the haptic information. A
developed prototype of the robot follower is shown in Fig. 1.

Generally, to interact with human, a robot may refer to

models at two different levels.

1. The higher level model is used to relate observed
signals with human’s intentions [1], [2], [3], which
could be named as “intention estimation.” Waltz has a
“vocabulary” of various kinds of dance steps, while a
waltz dance consists of a sequence of steps. When the
leader has selected the next step, he is having an
“intention.” The follower should be able to estimate
this intention, as shown in Fig. 2a.

2. The lower level model is used for controlling the
dynamics of the interaction system in which the
human and robot are coupled [4], [5], [6], [7], [8],
which could be named as “coupled dynamics.” In
waltz, the follower is not dancing alone, her body
dynamics are coupled with the leader’s; the

follower should be able to dance under the coupled
dynamics without significant performance degrada-
tion, as shown in Fig. 2b.

In one earlier work [9], the higher level interaction in
waltz has been investigated. To estimate the human leader’s
intentions, each candidate dance step is modeled as a
hidden Markov model (HMM); haptic signals are consid-
ered as observations generated by one of the HMMs. For
each HMM, the likelihood of generating the given observa-
tions is calculated; the model with the highest likelihood is
then selected as the leader’s “most probable” intention.
Here, we only summarize this approach in Fig. 3; details can
be found in [9].

The focus of this paper is the lower level interaction, i.e.,
“couple dynamics,” which is studied independently of the
higher level “intention estimation.” In another word, fixed
“dance step” is applied on the two dancers’, hence the HMM-
based step estimator (Fig. 3) is not involved in this paper.

More specifically, we focus on two dancers’ coupled
body dynamics in sagittal plane (Fig. 4). Therefore, our
analysis is limited as it only accounts for human’s
translational motions in sagittal and frontal planes, leaving
rotational motions unstudied; however, in waltz, most
dance steps involve body rotations; pure translational
motions only correspond to a few steps (e.g., closed
changes). Clearly, these simple translational motions are
still too elementary compared with a dance partner robot’s
expected capability; however, those simple cases offer us a
good start point to explore the fundamentals of interactions.
Similar 1D cases also appeared in studies in coordinated
teleoperation [10], haptic human-robot interaction [11], and
human-robot-human cooperation [12], etc.

In one previous work [13], we assume that the human
model has only one parameter—stride length. The robot is
able to learn the human leader’s stride length, which is later
used to scale the planned dance trajectories. Because human’s
motion has variability and randomness, the robot is also
under admittance control while following the learned
trajectory.
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Compared with a robot under admittance control,
inverted pendulum can better represent a human follo-
wer’s body dynamics in walking and dancing. Therefore,
we employed linear inverted pendulum (LIPM) [14] as the
human model; for two dynamically coupled dancers, they
are modeled as a pair of connected LIPMs [15]. By
assuming the two dancers’ feet landing motions are
synchronized, we analyzed stability of the system, while
interaction force was reduced with gradient descent
method [16]. Because the assumption on two dancers’
synchronized motions are too strong, this assumption was
later replaced by a weaker (bounded timing error)
condition and stability was examined [17].

To reduce interaction force, human leader’s intended
velocity is predicted and used to control the follower’s
motion [17]. However, because of LIPM’s sensitivity to initial
position and velocity errors, it is very difficult to accurately
estimate the leader’s current and future states.

To deal with the above problem and reduce the
interaction force (for increased transparency), in this paper,
we propose a solution, which includes the following parts:

1. A model of human’s body dynamics in sagittal plane;
2. A method for estimating the human model’s state;
3. Robot controllers which can be used to reduce

interaction force.

In Section 2, the inverted pendulum model is introduced.
In Section 3, methods for estimating human leader’s state are

described. In Section 4, two robot controllers are presented.
Simulation and experiment results are shown in Section 5,
discussion and conclusions are given in Sections 6 and 7,
respectively.

2 MODEL OF THE HUMAN DANCER’S BODY

DYNAMICS IN SAGITTAL PLANE

To model the human dancer’s body dynamics in sagittal
plane, an inverted pendulum model is proposed, which has
a center of mass (CoM), an extendable leg and an ankle joint
actuator (Fig. 5). Fig. 5a shows a 3D inverted pendulum.
This 3D inverted pendulum is driven by gravity (mg), leg
support (ffl), ankle torque (ttank), and external force (ffext). As
stated in previous section, we focus on the motions in
sagittal plane, hence the 3D pendulum in Fig. 5a is
simplified to a 2D model shown in Fig. 5b, where fx, fz
are components of ffext in x and z directions; ffls, �� are
projections of ffl and ttank in sagittal plane.

In waltz, fx and fz correspond to the interaction forces
between two dancers, while fx (and fy if considering frontal
plane motion) is the dominant force; in addition, compared
with gravity mg, fz is much smaller. Thus, we omit fz and
obtain the model dynamics in sagittal plane

€x ¼ €zþ g
z

xþ ��
mz
þ f

m
; ð1Þ

where f ¼ fx, x is the relative position of CoM with respect
to the pivot point (or center of pressure in the supporting
foot), z is the height of CoM, m is the mass of the inverted
pendulum, g is gravitational acceleration.

Though �� appears as an input in system (1), it is at the
same time an internal state of the walking system. We may
consider �� as a function of x, _x, and f ; when x, _x, and f are
all zero, it is reasonable to assume that ��ðx; _x; fÞ ¼ 0. A
linear approximation of �� is given by

��ðx; _x; fÞ ¼ k1xþ k2 _xþ k3f: ð2Þ

The first two terms in the right-hand side of (2) are the
damping/actuation functions of the ankle, making the
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Fig. 3. Estimating leader’s intention using HMMs.

Fig. 5. Implemented model for single dancer.

Fig. 1. One developed robot follower.

Fig. 2. Two levels of interactions in waltz.

Fig. 4. Dancers’ coupled body dynamics in sagittal plane is studied.



inverted pendulum less sensitive to initial errors (though
still unstable). The last term stands for human’s reactions to
the external force, with a positive k3 for cooperating, and a
negative k3 for resisting.

The model described in (1) and (2) only captures
human’s simplified body dynamics in single-support phase,
while in walking or dancing human is switching between
single-support phase and double-support phase, as is
illustrated in Fig. 6. In double-support phase, human is
almost a fully actuated system (except that €z cannot be
smaller than �g); the CoM position and velocity in sagittal
plane are fully controlled.

In single-support phase, though human can partly
change his trajectory by controlling ��, this trajectory is
largely determined by gravity and external force (which can
be measured by a force sensor). Further, �� itself may also
have some repeatable patterns in walking. The above facts
enable us to model human dancer’s dynamics in single-
support phase.

In double-support phase, the CoM trajectory is fully
determined by the human’s joint torques, whose patterns
are hard to measure or model; therefore, it is quite difficult
to model this stage.

For a robot which is haptically interacting with human, it
is necessary to deal with human’s distinctive dynamics in the
two phases. The simplest approach is using a conservative
and passive robot model that can work safely in either phase.
However, as we have some information about the dynamics
in single-support phase, the robot should utilize the
information to enhance interaction performance (e.g., trans-
parency), while staying conservative in double-support
phase. In this case, the robot should be able to distinguish
the two phases. This is discussed in the subsequent part.

3 ESTIMATION OF HUMAN LEADER’S STATE

3.1 Detecting the Human Leader’s Single-Support
Phase and Double-Support Phase

In waltz, the switching between single and double support
phases is generally synchronized with music beats. Inspired
by this fact, a straightforward solution is to extract music
beats from audio signals to infer human leader’s moments of
entering/leaving double-support phase. Also, numerous
studies have been directed on beat tracking from MIDI and
audio signals [18], [19], [20], [21], as well as their related
robotic applications [22]. However, reliable beat tracking
from real world sounds in real time is still a great challenge,
while for a robot which is designed to be in physical contact
with human, reliability is a crucial requirement. Besides
reliability, the audio-based method cannot handle situations
in which a skilled leader may intentionally and slightly
dances “off beat.”

Aside from audio signal, another cue that can be used to
infer human’s phase is the spatial information of human’s
feet/ankles. For example, a rapid stop of the left ankle means
the left foot has landed on the ground, indicating that human
has entered double-support phase; similarly, the accelera-
tion of the right ankle from zero velocity is related with the
beginning of single-support phase.

To measure human leader’s ankle positions and velo-
cities, one laser range finder (LRF, Hokuyo UBG-04LX-F01)
is installed at human’s ankle height (Fig. 7). A range image
example, which shows what the robot can “see,” is shown
in Fig. 8. Compared with the usually complicated range
images in simultaneous localization and mapping (SLAM)
research, the environment in Fig. 8 is rather simple (as in
waltz the human leader is close to the robot) and the point
sets of two ankles can easily be identified. In the following,
we will briefly explain the algorithm.

1. Preprocessing. For each frame (i.e., each range image
we obtained as shown in Fig. 8), remove the
spurious points by searching for line segments
shorter than a threshold (e.g., 30 mm). Line segments
are extracted by detecting breakpoints [23].

2. Identification. For each frame, identify human leader’s
two ankle centroids by searching for the two nearest
clusters from the sagittal plane; calculate leader’s
waist centroid.

3. Measuring velocity. Centroid positions in different
frames are used to infer human’s ankle and upper
body velocities.

Velocities of the two ankles (Fig. 9) are used to detect the
beginning and ending moments of double-support phase.
Details of the threshold-based detection method can be find
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Fig. 6. Switching dynamics in walking.

Fig. 7. Robot being used. The robot has implemented one force/torque
sensor in waist, and two LRFs at ankle and waist height.

Fig. 8. A captured range image. Image of two ankles are obtained from
the LRF on the ankle height, while the upper body image is from another
LRF installed at the waist height.



in [17]. Due to the existed noise introduced by the sensor and
the algorithm, it is difficult to find the exact moments. As
stated at the end of Section 2, because human’s patterns in
double-support phase are hard to measure or model, the
robot is supposed to act conservatively in double-support
phase; to ensure a safe HRI, the ambiguous moments should
be put into double-support phase. By setting a relatively
large threshold on ankles’ velocities, the detected moments
correspond to an “extended” double-support phase, which
is longer than the leader’s real double-support phase, as
shown in Fig. 9.

3.2 Estimation of Leader’s Intended Trajectory in
Single-Support Phase

As has been suggested in Section 2, when the human leader
is in single-support phase, his CoM trajectory turns to be
more patterned; this characteristic can be exploited to
improve the performance of HRI. However, there are also
several problems that complicate the trajectory tracking task.

1. The real CoM position cannot be directly measured

by LRF, instead, what the LRF can measure are some

surface points on human body; there is a bias

between their mean position and the real CoM
position; this bias could be time-varying.

2. Equations (1) and (2) cannot precisely model
human’s body dynamics in single-support phase.

3. The human leader’s model parameters, e.g., m, z in
(1) and k1 . . . k3 in (2), are unknown.

4. The noise contained in the sensor feedback.

The above problems can be interpreted as follows:
defining the system state as xx ¼ ½x; _x�T , the system described
in (1) and (2) are

_xx ¼
0 1

a1 a2

� �
xxþ ½0; b�T f þ ½w1; w2�T ;

yy ¼ ½xþ �; _x�T þ ½v1; v2�T ;
ð3Þ

where a1 ¼ ð€x þ gÞ=z þ k1=ðmzÞ, a2 ¼ k2=ðmzÞ, and b ¼
k3=ðmzÞ þ 1=m are human model’s unknown parameters,

and � is the unknown bias of CoM. w1 and w2 are the

process noises, which stand for the effects of unmodeled

dynamics; yy is a vector of measured CoM position and

velocity; v1 and v2 are noises in the measurements.
We can include the unknown parameters in an extended

state xxe:

xxe ¼ ½x; _x; a1; a2; b; ��T ; ð4Þ

then the system defined in (3) turns to be nonlinear, with

_xxe ¼ ggeðxxe; fÞ þ ½w1; w2�T ;
yy ¼ hheðxxeÞ þ ½v1; v2�T :

ð5Þ

By discretizing (5), we have

xxeðkþ 1Þ ¼ GGeðxxeðkÞ; fðkÞÞ
þ ½w1ðkÞ; w2ðkÞ�T ;

yyðkÞ ¼ HHeðxxeðkÞÞ þ ½v1ðkÞ; v2ðkÞ�T ;
ð6Þ

where GGe and HHe are discretized forms of gge and hhe, with
the sampling period depending on the LRFs’ scanning rates.

The state of the nonlinear system in (6) can be estimated
by an extended Kalman filter (EKF). At the beginning of the
kþ 1th time step, an estimated state ~xxeðkþ 1Þ and an
estimated covariance matrix ~PP ðkþ 1Þ are predicted

~xxeðkþ 1Þ ¼ GGeðx̂xeðkÞ; fðkÞÞ;
~PP ðkþ 1Þ ¼ ��ðkÞP̂P ðkÞ��T ðkÞ þQQ;

ð7Þ

where x̂xeðkÞ and P̂P ðkÞ are estimation results of the kth time
step, ��ðkÞ is the Jacobian of GGe, with ��ðkÞ ¼ ð@GGe=
@xxeÞjð~xxeðkÞ;fðkÞÞ;QQ is the covariance matrix of process noise w1

and w2.
After ~PP ðkþ 1Þ is obtained, the Kalman gain is given by

KKðkþ 1Þ ¼
~PP ðkþ 1Þ��T ðkÞð��ðkÞ~PP ðkþ 1Þ��T ðkÞ þRRÞ�1;

ð8Þ

where ��ðkÞ ¼ ð@HHe=@xxeÞjð~xxeðkÞ;fðkÞÞ; RR is the covariance
matrix of measurement noise v1 and v2.

The Kalman gain in (8) is used in building a state observer:

x̂xeðkþ 1Þ ¼ ~xxeðkþ 1Þ
þKKðkþ 1Þðyyðkþ 1Þ �HHeð~xxeðkþ 1ÞÞÞ:

ð9Þ

Thus, x̂xeðkþ 1Þ is estimated from x̂xeðkÞ and P̂P ðkÞ. Finally,
the estimation covariance matrix P̂P ðkþ 1Þ is updated by

P̂P ðkþ 1Þ ¼ ðII �KKðkþ 1Þ��ðkÞÞ~PP ðkþ 1Þ: ð10Þ

Hence, x̂xeðkÞ and P̂P ðkÞ can be updated in each time step. At
the same time, the implementation of EKF requires the
nontrivial task of estimating the covariance matrices QQ and
RR, because the Kalman gain is largely determined by QQ and
RR (or more specifically, the “ratio” between QQ and RR). QQ
and RR can be estimated by tuning, or offline analysis of
recorded measurements [24].

Generally, precise measurement of human’s CoM posi-
tion in walking is a great challenge [25], [26]. At the same
time, as the human dancer’s motion is restricted by the
requirements of waltz (e.g., the upper body configuration is
regulated, the feet should be always in touch with the floor,
etc.), the traveling of CoM position is restricted. Hence, large
error will not be introduced if we assume the CoM is in a
fixed position with respect to the measured body surface.
According to this assumption, the CoM is supposed to have a
constant bias from the waist centroid, while its velocity is
supposed to be the same with the centroid’s. The error
introduced by this assumption is further reduced by the
continuous correction of the EKF.
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Fig. 9. Detecting human’s moments of entering and leaving double-
support phase. The impulses are detected moments.



Because the unknown parameters are also updated, the
EKF can be used in predicting human leader’s future
trajectory. Fig. 10 shows one example of how predictions
are made. When human leader leaves double-support phase,
the EKF is enabled; after the state and parameter estimations
are updated with a specific number of iterations, the
predictor (which guesses future states by using the recently
updated parameters and state of the LIPM) is started to
predict the human leader’s future CoM trajectory. Due to
unmodeled dynamics and initial estimation error, long-term
prediction is less accurate than a short-term one (e.g., the
unexpected velocity decrease in Fig. 10). Principally, rather
than using EKF as an intermittent predictor (which pauses
updating parameters and tries to make long-term predic-
tions, as shown in Fig. 10), EKF should actually be used
continuously, hence we can keep updating the parameters
and correcting the errors. On the other hand, the intermittent
long-term predictor can be used to evaluate the quality of
EKF parameters, e.g., an EKF with smaller long-term
prediction error should have less unmodeled dynamics and
better estimated QQ and RR.

Note that the above model and the estimation method
are only valid when the human leader is in single-support
phase; if human is detected to be in double-support phase,
EKF is paused.

4 CONTROLLING THE ROBOT

A general representation of the human-robot system in
waltz is given in Fig. 11. If we do not consider human body
dynamics and the feed-forward path of xxl (blue dash in
Fig. 11), the interconnected human arm and robot
dynamics form a very typical and frequently encountered
“loop” in the research on haptic human-robot interaction.
For such systems, there is usually a tradeoff between
stability and performance. For example, if the human arm
model has large unstructured uncertainty, the designer will
tend to use its worst case gain, along with a conservative
stability criterion (e.g., small gain theorem) to synthesize
the robot controller [4].

The compromise can be improved if the estimated
human’s motion (xxl in Fig. 11) can be feed-forwarded to
the robot controller [27]. In the application of waltz, since
human is underactuated in single-support phase, his CoM
trajectory can be estimated (as has been discussed in
Section 3.2); the estimation can then be sent to the robot

controller for achieving enhanced performance (e.g., in-

creased transparency with minimized f).
The explicit inclusion of human body dynamics and

the feed-forward path of human states yield the model in

Fig. 11. In the following, we will discuss two types of

robot controllers.

4.1 Admittance Control with Virtual Force

If human’s arm has internally stable dynamics with no other

unknown inputs, then the amplitude of f is largely

determined by xxl � xxf ; in the ideal case, if the robot can

perfectly follow human, i.e., xxlðtÞ ¼ xxfðtÞ, then fðtÞ ! 0.

However, in practice, this simple method has two problems.

1. The state cannot be estimated in human’s double-
support phase.

2. The estimation (denoted by x̂xl) contains (usually
high frequency) noise, which cannot be directly used
to command the actuators on the robot.

For the first problem, we can have the robot work in

admittance mode if the human leader is in double-support

phase.
To deal with the second problem in single-support phase,

we can implement a low-pass filter, which can be inter-

preted as a virtual force (for convenience we discuss the

continuous case)

fv ¼ kvðx̂l � xfÞ þ dvð _̂xl � _xfÞ; ð11Þ

where kv and dv are designer-specified constants of virtual

spring and damper.
The robot is working in admittance control mode, driven

by real and virtual forces

ma€xf þ da _xf ¼ f þ fv; ð12Þ

where ma and da are virtual mass and damping of the

admittance controller. From (11) and (12), the transfer

function from x̂l to xf is

XfðsÞ
X̂lðsÞ

¼ dvsþ kv
mas2 þ ðda þ dvÞsþ kv

; ð13Þ

which is a low-pass filter. Intuitively this filter is trying to

use a virtual force (fv) to help decreasing the real interaction

force (f), while the robot is working in admittance mode.

Because the robot dynamics is stable and linear, this method

is easy to understand and implement. In essence, (11) and

(12) form an admittance controller with the feed-forward of

human’s estimated trajectory, this idea has been proposed

and validated by Maeda et al. [28] and Corteville et al. [29].
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Fig. 10. Predicting leader’s trajectory using EKF. Solid curves: leader’s
real CoM position (bottom, thick) and velocity (top, thin). Curves with
markers: estimated/predicted values. Solid/dashed vertical lines: mo-
ments of entering/leaving double-support phase.

Fig. 11. Block diagram of the human-robot system in waltz. xxl and xxf are
leader’s and follower’s spatial states (e.g., position, velocity, etc.). f is
the interaction force.



4.2 A “Human-Like” Approach

For the case of waltz, there is a major difference between
HHI and HRI: for HRI, the dynamic model of the robot
follower can be artificially created to meet specific require-
ments. For example, (13) can be replaced with other linear
or nonlinear models if the design specifications can be
satisfied. In contrast, in HHI, the human follower is subject
to her intrinsic dynamics, which can hardly be changed by
an external controller.

Therefore, to better understand the haptic interaction
between two human dancers, we will use the inverted
pendulum presented in Section 2 as an assumed approxima-
tion of the follower’s body dynamics.

In the single-support phase of the robot follower, its
dynamics are similar with (1) and (2), except that the feed-
forward of _̂xl is included in the ankle torque control

�� ¼ k1xþ k2 _xþ k3f þ k4ð _̂xl � _xfÞ; ð14Þ

which models the follower’s effort in catching the leader’s
varying speed. In addition, to simplify the implementation,
€z is set to 0 and z is set to a constant value.

At the moment of feet landing, the robot is assumed to
follow the leader’s stride, i.e., we assume xþf ¼ x̂þl . In the
double-support phase of the robot, we have it work in
admittance mode.

It should be noticed that, rather than being a true model
of human body dynamics, the above model is an approx-
imation based on the assumed “human-like” behavior.
However, compared with the model in Section 4.1, the
inverted pendulum better catches human’s unstable dy-
namics in single-support phase, hence this assumed “hu-
man-like” model is a better candidate for reproducing the
HHI in waltz.

5 SIMULATIONS AND EXPERIMENTS

Before HRI experiments, our first concern is that whether
our assumed model given in Section 2 and the extended
Kalman filter discussed in Section 3.2 can be used for
estimating and predicting human leader’s state. Therefore,
we did experiments in which the robot worked purely in
admittance mode, being “pushed” by the human leader
while trying to track the leader’s states with EKF.

The human leader’s motions are not restricted by specific
patterns: as long as the velocity does not exceed motors’
speed limits, the leader can arbitrarily choose his stride
length and walking speed. Five human subjects (age range:
22-30; height range: 1.60-1.85 m; weight range: 50-75 kg) are
asked to walk with the robot follower with self-selected
speeds and paces. During the above process, surface points
on the human leader’s waist and ankles are measured by the
two LRFs; leader’s phase (double/single support) are then
inferred and recorded along with the measured interaction
force. Then EKF is applied on the recorded data. Covariance
matrices QQ and RR are estimated by offline processing the
recorded measurements using ALS package [24]. Results
are shown in Fig. 12.

According to the results, the proposed model in (3) and
EKF in (7)-(10) can be used in state estimation and short-
term prediction. At the same time, the prediction error
increases as the look-ahead-time grows larger, which makes
long-term predictions less accurate.

The second concern is whether the intrinsically unstable
inverted pendulum can be used to interact with human.
Although related HRI experiments have demonstrated its
feasibility [16], because we have modified the model and
included double-support phase, extra validations are neces-
sary. Before experiments, we modeled two dancers as two
inverted pendulums (dynamics described in Section 2)
connected by a spring and a damper, then simulated the
interaction between them. Parameters of the simulation are
listed in Table 1.

The leader and the connection are assumed to have
uncertain, time-varying, but bounded parameters (varying
within the given domain). Values of those parameters are
chosen due to the following reasons:

1. The follower is a robot emulating an virtual inverted
pendulum; parameters of the virtual pendulum can
be arbitrarily specified.
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Fig. 12. Results of evaluating the proposed EKF. In each figure, curves
in the bottom are measured (plain curve) and estimated (curve with “+”
markers) CoM position, curves in the top are CoM velocities (plain:
measured; “+” marker: estimated).

TABLE 1
Parameters of Simulating the Interaction between

Two Inverted Pendulums



2. For the human leader, m is the author’s mass; z is the
57 percent of the author’s height; €z is from a dancer’s
motion capture data in the pelvis. Because k1 . . . k3

are human dancer’s internal control gains that are
hard to measure, they are given large uncertain
bounds. As human is the leader, k4 is set to 0.

3. kc and dc can be inferred from recorded interaction
force and two dancers’ distance. A preliminary
analysis shows that (perhaps due to different tasks)
kc is smaller than the experiment results given in [30].
The results are used as the upper bound of kc
(0 � kc � 400), while dc’s upper bound is 0:42kc
(0 � dc � 0:42kc)[31]. With the parameter constraints,
kc and dc are then identified by minimizing the
experiment data fitting error. Because kc and dc could
be time-varying, the experiment data are partitioned
and fitted, respectively. kc and dc, in Table 1, are
results of the identification.

Besides the time-varying and uncertain parameters, the
two dancers also have random but bounded timing errors
in entering/leaving double-support phase. Random noise is
also included in the measurements.

The robot does not know the leader’s trajectory in advance,
but tries to follow the leader with the controller proposed in
Section 4.2. Simulation results are shown in Fig. 13. We can
see that in simulation, the “human-like” controller can drive
the robot following the leader’s trajectory, regulating the
interaction force as well as keeping the ankle torque within a
reasonable amplitude.

After the above evaluations, experiments are directed.
The control program of the robot follower is running on a
single-board computer with 995 MHz (benchmark result)
Pentium III CPU and 256 MB memory. The operating
system is QNX 6.1.

The program has two parallel control cycles.

1. Four servo motors (which drive four omniwheels)
are controlled by PD controllers running on the

low-level cycle, with 1ms cycle period. This cycle
contains few computations.

2. The high-level cycle contains LRF data processing
and EKF calculation, which cost most of the computa-
tion time. Period of the high-level cycle is 28 ms.

The EKF needs 213 add operations, 154 subtracts,
391 multiplies, and 4 divides. The LRF data processing needs
252 adds, 504 multiplies, and 504 (worst case) trigonometric
function calls, with all operations on double-precision
numbers (64 bits in current platform). For the CPU being
used, the above computations approximately cost 6.5M clock
cycles in the worst case, corresponding to about 6.5 ms, which
is shorter than the high-level cycle (28 ms). The operating
system (QNX 6.1) guarantees the 1ms and 28 ms deadlines are
satisfied in hard real time: if the computation time once
exceeds the limit, the program will be stopped with an error
report. The program is then tested to ensure that the
computation time can satisfy the hard real-time requirement.

Three different robot controllers: pure admittance,
admittance with virtual force (Section 4.1) and inverted
pendulum (Section 4.2), are examined. The five human
subjects are asked to walk with the robot follower with self-
selected stride lengths and restrictions on the paces (should
be faster than 1 step per second).

Parameters for admittance control are ma ¼ 50 kg,
da ¼ 40 Ns=m; for generating virtual force, kv ¼ 10 N=m
and dv ¼ 150 Ns=m. For inverted pendulum, we set m ¼
45 kg, z ¼ 0:9 m, €z ¼ 0, k1 ¼ �40 N, k2 ¼ �40 Ns, k3 ¼ 2 m,
and k4 ¼ 5 Ns. The above parameters are selected after a
preliminary test before experiments.

Experiment results are given in Fig. 14. Comparing
Fig. 14b with Fig. 14f, it can be seen that, when using the
inverted pendulum controller (Section 4.2), the interaction
force can be reduced by utilizing the feed-forward of the
leader’s state. Therefore, the control scheme which uses
feed-forward (Fig. 11) and a “human-like” controller is
supported by the experiment results.

However, despite its intuitive feasibility, the “admittance
with virtual force” controller in Section 4.1 demonstrates no
evident enhancement in transparency (Figs. 14c and 14d).
Originally we attributed the failure to the wrong selections
of controller parameters; however, many sets of parameters
tested and tuned in experiments still result in no improve-
ment. In the subsequent part, we will give a tentative
explanation on the failure of this controller.

6 DISCUSSION

6.1 About the Virtual Force Controller

In developing the virtual force controller in Section 4.1, we
used the model in (13), which will drive the robot to follow
the human leader’s estimated trajectory. Here, we define the
robot’s following error as EðsÞ ¼ 1�XfðsÞ=X̂lðsÞ, i.e., the
complement of (13), we have

EðsÞ ¼ X̂lðsÞ �XfðsÞ
X̂lðsÞ

¼ sðmasþ daÞ
mas2 þ ðda þ dvÞsþ kv

¼ sðsþ !uÞ
ðsþ !1Þðsþ !2Þ

;

ð15Þ

with da ¼ ma!u, dv ¼ ð!1 þ !2 � !uÞma, and kv ¼ !1!2ma.
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Fig. 13. Simulated interaction between two inverted pendulums.



In frequency domain, the behavior of EðsÞ is fully
determined by !1, !2, and !u: on the Bode plot of jEðsÞj, at
frequencies of !1 and !2, the slope of the magnitude curve
decreases by 20 dB per decade, while at !u the slope
increases by 20 dB per decade. Without loss of generality,
we assume !2 � !1. Depending on the values of !1, !2, and
!u, there are three possible Bode plots of jEðsÞj; we list them
in Fig. 15.

In all the three possible cases in Fig. 15, amplitude of the
following error, i.e., jEðsÞj approaches 0 at low frequencies
and 100 percent at high frequencies (because XfðsÞ is the
low-pass-filtered output of X̂lðsÞ). At the same time, the case
in Fig. 15c is nonoptimal since jEðsÞj is amplified at a
specific frequency band, therefore the case in Fig. 15c will
not be considered.

In the two cases in Figs. 15a and 15b, we have
!2 � maxð!1; !uÞ. And the slope before !2 is 20 dB per
decade. To realize effective attenuation of jEðsÞj (e.g.,
jEðsÞj < �20 dB), we should have !2 to be a decade larger
than maxð!1; !uÞ, i.e., !2 � 10�maxð!1; !uÞ, and place
maxð!1; !uÞ around human’s walking frequency (approxi-
mately 2 Hz, or around 10 rad/s); this arrangement of
maxð!1; !uÞwill give us at least�20 dB attenuation of jEðsÞj.
Therefore, we can consider maxð!u; !1Þ � 10 rad=s, and
!2 � 100 rad=s, which yields

dv ¼ ð!1 þ !2 � !uÞma � 100ma; ð16Þ

da
ma
¼ !u � 10: ð17Þ

Equations (16) and (17) suggest a dilemma we are facing.

1. If ma is large, e.g., 50 kg as used in experiment, then
dv ¼ 5;000, which will greatly amplify the (already
large) noise contained in _̂xl;

2. If ma is small, then according to (17), da must also
decrease in proportion; however, values of ma and
da are restricted in admittance control: due to the
noise introduced by force sensor and the conserva-
tiveness of the small gain theorem, ma and da should
be sufficiently large.

Generally, because a robot is expected to be safe,
insensitive to noise, and easy to analyze/implement, we
usually use stable, linear and low-pass-filter type robot
models, which can be written as a strictly proper and stable
transfer function (e.g., (13)). As the complement of robot
model, the following error is not strictly proper and will
finally reach 0 dB as frequency increases. It is a nontrivial
task to tune the controller’s parameters to optimize the
frequency response while satisfying the existing restrictions
on stability. If the sensors have large signal-to-noise ratio, or
if the human model contains small uncertainty, then it is
possible to improve system performance with appropriate
parameters, e.g., as the case in [28]; in contrast, in our
application, the large noise contained in the inferred human
CoM, as well as in the interaction force, greatly limited our
parameter selection to a narrow range. The parameters used
in experiment put much weight on stability and noise
attenuation, hence performance was sacrificed, e.g., at
frequency of 10 rad/s, the magnitude of jEðsÞj is only -0.3 dB.

If the robot model is not constrained to be linear, stable
or proper, generally we will have more design space to
optimize the interaction. The inverted pendulum model
used in Section 4.2 exemplifies the use of an intermittently
unstable model. At the same time, compared with the linear
and stable case, our knowledge in the broader design space
is still quite limited; there are a lot of control methods to be
explored in the haptic human-robot interaction.
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Fig. 15. Possible Bode plots of jEðsÞj.

Fig. 14. Experiment results. In (a), (c), and (e), curves with “+” markers
show robot’s trajectories while plain curves show the human’s. For each
robot controller, the motion is initiated with admittance control until the
end of the first double-support phase. In (e) and (f), the robot switches to
admittance mode after six steps.



6.2 Dancers’ Body Dynamics in Turning Maneuvers

As stated in Section 1, the planar model in Fig. 5b only
describes dancer’s translational motions. To fully account
for dancers’ complete motions in waltz, their body dynamics
in turnings (i.e., rotations around the vertical axis) should be
modeled and analyzed.

Compared with the “normal” turning maneuvers in
walking, the turnings in waltz have several different features.

1. The turnings usually have large rotation angles, e.g.,
natural turn (name of a dance step) consists of two
successive turnings, corresponding to two 135 degree
clockwise rotations.

2. Turnings mostly happen in single support phase. In
addition, for the three-beat waltz music, the rotation
usually starts around the second beat and ends
around the third beat.

3. The dancer usually keeps a fixed upper body
configuration during turning, with the swing foot
sliding on the floor.

Human’s turning maneuvers during walking have been
measured and analyzed [32], [33], [34], suggesting the
complicated body dynamics and control in turning maneu-
vers. At the same time, some simplified models have been
introduced to generate turning motions on bipedal robots. A
3D model and its controller proposed by Shih et al. [35]
guarantee the input-to-state stability during turning, but the
model has point feet and the controller only allows small turn
angles. A friction-based method proposed by Miura et al. [36]
can generate larger turn angles, but the turnings happen in
double-support phases.

A bipedal turning model, which is suitable for modeling
dancer’s turning maneuvers in waltz, has been recently
proposed by Kim and Park [37]. Including upper body
moment inertia, swing foot, ankle torque, and ground
friction, this model can describe dancer’s turnings of large
rotation angles in single-support phase. For a waltz dancer,
if an additional constraint (zero height of the swing foot) is
introduced, this model can be further simplified.

Although we may have a suitable model, there are still
two challenges.

1. How turning is controlled by human is unknown;
e.g., the way that the rotation is accelerated/
decelerated by ankle/hip/friction.

2. It is difficult to measure human leader’s angular
position with LRFs.

The two challenges are to be addressed to extend the
human-robot interaction to more complete motions in waltz.

6.3 Switching of Leader-Follower Role

On the higher level interaction, i.e., “intention estimation”
as shown in Fig. 2a, two dancers’ roles as the leader and the
follower are fixed: the male dancer selects the next step,
conveys his intention to the female dancer, who receives,
interprets the intention and follows the male dancer’s lead.
Because of this explicit specialization in the higher level
interaction, two dancers in waltz have their names as
“leader” and “follower.”

However, on the lower level interaction (“coupled
dynamics” as shown in Fig. 2b), we cannot rule out the
possibility of the dancers’ role-switching behavior during
dancing. Although it is difficult to quantitatively evaluate
one dancer’s intention to lead (or to follow) in human-human

interaction, to the author’s knowledge, a human dancer can
hardly keep the role as a pure leader (or follower). For
instance, a human leader may give up leading if the
interaction force is too large; a human follower also may
“override” the lead if she is struggling to keep balance, which
should have higher priority than following.

Intuitively, the role-switching can be considered as a
continuous process, which has been modeled by a homotopy
of maps, with a scalar parameter � 2 ½0; 1� used to describe
the role between leader (� ¼ 1) and follower (� ¼ 0) [38],
[39], [40]. At the same time, the value of � may be a result of
task, or interaction force, etc.; modeling the evolution of� is a
great challenge. Introducing the role-switching mechanism
into HRI of waltz will further complicate the system;
however, role-switching has the potential to contribute to a
more life-like interaction. Therefore, this feature should be
included in the future dance partner robot.

7 CONCLUSION

To develop a robot follower which can dance waltz with a
human leader, the haptic interaction between the two
dancers is modeled and studied. The interaction is divided
into higher level interaction (step estimation) and lower
level interaction (coupled body dynamics).

As the higher level interaction has been modeled with
HMMs and reproduced in HRI, the focus of this paper is the
lower level interaction. The human leader is modeled as an
inverted pendulum. The simplified human model, along
with an extended Kalman filter, are used in estimating
human leader’s state. Feed-forward of the leader’s state is
utilized by the robot controller to achieve reduced interaction
force. Two robot controllers (namely, virtual force and
inverted pendulum) are examined. The use of the inverted
pendulum controller is supported by experiments; the failure
of the virtual force controller is explained.

However, with the large uncertainty contained in the
human model, it is still a great challenge to design a robot
controller which has guaranteed robustness and optimal
performance. In addition, the leader-follower role-switching
in the lower level interaction should also be considered.
Besides, currently, we have only modeled dancers’ motions
in sagittal plane, with rotational motions still unstudied.
These issues are to be addressed in our future work.
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Abstract— Physical human-robot interaction between a hu-
man leader and a robot follower in waltz is studied in this
paper. The dancers’ body dynamics in single-support phase are
modeled as inverted pendulums. On the robot side, an ankle
torque control method is proposed and applied. The control law
forms a time-dependent vector field, which makes the nominal
orbit of the robot to be an attractor. To physically interact
with human, the human leader’s state is estimated from range
image data by using an extended Kalman filter. Parameters of
the robot’s orbit are then adjusted according to the leader’s
estimated and predicted state. The proposed method is verified
by simulation results.

Index Terms— Physical human-robot interaction, inverted
pendulum, attractor, extended Kalman filter.

I. INTRODUCTION

In physical human-robot interaction (pHRI), a robot is

expected to interact with a human partner by utilizing the

information of the human as well as the physical connection.

Usually, the robot is controlled at two levels. At the higher

level, human’s intention is estimated from some accessible

signals (e.g., force/torque, EMG, etc.); the estimated intention

then decides the next event of the robot (intention estimation,

or intention sensing) [1]–[3]. At the lower level, the coupled

dynamics of the human-robot system are modeled, thus the

robot is controlled to cooperate with human by utilizing

model knowledge (coupled dynamics) [4]–[6].

Waltz is a typical example of physical human-human

interaction (pHHI) in which two dancers are acting as a

leader (usually the male dancer) and a follower (usually the

female dancer). Waltz can also be viewed at higher and lower

levels, as shown in Fig. 1. At the higher level, as waltz has a

“vocabulary” of various kinds of dance steps, if the leader has

selected the next step, the follower should be able to estimate

the leader’s selection. At the lower level, as the follower’s

body dynamics are coupled with the leader; she has to dance

in the context of coupled dynamics.

To reproduce the pHHI of waltz with pHRI, we developed

a mobile robot that plays the role of the female follower.

∗This work is supported by the Asian Office of Aerospace Research and
Development (AOARD), Air Force Office of Scientific Research (AFOSR)
under grant number FA2386-10-1-4126.

(a) Intention estimation (b) Coupled dynamics

Fig. 1. Two levels of interactions in waltz [7]

The robot is expected to be capable of estimating human

leader’s next step (higher level) and adapting itself to the

coupled body dynamics (lower level). We hope that the

knowledge acquired in pHRI may help designing robots that

can physically interact with human in more intuitive ways.

Because the higher level interaction has been studied in our

earlier work [8]; therefore, our focus here is the lower level

interaction.

A proper model of the dancers’ coupled body dynamics

is crucial in achieving good performance in pHRI. In our

previous work we modeled dancers as two linear inverted

pendulums (LIPM, proposed in [9]) connected by a spring

and a damper [10], [11]. However, because of LIPM’s

unstable orbit, it has large sensitivity to initial condition and

disturbance; with the sensitivity problem and measurement

noise, it is very difficult to reliably estimate and predict the

human leader’s state. To deal with the problem, in this paper

we propose an approach which makes the orbit to be an

attractor and uses extended Kalman filter for human state

estimation.

In Section II, models of pHRI, human, and robot are intro-

duced. In Section III, the proposed method for controlling the

robot is described. Simulation results are shown in Section

IV and conclusions are given in Section V.

II. MODELS OF THE PHYSICAL INTERACTION

A. Model of the Physical Interaction

A schematic diagram of the lower level pHRI (i.e., coupled

body dynamics) in waltz is illustrated in Fig. 2. This system

involves the interaction among three components: the human
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body, the human arm, and the robot follower. Principally,

the arm should be considered as a subset of the body;

however, as the human arm is the “interface” between the

coupled systems, the interaction force f is largely affected

by arm dynamics. Due to its significant role in the physical

interaction, the human arm dynamics are often separately

analyzed [12].

As the human body and the human arm can only be

commanded by human himself (intention of body motion,

and arm actuation), our goal is to design the robot dynamics

for achieving some performance requirements, e.g., spatially

following human (xf tracks xl), or reducing the interaction

force f . Ideally, if models of the human body and the

arm are already known, while accurate measurement of

xl is possible, the robot dynamics can be designed with

ease. However, in practice these prerequisites can hardly be

satisfied: precisely modeling human and measuring states are

still great challenges.

If we ignore the unknown human body dynamics and xl,

the robot will be controlled in a simpler context: a feedback

loop which consists the inter-connected human arm and

robot. This feedback loop is a classic case in pHRI related

studies [4]. Usually an assumed arm model with identified

parameters are used for robot controller design; however,

due to the large structured/unstructured uncertainties in the

arm model, the designer will tend to use a worst-case gain,

along with a conservative stability criterion (e.g., small gain

theorem) to synthesize the robot controller, which leads to

the large sacrifice in performance.

This compromise between stability and performance can

be alleviated if more information about the human leader is

accessible. An extreme case is that if xl can be accurately

observed, we can simply let xf = xl to realize human

following and f reduction. This extreme case, though im-

practical, well exemplifies the effectiveness of using the feed-

forward of xl (the dashed arrow in Fig. 2), which has also

been experimentally validated in [13].

After introducing the feed-forward of xl, we also need an

assumed human body model, which serves two purposes:

1) The measured xl usually contains large noise/offset. As

Human arm 

dynamics

Robot 

dynamics

Human body 

dynamics
+

-

Intention of 

body motion

Arm actuation

Fig. 2. Diagram of the pHRI model in waltz. xl and xf are leader’s and
follower’s spatial states (e.g., position, velocity, etc). f is the interaction
force

xl is the result of human body dynamics; by using an

assumed human model, we can design a model-based

filter to attenuate the measurement noise;

2) The assumed human body model can also be used for

predicting xl in the future.

Therefore, in the subsequent part we will introduce the

human body model which is being used in this paper.

B. The Human Model

The human leader generally keeps walking throughout the

waltz dance, hence a human’s body model is firstly a bipedal

walking model. A simplified human model which catches the

primary features of walking is the inverted pendulum model,

as given in Fig. 3. This model consists of a center of mass

(CoM), an extendable leg and an ankle joint actuator, with

dynamics as

ẍl =
z̈l + g

zl
xl +

ul

mlzl
+

f

ml

(1)

where xl is the horizontal position of CoM with respect to

the pivot point, zl is the height of CoM, ml is the mass

of the inverted pendulum, g is gravitational acceleration, f
is external force, and ul is ankle torque. It is difficult to

precisely measure ul with external sensors, but the repeating

patterns of ul in bipedal walking can be approximated by

other known states. Here we assume ul is a function of xl,

ẋl and f , while ul(xl, ẋl, f) = 0 if xl, ẋl and f are all zero.

A linear approximation is

ul(xl, ẋl, f) = k1xl + k2ẋl + k3f (2)

where k1 and k2 are the damping/actuation coefficients of the

ankle, k3 stands for human’s reactions to the external force.

With (1) and (2), the human model has only one input f :

ẋl =

(
0 1
a1 a2

)
xl + [0, b]T f (3)

where a1 = (z̈l+g)/zl+k1/(mlzl), a2 = k2/(mlzl), and b =
k3/(mlzl) + 1/ml are human model’s unknown parameters.

The above model can only approximate human’s body

dynamics in single-support phase, besides which there is

another double-support phase. In double-support phase, hu-

man is almost a fully actuated system and corresponds to a

completely different model instead of (1) and (2).

Fig. 3. Simplified human body dynamics with an inverted pendulum model
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The transition between the single-support and the double-

support phases are foot landings, i.e., when the swing foot

lands on ground. At foot landings, xl is instantaneously

reset with a new value, hence the time history of xl and

ẋl formulates a set of orbits in phase plot. At the same time,

since for a human leader in waltz this reset is synchronized

with music beats (denoted by {tl}), the orbit of xl and ẋl is

time-dependent, i.e., xl is reset when t ∈ {tl}, as shown in

Fig. 4.

Compared with the gravity-dominated body motions in

single-support phase, it is difficult to model human’s behavior

in double-support phase. However, for a robot which is

physically interacting with human, it is necessary to deal with

the two phases with distinctive dynamics. A straightforward

solution is using one conservative robot model that can work

stably in both phases, but this will usually cause degradations

in performance. As we have some information about the

dynamics in single-support phase, those information should

be exploited to enhance interaction performance.

C. The Robot Model

Generally, for the system described in Fig. 2, there are

infinite candidate robot models that can be implemented to

control the pHRI. Because our purpose is to realize a life-

like interaction as in the case of pHHI, a human-like robot

model is preferred. The model used here is linear inverted

pendulum (LIPM) [9], [14], which has simplified dynamics

as

ẍf = (g/zf )xf + uf/(mfzf ) + f/mf (4)

where xf is the robot follower’s CoM position with respect

to the pivot point, zf is the height of CoM, mf is follower’s

mass, and uf is the ankle torque.

For simplicity, this model does not contain double-support

phase. In addition, values of the reset xf at k-th foot landing

moments (which are also the music beat moments in waltz,

denoted by tf (k)) are controlled by a balance controller to

guarantee the CoM velocity at moment tf (k + 1). Consider

that the period of beat moments has a nominal value Tp,

i.e., Tp = tf (k + 1) − tf (k), the balance controller resets

xf at moment tf (k) by using the following rule such that

ẋf (tf (k+1)) = vd(tf (k+1)) can be achieved (given uf (t) =

Foot landing 

when

Double-support
Single-support

Fig. 4. The orbit in walking

0 when tf (k) < t ≤ tf (k + 1)) [10],

x+(tf (k)) = −
τC

S
ẋf (tf (k)) +

τ

S
vd (tf (k + 1)) (5)

where vd(tf (k + 1)) is the desired velocity at tf (k + 1).
τ =

√
zf/g, C = cosh(Tp/τ) and S = sinh(Tp/τ).

With the LIPM dynamics described in (4) and the balance

controller in (5), the time-dependent orbit of xf = [xf , ẋf ]
T

is illustrated in Fig. 5. If uf = 0, the trajectory of the single-

support phase is a hyperbola with an invariant orbital energy

[9].

III. CONTROL OF THE ROBOT

A. Orbit Control of the Robot

Although the robot can be balanced by resetting x at

beat moments {tf} using (5), the control rule is intermittent

and cannot cover the moments throughout the motion; if

disturbance is introduced during single-support phase, tra-

jectory will deviate from the nominal orbit; as LIPM is

linear and unstable, this deviation will increase exponentially.

Therefore, additional control by using the ankle torque uf is

necessary.

Ignoring the interaction force f , system (4) can be written

as

ẋf =

(
0 1

g/zf 0

)
xf + [0, 1/(mfzf )]

Tuf (6)

As the system is controllable, usually we can use a state-

feedback gain to replace the pendulum’s original dynamics

with an artificial one (with designed poles). However, this re-

quires large ankle torque, which is impossible since human’s

ankle torque is limited by the size of supporting foot.

For bipedal walking, this control can be realized by turning

the nominal orbit into an attractor. For a state-dependent

system, a vector field near the nominal orbit can be designed

to “attract” neighboring states onto the orbit [15], as shown

in Fig. 6(a).

Similarly, it is easy to design an vector field near the

robot’s nominal orbit according to orbital energy, such that

solutions with arbitrary initial conditions can converge to

the orbit. However, as our system is time dependent (x
is reset only at beat moments {tf}) while the LIPM is

expected to reach the desired velocity vd when t ∈ {tf},

convergence to the nominal orbit may lead to the violation of

this requirement (the dotted dash curve in Fig. 6(b)). Instead,

Single-support

Fig. 5. Orbit of the robot
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(a) State-dependent orbit (b) Time-dependent orbit

Fig. 6. Designing attractors for two types of orbits. Arrows are vector fields;
dotted dashes are solution trajectories for state-dependent orbits; dashed
curve in (b) is the solution for time-dependent orbits

a desired solution may deviate from the nominal orbit (the

dashed curve in Fig. 6(b)), depending on the current time.

In another word, to deal with the time-dependent system, the

vector field should also be time-dependent (more specifically,

time-state-dependent). Design of the vector field will be

introduced in the following part.

The robot is controlled in discrete manner with sampling

period ts, the robot dynamics is

xf (k + 1) = Arxf (k) +Bruf (k) (7)

where Ar and Br are discrete forms of the matrices appeared

in (6).

The state at time step N is

xf (N) = AN−k
r xf (k) +

N−1∑
i=k

(
AN−i−1

r Bruf (i)
)

(8)

Assume there exists a sequence uf (k) . . . uf (N − 1) which

makes xf (N) = x∗f , where x∗f is the desired robot state at

time step N . Define state error at time step k as

e(k) = x∗f −AN−k
r xf (k) =

N−1∑
i=k

(
AN−i−1

r Bruf (i)
)

(9)

e(k) is the difference between the desired state and a

predicted state, given all future efforts, i.e., uf (k) . . . uf (N−
1) = 0. The evolution of e(k) is

e(k + 1) = e(k)−AN−k−1
r Bruf (k) (10)

One may expect to use the feedback of e(k) to build a

stable system, in which e(k) asymptotically converges to 0

as k → N . Unfortunately, because (10) is uncontrollable,

e(k) cannot be eliminated. As we are only concerned about

velocity errors, here only ė(k) is considered. The control law

of uf is

uf (k) =
ẋ∗r −

[
AN−k

r xf (k)
]
(2,1)

γ
[
AN−k−1

r Br

]
(2,1)

(11)

where [M ](i,j) denotes matrix M ’s entry on row i and

column j. γ > 1 is a scalar used to control the convergence

speed. With uf being controlled by (11), we have

ė(k + 1) = (1− 1/γ)ė(k) (12)

which suggests the exponentially diminishing error of veloc-

ity.

The method presented in (11) fully utilizes LIPM’s original

dynamics and results in an efficient control law. When desired

velocity vd and beat moments {tf} are given, an attractive

orbit is defined. At the same time, to physically interact with

the human leader, the orbit parameters vd and {tf} should be

adapted to the leader’s orbit. Because these parameters are

adjusted according to human leader’s state (the feed-forward

path in Fig. 2), in the following we will introduce the method

of estimating and predicting the human leader’s state.

B. Estimating and Predicting the Human Leader’s State

In single-support phase, human leader’s motion is largely

determined by gravity, this makes leader’s state xf easier to

estimate and predict. To obtain the human leader’s state, we

installed two laser range finders (LRF) on the robot to detect

human’s waist and ankle positions, with which the state xl

can be inferred, as shown in Fig. 7.

However, there are also several difficulties in the state

estimation/prediction task, namely

1) The human model given in (1) is not the exact model

of human’s body dynamics;

2) Model parameters are unknown;

3) The noise and offsets contained in the measurements

from the LRFs.

With (3), the listed difficulties can be reformulated as a

system with uncertainties, process noise, and measurement

noise:

ẋl =

(
0 1
a1 a2

)
xl + [0, b]T f + [w1, w2]

T

y = [xl + δ, ẋl]
T + [v1, v2]

T (13)

where a1, a2, and b are unknown model parameters, δ is the

unknown offset of measured CoM. w1, w2 are the process

noises; v1 and v2 are measurement noises.

By introducing an extended state xe, which includes the

unknown parameters, we have

xe = [xl, ẋl, a1, a2, b, δ]
T (14)

Fig. 7. Two LRFs are installed on the robot for detecting human’s waist
and ankle positions
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then the system defined in (13) turns to be nonlinear, with

ẋe = ge(xe, f) + [w1, w2]
T

y = he(xe) + [v1, v2]
T (15)

The nonlinear system in (15) is firstly discretized, then its

state is estimated by using an discrete extended Kalman filter

(EKF). Details of the EKF will not be discussed here. The

estimated state and model parameters can also be used to

predict the future state.

Since in waltz two dancer’s motions are synchronized,

the other necessary information is the human leader’s beat

moments {tl} and support phases (single-support or double-

support). These are also inferred from LRF data by detecting

foot landing moments, while details can be found in [11].

C. Following the Human Leader

With the feed-forward of the human leader’s estimated

state, we can adapt the robot’s orbit parameters to realize

a coupling in which the robot can well follow the human

leader in a life-like way.

In single-support phase, if we are at time step k while

the next beat moment is on N , we first estimate the human

leader’s state/parameters x̂e(k) with EKF. From the estima-

tion x̂e(k), human leader’s velocity at N can be predicted

(we denote this prediction by v̂l(k)). Finally, the predicted

velocity v̂l(k) substitutes ẋ∗r in (11) and uf (k) is then

obtained.

In double-support phase, as the human model is unclear,

we have uf = 0. At beat moments {tf}, xf is reset according

to (5).

IV. SIMULATIONS

A. Control of the Robot

In simulations, parameters of the robot follower are mf =
45 kg, zf = 0.9m; period of beat moments is Tp = 0.75 s.

The ankle torque control in (11) actually generates a time-

dependent vector field. To visualize this vector field, the time

axis, ranging from 0 to Tp, is included as one dimension,

result is shown in Fig. 8. We can see that the solution curves

with different initial xf and t have been attracted by the set

defined by t ∈ {tf} and ẋf = vd.

Given vd and {tf}, the vector field of (11) and the x-

resetting rule of (5) are defined, yielding a stable and periodic

orbit of the robot, as shown in Fig. 9.

B. The Physical Interaction

To simulate the interaction between two dancers, we mod-

eled them as two inverted pendulums connected by a spring

and a damper. Parameters of the simulation are ml = 70 kg,

zl = 1m. The connection is assumed to have stiffness

of 100N/m and damping of 30Ns/m. Timing errors are

considered in two dancer’s synchronization with timing error

0.1 s. Measurements of the LRFs are assume to have ±0.05m

Fig. 8. The time-dependent vector field generated by (11). vd is set to 1.
The cones are vectors of flow directions; the curves are integrated streams
of solutions

Fig. 9. Solution orbit of the robot

white noise and −0.05m bias in xl, and ±0.2m/s white

noise in ẋl. Results of simulation are shown in Fig. 10.

Due to model uncertainties and measurement noise/bias,

the predicted v̂l is quite inaccurate at the beginning; however,

the prediction error converges as the time is approaching the

next beat moment, as demonstrated in Fig. 10(a). According

to Fig. 10(b) and Fig. 10(c), the two dancer’s orbits are

coupled with reduced interaction force (compared with the

results of [10], [11]). The simulated ankle torque uf is also

kept within a reasonable range (Fig. 10(d)). Our proposed

method is hence supported by the simulation results in Fig.

10.

V. CONCLUSION

In this paper, we first introduce a pHRI model, which

implies the necessity of designing the robot dynamics model

as well as implementing an assumed model of the human

leader. We approximate human’s body dynamics in single-

support phase with an inverted pendulum, while the robot

is controlled to emulate the dynamics of an LIPM. In the

robot’s single-support phase, an ankle torque control method

is proposed. The ankle torque control forms a time-dependent

vector field, turning the nominal orbit of the robot to be an

attractor. To physically interact with human, parameters of

the attractor are adjusted according to human leader’s state

obtained from LRFs. The proposed method is validated by

simulations.

However, the current model only considers translational
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(a) Velocities (b) Coupled orbits

(c) Interaction force (d) Ankle torque of robot

Fig. 10. Simulated pHRI with the proposed robot controller. The human
leader is supposed to have varying vd with vd(tl(1)). . .vd(tl(9)) be-
ing {1, 0.3, 0.1, 1, 0.3, 0.1, 1, 0.3, 0.1}(m/s), respectively. Thin and thick
solid curves in (a) and (b) are human and robot’s states. Dashed curve in
(a) is the predicted velocity v̂l

motions in dancers’ sagittal plane, leaving rotational motions

(body spins and turns) unstudied. In addition, experimental

validations are still to be finished. These issues will be

included in our future work.
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Understanding and Reproducing Waltz Dancers’ Body Dynamics in

Physical Human-Robot Interaction

Hongbo Wang and Kazuhiro Kosuge

Abstract— A pair of spring-damper-connected inverted pen-
dulums are introduced to model two dancers’ body dynamics
in physical interaction. When timing errors are included in the
model, condition for poly-quadratic stability is implemented to
examine the system. With two laser ranger finders installed
on the robot for measuring human dancer’s states, a state-
feedback-based method is proposed to minimize the interaction
force; because in simulation the theoretically optimal feedback
gain is sensitive to measurement noise, another set of empirical
gains are used and proved to be effective in experiments.

Index Terms— Physical human-robot interaction, dance part-
ner robot, linear inverted pendulum, poly-quadratic stability,
laser ranger finder.

I. INTRODUCTION

Physical human-robot interaction (pHRI) involves the cou-

pled system of human and robot. By utilizing the information

through the coupling, the robot is able to interact with human

in expected ways. To achieve a well-coordinated interaction,

the robot usually maintains models at two levels. At the

higher level, the correlation between human’s intentions and

accessible signals (e.g., force/torque, EMG, etc.) is modeled

for the purpose of realizing human intention estimation (or

intention sensing) [1]–[3]. At the lower level, as pHRI is

constrained by the physical laws that govern human’s and

robot’s motions, dynamics of the human-involved system

should also be modeled; hence the robot can properly affect

the coupled dynamics by utilizing model knowledge [4]–[6].

Waltz is a typical example of demonstrating human’s

capabilities in physical human-human interaction (pHHI),

which can also be viewed at higher and lower levels. Waltz

has a “vocabulary” of various types of steps, while a dance

consists of a series of temporally concatenated steps. In a

social setting, where the male dancer (leader) selects the next

step in improvised ways, the female dancer (follower) can

estimate the leader’s next step by using haptic signals; this is

higher level interaction. At the same time, whether the next

step is known or unknown to the follower, she is still well-

adapted to the coupled body dynamics, as well as keeping

her own balance; this is lower level interaction.

The goal of our research is to reproduce the pHHI of waltz

with pHRI, in which a mobile robot plays the follower’s role,

being capable of estimating human leader’s next step (higher

level) and adapting itself to the coupled body dynamics

(lower level). We hope that more knowledge acquired from

this pHRI may help designing robots that can physically

interact with human in more intuitive ways. In one earlier

The authors are with the Department of Bioengineering and Robotics,
Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579,
Japan {h wang, kosuge}@irs.mech.tohoku.ac.jp

work, the higher level interaction has been studied [7];

therefore, our current focus is investigating the lower level

interaction.

On the lower level interaction, one of our previous work

modeled the robot as a free mass following various prede-

fined dance trajectories, whose parameters can be adjusted by

learning [8]. In another work we used a pair of connected

inverted pendulums as a more accurate system model [9].

By assuming the two dancers’ motions are synchronized, we

analyzed stability of the system, while interaction force was

reduced with gradient descent method [10].

In waltz, two dancers are roughly synchronized with the

help of music beats; however, timing errors between the two

dancers can frequently occur. Due to the inevitable timing

errors, our assumption on the precisely synchronized motion

is too strong; therefore, in this paper, we will remove this

strong assumption and include timing errors in the model

description. In addition, because the gradient descent method

we used was slow and often sensitive to step size, in this

paper we also propose a method which reduces interaction

force by utilizing more human dancer’s information from

additional sensors (two laser range finders).

Two dancers’ motions in sagittal plane are analyzed with

the same model proposed in [9], [10]; the limitation of

this model is that it only accounts for human’s translational

motions that can be treated as two independent components

in sagittal and frontal plane. Accordingly, for the various

dance steps in waltz, only a few steps without body rotation

(e.g., closed changes) can be the subjects of our study.

Therefore, we are actually modeling two dancers’ “coupled

walking” instead of the true waltz dancing. Clearly, those

very simple cases are still far from the true dances that we

expect the robot to do; however, they offer a good start point

from which we can explore physical human-robot interaction

(pHRI), such as the one-dimensional cases in [6], [11], [12].

In Section II, the system model is introduced. In Section

III, stability of the two-dancer system and the method for

minimizing interaction force are analyzed. Simulation and

experiment results are shown in Section IV and conclusions

are given in Section V.

II. SYSTEM MODEL

A. Simplified Model for Single Dancer’s Body Dynamics

Linear inverted pendulum (LIPM) is a largely simplified

model for biped walking systems [13]. If we consider the

legs as massless while applying some constraints on CoM’s

(center of mass) vertical motion, we can simplify a walking

system as Fig. 1(a) into an LIPM as in Fig. 1(b) [9]. The
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linear dynamics of the LIPM in x direction is [13]:

ẍ = (g/z)x+ (1/(mz))uank (1)

where x is the position of CoM with respect to LIPM’s pivot

point, z is the height of CoM, g is gravity acceleration, m
is mass of the body, and uank is ankle torque. Since uank

is limited in value, it is often used for disturbance rejection

rather than as a major source of control input, hence (1) can

also be written in homogeneous form without the uank term.

Due to the instability of LIPM (as can be seen in (1)); to

have a working model, we also need a balance controller,

which can intermittently set new values for x, i.e., this

inverted pendulum can instantaneously relocate pivot point

to keep balance. The LIPM along with its controller can be

viewed as an impulsive dynamical system:
{

ẍ = (g/z)x, t 6∈ {tk}
x+ = w(x−, ẋ), t ∈ {tk}

(2)

where {tk} is the set of moments when pivot point in-

stantaneously reaches a new position. Since in waltz {tk}
corresponds to the moments of music beat, hereafter we will

call {tk} beat moments, while x−, x+ are x before and after

a beat moment.

The function w in (2) is the balance controller. There are

many methods to obtain w. In [10] we listed 3 candidates

(an energy controller, a velocity controller, and a hybrid

version of the former two) and finally selected the hybrid one.

However, in this paper we will use the velocity controller.

The reason is that when there is no timing error in beat

moments (i.e., tk − tk−1 is constant for all k), both the

velocity controller and the hybrid one can direct the system

to desired velocities; when there is timing error, we can

also find an upper bound of errors when using the velocity

controller. Below is the explanation:

Consider that the period of beat moments has a nominal

value Tp, tk − tk−1 may be different from Tp, but the

controller still takes Tp as a constant and known parameter.

The velocity controller is

x+ = −(τC/S)ẋ(tk) + (τ/S)vd(tk+1) (3)

where vd(tk+1) is a reference input which represents the

desired velocity at tk+1. τ =
√

z/g. And C = cosh(Tp/τ)
and S = sinh(Tp/τ) are parameters containing the constant

Tp.

Let t−k+1 be the instant just before (k+1)th beat moment,

while tk+1 − tk = Tp + δTp due to the existence of timing

x

z

(a) Simplified human walking model

x

z

(b) Linear inverted pendulum

Fig. 1. LIPM as a simplified model [9]

error δTp. Assuming LIPM’s velocity is not changed before

and after pivot relocation, i.e., ẋ(t−k ) = ẋ(t+k ) = ẋ(tk) for

all k, and by solving (2), we have:

ẋ(tk+1) = −α1(δTp)ẋ(tk) + α2(δTp)vd(tk+1) (4)

where α1(δTp) and α2(δTp) are two scalar functions of δTp

with α1(δTp) = sinh(δTp/τ)/ sinh(Tp/τ) and α2(δTp) =
sinh ((Tp + δTp)/τ) / sinh(Tp/τ). In waltz δTp should be

smaller than Tp (at least smaller than Tp/2, otherwise the two

dancers would be in opposite phases), thus |α1(δTp)| < 1,

and both α1(δTp) and α2(δTp) are bounded.

Defining the error of the velocity controller as e(tk) =
ẋ(tk)− vd(tk), it yields

e(tk+1) = −α1(δTp)e(tk) + γ(δTp)vd(tk+1) (5)

with γ(δTp) = α2(δTp)− α1(δTp)− 1. This γ(δTp) is also

bounded. Let ᾱ1 ≥ |α1(δTp)|, ᾱ1 < 1 and γ̄ ≥ |γ(δTp)| be

two upper bounds, then

|e(tk+1)| ≤ ᾱ1|e(tk)|+ γ̄|vd(tk+1)| (6)

If vd(tk) has a constant value vd, the maximum error

bound is |e(t0)| or γ̄|vd|/(1 − ᾱ1), depending on which is

larger.

Based on the above analysis, in the subsequent part we

will use LIPM along with the velocity controller as the single

dancer’s model.

B. Two-LIPM Model for Dancers in Physical Interaction

To model the dynamics of two dancers in physical con-

nection, we use a pair of LIPMs connected by a spring and

a damper, as shown in Fig. 2 [10]. Let xg
l and xg

f be the

CoM positions of the leader and the follower, and pgl and pgf
be their pivot positions, all with respect to the global frame.

The state vector x is defined as

x = [xl, ẋl, xf , ẋf , q]
T (7)

where xl = xg
l − pgl , xf = xg

f − pgf , which are the leader’s

and the follower’s relative positions of CoM with respect to

their own pivot points. q = xg
f − xg

l − d0, with d0 being

the spring’s natural length. Let kc and dc be constants of

the spring and the damper, the system dynamics of the two-

LIPM system is:







ẋ = Ax, t 6∈ {tlk} ∪ {tfk}
x+ = Hlx

− +Blv
l
d, t ∈ {tlk}

x+ = Hfx
− +Bfv

f
d , t ∈ {tfk}

(8)

gX

gZ

g
lp

g
fp

g
l
x g

fx
gO

Fig. 2. Two connected LIPMs as two dancers’ model [10]
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where {tlk} and {tfk} are the leader’s and the follower’s

respective beat moments. Matrix A is

A =













0 1 0 0 0
g
zl

− dc

ml
0 dc

ml

kc

ml

0 0 0 1 0

0 dc

mf

g
zf

− dc

mf
− kc

mf

0 −1 0 1 0













(9)

with zl, zf being the leader’s and the follower’s CoM heights

and ml, mf being their body masses. Hl, Hf , Bl, and Bf

are the matrix forms of (3), with

Hl =





0 −Clτl/Sl

0 1
02×3

03×2 I3×3



 (10)

Hf =









I2×2 02×3

03×2

0 −Cfτf/Sf 0
0 1 0
0 0 1









(11)

and Bl = [τl/Sl, 0, 0, 0, 0]
T , Bf = [0, 0, τf/Sf , 0, 0]

T .

Hl and Hf commute: HlHf = HfHl = H . Symbols

like τl,f , Cl,f and Sl,f are defined similarly as in (3).

Also, as a system of two physically interacting LIPMs, their

interaction force is denoted by f , with f = cx, where

c = [0, dc, 0,−dc,−kc].

III. ANALYSIS ON STABILITY AND OPTIMAL

INTERACTION

A. Stability of the Two-LIPM System Considering Synchro-

nization Error

A simplified version of system (8) was analyzed in [10].

By assuming two dancers’ motions are precisely synchro-

nized, i.e., tlk = tfk = tk for all k, system (8) degenerates

into an equivalent discrete LTI system:

x(tk+1) = HAdx(tk) +Blv
l
d(tk+1) +Bfv

f
d (tk+1) (12)

Ad is the discrete form of A with Ad = eATp . When vld and

vfd are constant, exponential stability of system (12) can be

straightforwardly examined by checking the spectral radius

of HAd (denoted by ρ(HAd)): if ρ(HAd) < 1, the system

is stable.

The above method relies on the assumed synchronized

motion of the two dancers, while in real applications their

timing errors (or synchronization error) usually exist. In this

part we will consider timing error as a part of the model and

analyze the affected stability.

Consider the leader’s and the follower’s kth beat moment

tlk and tfk , as shown in Figure. 3. Because it is pHRI in

t

l
kt 1

l
k
t
�

f
k
t

1k
ft
�

f
k
tE

1

f
ktE �

1

l
p ktT E

�
�

Fig. 3. Timing errors of the leader and the follower

which the follower is a robot, without loss of generality, we

can have tfk > tlk for all k. In another word, we assume the

robot has some sensors for detecting tlk; the detected moment

cannot be exactly the real tlk, but by adjusting the time delay,

we can keep tfk always in the “right” neighborhood of tlk,

i.e.,

0 < tfk − tlk , δtfk ≤ δtf , ∀k (13)

where the positive δtfk is the follower’s error in following

the leader’s timing, and δtf is its upper bound.

Unlike the robot follower, the human leader’s motions

are synchronized with music beats. Ideally, there should be

tlk+1− tlk = Tp, but again, due to the inevitable timing error

of human, along with the robot’s following error, we have

−δtl/2 ≤ δtlk+1 , tlk+1 − tfk − Tp ≤ δtl/2, ∀k (14)

Compared with the previous strong assumption of syn-

chronized motion, the new boundedness assumptions, i.e.,

0 < δtfk ≤ δtf and −δtl/2 ≤ δtlk ≤ δtl/2 are reasonably

weak: if δtfk or δtlk is large, it would be very difficult to

continue the dance even for two human dancers.

Now we can examine one cycle of the system from the

moment tf+k to tf+k+1. In this cycle the system has four times

of transitions, namely

1) From tf+k to tl−k+1, in which there is no beat moment;

system dynamics is continuous;

2) From tl−k+1 to tl+k+1, the leader’s beat moment, impul-

sive dynamics;

3) From tl+k+1 to tf−k+1, a short period of continuous

dynamics;

4) From tf−k+1 to tf+k+1, the follower’s beat moment, im-

pulsive dynamics.

According to the above sequence of transitions and (8),

(13), (14), we can write

x(tf+k+1) = Hfe
Aδt

f

k+1Hle
A(Tp+δtlk+1)x(tf+k )

+Hfe
Aδt

f

k+1Blv
l
d +Bfv

f
d (15)

Similar to (12), (15) can also be viewed as a discrete linear

system. Consider its homogeneous form in which vld = vfd =
0:

x(tf+k+1) = A∗

d(δt
l
k+1, δt

f
k+1)x(t

f+
k ) (16)

where A∗

d(δt
l
k+1, δt

f
k+1) is the system matrix in (15) and its

entries depend on the time-varying δtlk+1 and δtfk+1.

System (12) is stable if ρ(HAd) < 1; however, this

criterion is not valid for (16) because it is a time-varying

system. A sufficient condition for stability of (16) is quadratic

stability, i.e., if we can find a matrix P which is time-

invariant, symmetric, and positive definite (denoted by P >
0) satisfying

A∗T
d (δtlk, δt

f
k)PA∗

d(δt
l
k, δt

f
k)− P < 0

for all k, then (16) is quadratically stable. However, this

condition is quite strong; in many cases systems that are

stable cannot satisfy the condition of quadratic stability;

hence, it is necessary to implement a weaker condition,
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such as one for poly-quadratic stability [14]; to apply the

condition, the time-varying matrix A∗

d(δt
l
k, δt

f
k) must be

converted into a linear matrix polytope form:

A∗

d(δt
l
k, δt

f
k) =

N
∑

i=1

ξi(k)Ai (17)

ξi(k) ≥ 0,

N
∑

i=1

ξi(k) = 1 (18)

where in right hand side of (17), the time-varying errors δtlk
and δtfk are only contained in the scalar coefficients ξi(k),
leaving A1 . . .AN a set of constant matrices. Generally,

A∗

d(δt
l
k, δt

f
k) can hardly be converted into the form like

(17) since δtlk and δtfk both appear in A∗

d(δt
l
k, δt

f
k) in

nonlinear forms. However, due to the fact that δtlk and δtfk
are very small, we can use the first-order approximation of

A∗

d(δt
l
k, δt

f
k), which yields:

A∗

d(δt
l
k, δt

f
k) = Hfe

Aδt
f

kHle
A(Tp+δtlk)

≈ Hf (I + δtfkA)Hle
ATp(I + δtlkA)

= A′

1 + δtlkA
′

2 + δtfkA
′

3 + δtlkδt
f
kA

′

4 (19)

where A′

1 = HfHle
ATp , A′

2 = HfHle
ATpA, A′

3 =
HfAHle

ATp , and A′

4 = HfAHle
ATpA.

By introducing another upper bound δtlf = δtf × δtf ,

which satisfies −δtlf/2 ≤ δtlkδt
f
k ≤ δtlf/2, using (13), (14),

(19) can be rearranged as

A∗

d(δt
l
k, δt

f
k) =

4
∑

i=1

ξi(k)Ai (20)

where

A1 = A′

1 −
δtl
2
A′

2 −
δtlf
2

A′

4, (21)

ξ1(k) = 1− ξ2(k)− ξ3(k)− ξ4(k)

A2 = A1 + 3δtlA
′

2, ξ2(k) =
δtlk + δtl/2

3δtl

A3 = A1 + 3δtfA
′

3, ξ3(k) =
δtfk
3δtf

A4 = A1 + 3δtlfA
′

4, ξ4(k) =
δtlkδt

f
k + δtlf/2

3δtlf

Equation (20) and (21) satisfy the required form in (17)

and (18), now the internal stability can be examined using

the condition proposed in [14]: if there exist four symmetric

positive definite matrices S1 . . .S4 > 0, and four regular

matrices G1 . . .G4, which satisfy
(

Gi +GT
i − Si GT

i A
T
i

AiGi Sj

)

> 0 (22)

for all i = 1, . . . , 4 and j = 1, . . . , 4, then the system is poly-

quadratically stable. The constraints of S1 . . .S4 > 0, along

with (22) form twenty linear matrix inequalities (LMIs),

whose feasibility can be checked by a standard LMI solver.

When A1 . . .A4 are given, we can gradually find the upper

bounds of δtl and δtf by iteratively changing their values

and examining the LMIs’ feasibilities.

B. Optimal Interaction

There are numerous objective functions that can be se-

lected to optimize the physical interaction, but it is difficult

to find one which is “human-like”. Despite the frequently

used functions (e.g., minimum joint torque, minimum jerk,

etc.) that explain an individual’s behavior, determining the

objective function in pHHI is still a challenge. Here we use

the minimum interaction force as our goal of optimization.

This objective has been adopted in many pHRI applications

where it is named as “transparency” [15]. Therefore, from the

robot follower’s point of view, the task of optimal interaction

is as follows:

At moment tf−k , the robot collects all necessary infor-

mation (e.g., xl(t
f−
k ), ẋl(t

f−
k ), etc.) to generate an opti-

mal xf (t
f+
k ), with which the accumulated interaction force

∫ t
l−
k+1

t
f+

k

f2(t)dt can be minimized. However, as the robot

cannot predict the exact tlk+1 which is up to the human,

while f(t) is continuous on t and δtlk+1 is small, finally the

objective function to be minimized is

F =

∫ t
f+

k
+Tp

t
f+

k

f2(t)dt =

∫ t
f+

k
+Tp

t
f+

k

xT (t)cT cx(t)dt

= xT (tf+k )

(

∫ Tp

0

(eAt)T cT ceAtdt

)

x(tf+k )

= xT (tf+k )Qx(tf+k ) (23)

which is the same with the problem given previously [10].

However, in [10], as the robot could not access x(tf−k ), we

had to used the gradient descent of F and vfd . In contrast,

now we assume all states in x(tf−k ) are accessible, while the

goal is to find a xf (t
f+
k ) that minimizes F .

Function (23) only contains one variable xf (t
f+
k ) (here-

after xf is used for short). Let Qij be Q’s entry on row i and

column j, xi be the ith component of x (hence x3 = xf ),

(23) can be written as a simple quadratic function of xf

F = a2x
2
f + a1xf + a0

a2 = Q33

a1 = 2[Q31, Q32, 0, Q34, Q35]x = ηx (24)

F is minimized if xf = −ηx/(2a2). Since Q is assumed to

be time-invariant, a1 and a2 can be obtained off-line, making

the on-line calculation of xf quite simple. However, as kc
and dc in (9) are unknown, as well as the errors δx contained

in the measured x, the calculated xf is not the real system’s

optimal value: x∗

f = −η∗x∗/(2a∗2), the error is

exf
= xf − x∗

f =

(

η∗

2a∗2
−

η

2a2

)

x∗ −
η

2a2
δx

≤ |
η∗

2a∗2
−

η

2a2
||x∗|max + |

η

2a2
||δx|max = exf

(25)

where the absolute value of a vector y is define as |y| =
[|y1|, . . . , |yn|]

T , and |y|max = [|y1|max, . . . , |yn|max]
T . Error

of F is

eF = a2e
2
xf

≤ a2exf

2 = eF (26)
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According to (3), xf and vfd are related, which yields

vfd =
Sf

τf

(

xf +
τfCf

Sf

ẋf

)

= gx

g = −
Sf

τf

[

Q31

a2
,
Q32

a2
, 0,

Q34

a2
−

τfCf

Sf

,
Q35

a2

]

(27)

Equation (27) reveals that minimizing the interaction force

is equivalent to using state feedback with a proper gain g.

From (15) and (27) we have

x(tf+k+1) = (Hf +Bfg)e
Aδt

f

k+1Hle
A(Tp+δtlk+1)x(tf+k )

+(Hf +Bfg)e
Aδt

f

k+1Blv
l
d (28)

With the introduced state feedback, stability of the system

will be affected; therefore, the poly-quadratic stability should

be re-evaluated by using the LMIs in (22).

IV. SIMULATION AND EXPERIMENT

A. Simulation

Parameters of simulation are as follows: for the leader

dancer, ml = 70 kg, zl = 1.1m; for the follower, mf =
45 kg, zf = 0.9m, and the nominal period of beat moments

is Tp = 0.75 s.
On poly-quadratic stability, two sets of dancers’ upper

bounds of timing errors have been tested for different com-

binations of kc and dc, as shown in Figure. 4. As expected,

smaller δtl and δtf lead to larger stable region of kc and dc.

On optimal interaction, Q is obtained by using kc =
60N/m and dc = 25Ns/m. Here we set |x∗|max =
[0.5, 1.5, 0, 1.5, 0.3]T and |δx|max = [0.1, 0.1, 0, 0, 0.05]T ;

the contours of exf
and

√
eF , which are caused by the

differences between kc, dc’s nominal and real values, are

given in Figure. 5. Notice that exf
and

√
eF are non-

zero even kc, dc are the same with their nominal values,

suggesting that both error bounds are somehow loose.

The interactions between two LIPMs are simulated, while

the leader is supposed to have time-varying desired veloc-

ities vld(t
l
k). The “dance” starts from tl1 ≈ 0.75 s, while

{vld(t
l
k)} = (1.1, 0.3, 0.1, 1.1, 0.3, 0.1, 1.1, 0.3, 0.1)m/s for

k = 2, . . . , 10. Non-optimal interactions, in which the

follower keeps a constant, predefined vfd = 0.6m/s, are

compared with optimal interactions in which vfd is obtained
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Fig. 4. Contours of poly-quadratic stability with respect to kc and dc; light-
colored area inside the 0 border corresponds to poly-quadratically stable
combinations of kc and dc
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Fig. 5. Contours of exf
and

√
eF with respect to kc and dc, whose

nominal values are chosen as kc = 60N/m and dc = 25Ns/m

by using (27); results are given in Figure. 6; we can see that

the optimal interaction with reduced force can be achieved

by using (27); this method is also insensitive to timing errors

and time-varying kc, dc, which were not considered when we

analyzed the stability in Section III-A. Since poly-quadratic

stability is a subset of stability, it is possible that systems

do not satisfy (22) can still be stable. Trajectory generated

by LIPM and the real human dancer have been compared in

[9].

After introducing the state feedback, the stability of the

system is re-evaluated, the contours are shown in Figure. 7.

Compared with Figure. 4, it can be observed that proper

feedback gains may lead to the increased area of stable

region.

For the case of Figure. 6(c), the calculated {vfd (t
f
k)} are

(0.3, 0.2, 1.1, 0.4, 0.1, 1.2, 0.3, 0.1)m/s for k = 3, . . . , 10,

which are very close to {vld(t
l
k)}. This matches the intuition

that in a “good” pHRI, human’s and robot’s desired velocities

should be almost the same. However, when the measurement

error δx is included in the simulation, the error is amplified,

causing {vfd (t
f
k)} seriously deviate from {vld(t

l
k)}, and con-

sequently large interaction force, as shown in Figure. 8.

Because the feedback gain g = [14.3, 4.8, 0, 0.2,−0.1],
the measurement noise on xl will be amplified by about

fourteen times. At the same time, this error can hardly be

decreased as human’s pivot point can be located anywhere

inside the support polygon. Due to the above facts, the

method given in (27) cannot be implemented in experiments.

In essence, this large amplification is the result of LIPM’s

intrinsic instability: very small differences in initial condi-

tions will increase exponentially during one step. In contrast,

a human dancer is empirically less sensitive to the initial

conditions. Therefore, in pHRI experiment, if we can find

another g which can also approximate {vld(t
l
k)} while having

a small gain on xl, we will have an alternative solution of

optimal interaction.

B. Experiment

To evaluate the analysis in Section III and find alternative

feedback gains for optimal interaction, a robot follower is

used in pHRI experiment. This robot is the same mobile

robot as appeared in [8], [10], except that two LRFs (laser

range finders, Hokuyo UBG-04LX-F01) are now installed to

detect human dancer’s states, as shown in Figure. 9.
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Fig. 6. Results of simulated two-LIPM interaction; thin and thick curves
in velocity plots are the leader’s and the follower’s CoM velocities; vertical
solid and dashed lines are the leader’s and the follower’s beat moments.
Timing errors and time-varying kc and dc are included in (b) and (d), with
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Fig. 7. Contours of poly-quadratic stability after state feedback is
introduced

One LRF is used to detect human leader’s waist and the

other is for the ankles. Because the environment is quite

simple (human’s waist and ankles are the only clusters that

appear within the 1.5m range), the detection algorithm is

straightforward and will not be discussed here. After the

three clusters (waist, left ankle and right ankle) are identified,

their mean values, which are denoted by lw (waist), ll (left

ankle) and lr (right ankle) are used for later stages.

The information needed is human leader’s beat moments,

xl, and ẋl (xf and ẋf are robot’s states, which can be

obtained with ease). The beat moments can be inferred by

detecting feet landing using a set of criteria, taking the left

foot for example, left foot landings occur at moment t′ if:

1) max(t′−0.6<t<t′) |l̇l(t)| > 0.5m/s

2) |l̇l(t
′)| < vthres

3) ll(t
′) < 0.5m

4) min(t′−0.3<t<t′) |l̇l(t)| > vthres

are all satisfied. vthres is a threshold used for adjusting the
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Fig. 8. Introduced measurement error causes large interaction force, F =
180.0; |δx|max = [0.1, 0.1, 0, 0, 0.05]T

LRF

Force sensor

LRF

Fig. 9. Robot used in experiment

robot’s delay δtfk . In experiment vthres = 0.3m/s and the

corresponding delay is about 0.05 s
ẋl can easily be acquired by using ẋl = ẋf − l̇w, while

to get xl, additional procedures are needed. xl is defined

as the human dancer’s CoM position with respect to the

pivot position; hence firstly we need to know which leg

is the support leg. This is done by using the feet landing

information, e.g., after left foot landing and before right foot

landing, the ankle position of the pivot leg is lp = ll.
It should be noticed that lw and lp are just mean values of

clustered points on human’s surface; an unknown bias must

be considered. xl is actually xl = lp − lw − lbias. To obtain

lbias, the human dancer stands still for several seconds while

lw and lp are being sampled; assuming xl = 0, lbias is then

calculated and averaged over time.

At first, the human leader’s independent moves, in which

the leader and the robot follower are not in physical contact,

are recorded. Assuming the leader’s desired velocity at tlk+1

can be estimated by a linear combination of xl(t
l
k) and

ẋl(t
l
k), i.e., vld(t

l
k+1) = g1xl(t

l
k) + g2ẋl(t

l
k), by using least

squares for data regression, we have g1 ≈ 3.65 and g2 ≈
1.90. Therefore the gain used in experiment is

g = [3.65, 1.90, 0, 0, 0] (29)

Figure. 10 shows the recorded data in the leader’s indepen-

dent moves. We can see that the predicted vld (danshed curve)

can well match the real velocities at beat moments.

Finally, three cases of pHRI, namely damping mode (in

which the robot acts as a free mass with ground friction),

constant vfd mode (where vfd is set to 0.6m/s), and variable

vfd mode (in which vfd is given by (27) and (29)), have

been tested and compared. To generate repeatable trials

for comparison (rather than restricting human to “fit” the

proposed model), a row of markers are attached to the floor;

the human leader is asked to land his toe on the markers

during walking. To generate time-varying vld, the markers
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d

are not evenly spaced; their positions from the origin are

(0.44, 0.77, 1.05, 1.66, 2.22, 2.54)m. The interaction is ended

after the sixth step.

Results of the three experiments are shown in Figure. 11.

As expected, Figure. 11(a) has largest F since the robot is

totally passive. Figure. 11(b) performs well at the beginning

but leads to large F at the fourth step. In contrast, in Figure.

11(c), vfd can follow vld and hence effectively reduce F ; our

proposed approach is therefore supported by the comparison.

At the same time, although the empirical gains in (29) work

well for one subject (the author), as they are the regression

result of the many trials on the same human leader, they

might be unsuitable for other subjects. This is the limitation

of the empirical-gain based method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first introduced a spring-damper con-

nected, two-LIPM model for describing two human dancers’

body dynamics in sagittal plane. Because timing errors of

two dancers are inevitable, we considered the effects of

timing errors and analyzed the poly-quadratic stability of

the system. A state-feedback-based approach was proposed

to minimize the interaction force; because the feedback gain
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Fig. 11. Results of three cases of pHRI; thin and thick solid curves in
velocity plots are the leader’s and the follower’s CoM velocities; dashed

curve in (c) is the calculated vf
d

; the pHRI ends after the sixth step

obtained from quadratic optimization can strongly amplify

the measurement noise in simulation, an alternative set of

gains were used and validated by experiments.

However, the gain obtained in experiments relies much

on empirical data rather than a thorough analysis. At the

same time, the current model only considers translational

motions in one plane, leaving rotational motions (body spins

and turns) unstudied. These issues will be included in our

future work.
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Towards an Understanding of Dancers’ Coupled Body

Dynamics for Waltz

Hongbo Wang and Kazuhiro Kosuge

Abstract— In this paper, we study two dancers’ coupled body
dynamics when dancing a waltz. A linear inverted pendulum
(LIPM) model for biped locomotion is utilized as each dancer’s
dynamic model, and a balance controller for each dynamic
model is introduced. A pair of dancers are then modeled
as two spring-damper-connected LIPMs with their respective
controllers. Assuming a perfect rhythmic and synchronized
motion, we analyze the stability of the physical interaction.
Stable interaction with minimal interaction force is used as
the criterion for optimal interaction, which is transformed into
a quadratic programming problem and solved by gradient
descent. Simulations and experiments show the proposed ap-
proach for analysis of the coupled dynamics is reasonable.

Index Terms— Physical human-robot interaction, dance part-
ner robot, linear inverted pendulum, optimal physical interac-
tion.

I. INTRODUCTION

In human-involved physical interactions, such as pHHI

and pHRI (physical human-human/robot interaction), many

human capabilities and characteristics for haptic communica-

tion, body coordination, etc., are observed. Understanding the

interactions helps designing a robot that physically interacts

with a person in more intuitive ways, and many related

investigations have been directed. On the one hand, because

the interactions involve at least two independent entities,

some research concentrates on how intentions are conveyed

and how motion coordination is established [1]–[3]; on the

other hand, since physical interaction is the result of two (or

more) systems’ coupled dynamics, another category of in-

vestigations focus on studying the human-involved dynamics

[4]–[6]. We may categorize the interactions into two levels:

intention communication as the higher level, and coupled

body dynamics as the lower level. In this paper, we consider

the coupled body dynamics during dancing.

Generally we assume that a human’s motion has repeata-

bility and predictability under specific circumstances, i.e.,

there is an assumed human model. An ideal human model

would be the exact model of a human’s body dynamics;

however, due to the complexity of human’s body dynamics,

the random factors contained in a human’s motion, and the

unknown control method that human is using, the exact

model is still beyond our knowledge. In practice, the human

model is usually obtained with some assumptions and sim-

plifications. For instance, a linear mass-spring-damper model

could be used to model an operator’s arm in interaction

with a master [7]; features of the coupled body dynamics

The authors are with the Department of Bioengineering and Robotics,
Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579,
Japan {h wang, kosuge}@irs.mech.tohoku.ac.jp

in a specific task may be implicitly included in an updated

probability density function [6], etc.

Waltz is a typical example of pHHI. The goal of this

research is to replicate the pHHI in pHRI by developing

a dance partner robot which plays a role of the female

dancer. Since the higher level interaction, i.e., the intention

communication in waltz has been studied in [8]; our current

focus of this paper is the lower level interaction of the two

dancer’s body dynamics. In one previous work [9], we as-

sume that a human dancer’s model contains one parameter—

stride length. The robot is able to learn this parameter from

trials and use it to scale the robot’s pre-recorded trajectories.

To deal with variability and randomness in human’s motions,

the robot was modeled as an inertial mass, trying to follow

a predefined trajectory while being affected by external

force/torque and ground friction. This approach is effective

in experiments, but its core idea relies on more empirical

knowledge than a quantitative analysis of the system. And

some important characteristics of the lower level interaction

may still be hidden. This motivates us to model the two

dancers’ body dynamics, analyze the physical interaction

quantitatively, and implement the acquired knowledge in the

dance partner robot.

A simplified model of human’s dynamics in walking is the

linear inverted pendulum (LIPM) model [10], [11]. Since

waltz is different from normal walking and there is no

accuracy requirement on the vertical motions of CoM (Center

of Mass), the LIPM model is able to reproduce human’s

motions in some elementary waltz steps [12]. We focus on

the elementary steps because they serve as simple cases to

start with: elementary steps like closed changes involve no

spin or turn, the CoM motions can be decomposed into two

independent and one-dimensional motions.

In Section II, we use LIPM as the simplified model for

dancer’s body dynamics and design a balancing controller

for the LIPM. In Section III, the two coupled dancers are

modeled as two connected LIPMs and their dynamics are

analyzed with some assumptions on motion synchronization.

In Section IV, simulation and experiment results are shown.

Conclusion is given in Section V.

II. MODEL OF A SINGLE DANCER WITH PROPOSED

BALANCE CONTROLLER

A. The Simplified Human Body Dynamics Model

Consider a simplified human body model in sagittal plane

with a massless leg, as shown in Fig. 1(a). By introduc-

ing some constraints, we can obtain an inverted pendulum
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(LIPM) model with linear dynamics and one DOF along x-

axis [10].

ẍ = (g/z)x + (1/(mz))uank (1)

where x is the position of CoM with respect to LIPM’s pivot

point, g is the gravity acceleration, m is the mass of the body,

and uank is the torque input to the ankle.

B. Balance Controllers

LIPM is intrinsically unstable; a balance controller is

necessary. The orbital-energy-based controller [10] keeps

LIPM on the desired energy level; while another controller

[11] tries to have the LIPM reach desired position/velocity at

a desired moment by using optimization. The third controller

in [12] has LIPM to follow a series of desired velocities. In

the following we will briefly introduce the above controllers.

Let {tk} be a set of moments when the pivot position (i.e.,

position of the LIPM’s pivot point) changes. When tk < t <
tk+1, and if uank(t) = 0, the orbital energy [10] is constant

throughout the motion. This can be written as:

E = −(mg)/(2z)x2 + (m/2)ẋ2 (2)

Assume that ẋ does not vary before and after tk (this is

denoted by ẋ+ = ẋ−), the controller can have the LIPM stay

at a desired energy level by choosing a new pivot position.

However, since the relationship between desired trajectory

and orbital energy is implicit, this controller is inconvenient

for trajectory planning and may cause problems like limping.

In waltz, pivot positions are being changed periodically,

synchronized with music beats. Assuming this period is T ,

an alternative controller can be derived by solving (1):
(

x(kT + T )
ẋ(kT + T )

)

=

(

C τS
S/τ C

)(

x(kT )
ẋ(kT )

)

(3)

where τ =
√

z/g, C = cosh(T/τ), S = sinh(T/τ).
Theoretically, x(kT ), which is the CoM’s relative position

from the pivot point, can easily be calculated when desired

x(kT + T ) and ẋ(kT + T ) are given; however, the square

matrix in (3) is ill-conditioned. One approach is minimizing

a defined error norm [11]; another one is to only guarantee

ẋ(kT + T ):

x+ = −(τC/S)ẋ(kT ) + (τ/S)vd(k + 1) (4)

where vd(k + 1) = ẋ(kT + T ) and hereafter we will use

vd(k) to denote the desired velocities at t ∈ {tk}. The above

two controllers are convenient for use, since the desired

position, velocity, and time are explicitly included; however,

x

z

(a) Simplified human model

x

z

(b) Linear inverted pendulum

Fig. 1. Simplification of body dynamics

their stabilities are difficult to prove. In the following we will

extend the previously proposed controllers.

C. The Proposed Controller

Assume that the pivot position of an LIPM can change

instantaneously without a double support phase (where both

legs touch the ground), the system can be considered as a

hybrid dynamical system with impulsive effects [13]. Let x
be the CoM position with respect to the pivot position and

x = [x, ẋ]T , we have
{

ẋ = Asx + Bsuank, t 6= tk
x+ = hk(x−), t = tk

(5)

where x−, x+ are the state vectors before and after tk. Our

goal is to find a function hk which can balance the LIPM

while keeping it following desired velocities; uank is only

used for rejecting disturbances.

Given a series of desired velocities {vd(k)} at {tk} and

define an orbital energy function E(q1, q2) as

Eo(q1, q2) = −(mg)/(2z)q2
1 + (m/2)q2

2 (6)

The desired orbital energy at t = t+k is

Ed = Eo(xd, vd(k)) (7)

where

xd = −(τC/S)vd(k) + (τ/S)vd(k + 1) (8)

Equation (8) looks like (4). However, vd(k) is used to

approximate ẋ(kT ), since Ed should be independent of

system’s states, .

In contrast, the energy corresponding to (4) is

E⋆ = Eo(x
⋆, ẋ) (9)

where x⋆ is obtained from (4).

Energy at t = t−k is

E− = Eo(x, ẋ) (10)

Here we define a scalar α, with

α = sat
(

(Ed − E⋆)/(Ed − E−)
)

(11)

where sat(q) is saturation function: sat(q) = q if |q| ≤ 1,

sat(q) = 1 if q > 1, and sat(q) = −1 if q < −1.

In our proposed method, the desired energy at t+k is

E+ = αE− + (1 − α)Ed (12)

Therefore, we have

x+ = sign(xd)
√

(z/g)ẋ2 − 2z/(mg)E+ (13)

which is the output of hk in (5).

When t /∈ {tk}, uank is controlled to satisfy

uank(t) = −Kumz (Eo(x, ẋ) − Ed) ẋ (14)

where Ku is a positive gain.

Since {vd(k)} explicitly defines the desired trajectory, the

controller described in (7)–(14) is easier to use than a pure

energy controller. Now we need examine its stability.
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Choose a scalar function:

V (x, t) = (E(x, t) − Ed)
2
≥ 0 (15)

When t = tk, we have

V (x+, t+k ) − V (x−, t−k )

= (α2 − 1)(E− − Ed)
2 ≤ 0 (16)

When t 6= tk,

dV/dt = −2Kum (E(x, t) − Ed)
2
ẋ2 ≤ 0 (17)

Then the trajectory defined by E(x, t) = Ed is an asymp-

totically stable invariant set. Given constant vd(k) = vd, if

tk+1 − tk = T for any k and if vd(m) can be reached at

tm, then when t > tm, the intersection of the invariant set

and ẋ = vd is a stable equilibrium point of a Poincaré return

map (Theorem 1, [14]).

The proposed controller can be graphically interpreted by

Fig. 2. When t = t+k , the energy level of E+ is restricted

by 2Ed − E− and E−, which is the area between the two

solid lines in Fig. 2. If E⋆ is within this area (as E⋆
1 ), the

controller is equivalent to (4); if E⋆ lies outside (as E⋆
2 ),

then it can be considered as a better energy controller (since

2Ed − E− is closer to E⋆
2 than Ed).

III. MODEL AND ANALYSIS OF TWO DANCERS WITH

PHYSICAL CONNECTION

A. Two Dancers Having Physical Interaction: Connected

LIPMs

In waltz, two dancers are physically connected by the

dance frame. We assume that this system can be represented

by a pair of LIPMs connected by a spring and a damper, as

shown in Fig. 3. Let xg
1 and xg

2 be the CoM positions of the

two LIPMs, and p1 and p2 be their pivot positions, all with

respect to the global frame. Consider the case when t = 0,

p1 − p2 = d0 where −d0 is also the natural length of the

spring. The state vector x is defined as

x = [x1, ẋ1, x2, ẋ2, w]T (18)

where x1 = xg
1 − p1, x2 = xg

2 − p2, and w = p1 − p2 − d0.
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Fig. 2. Illustration of the proposed controller
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Fig. 3. The dancers’ model: two LIPM connected by spring and damper

Suppose uank = 0 for both dancers, The dynamics of the

connected LIPM pair is

ẋ = Ax, t 6= tk (19)

with

A =













0 1 0 0 0
−kc

m1

+ g
z1

−dc

m1

kc

m1

dc

m1

−kc

m1

0 0 0 1 0
kc

m2

dc

m2

−kc

m2

+ g
z2

−dc

m2

kc

m2

0 0 0 0 0













(20)

where m1, m2, z1 and z2 are masses and heights of two

LIPMs, g is the gravitational constant, and kc, dc are spring

and damping constants of the connection.

Two assumptions are made here:

1) For two given LIPMs, A is a constant matrix, i.e., m1,

m2, z1, z2, kc, and dc are all constant values.

2) Pivot positions change synchronously, and tk+1−tk =
T for all k.

With an additional assumption that E⋆ in (9) is between E−

and 2Ed−E−, the proposed controller becomes equivalent to

the controller in (4). Although this assumption cannot always

hold, later in Section IV we can show that this simplification

is reasonable.

With the above assumptions, the system dynamics at t =
tk is

x+ = Nx− + u, t = tk (21)

N is

N =













0 − τ1C1

S1

0 0 0

0 1 0 0 0
0 0 0 − τ2C2

S2

0

0 0 0 1 0
1 τ1C1

S1

−1 − τ2C2

S2

1













(22)

where τ1, τ2, C1, C2, S1 and S2 are defined similarly as

those in (3). And

u = [
τ1

S1
vd1

, 0,
τ2

S2
vd2

, 0,−
τ1

S1
vd1

+
τ2

S2
vd2

]T (23)

B. Stability of Modeled Interaction

Let x(tk) denote the state at the moment t = t+k and

x−(tk) be the state at t = t−k . Assume that there is a stable

periodic trajectory for x with period T , then the following

conditions should be satisfied:

1) ẋ1(tk) = ẋ−

1 (tk+1), ẋ2(tk) = ẋ−

2 (tk+1)
2) x−

1 (tk+1) − x1(tk) = x−

2 (tk+1) − x2(tk) = r, where

r is CoM’s displacement from tk to tk+1.

To maintain an invariant periodic trajectory, the above con-

ditions must be satisfied, which could be rearranged as

[x−(tk+1)
T , r]T = M [x(tk)T , r]T (24)

with M is similar to an R
6×6 identity matrix except M1,6 =

M3,6 = 1.

From (19), we have

x−(tk+1) = Adx(tk) (25)
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where Ad = eAT , which is a constant matrix if T is

constant. Equation (24) and (25) yield
(

Ãd − M
)

[x(tk)T , r]T = 0 (26)

where

Ãd =

(

Ad 0

0 1

)

If a non-zero x(t) exists, [x(tk)T , r]T should be in the null

space of Ãd−M . Since two rows at the bottom of Ãd−M

are 0, the non-zero solutions [x(tk)T , r]T exist.

When t = tk+1, from (21) and (25)

x(tk+1) = Nx−(tk+1) + u = NAdx(tk) + u (27)

If this discrete system is asymptotically stable, all the eigen-

values of NAd should be inside the unit circle. Because the

analytical form of Ad is usually formidable, the stability

is numerically determined. Fig. 4 shows the relationship

between ‖λ(NAd)‖max and kc, dc. It can be shown that even

m, z, and T are all given, the pattern of ‖λ(NAd)‖max is

still quite complicated.

If ‖λ(NAd)‖max < 1, the system in (27) is stable, and

x(tk) = (I − NAd)
−1

u, k → ∞ (28)

C. Optimal Physical Interaction

The optimal interaction is defined as follows: if the sys-

tem is stable, given the leader dancer’s desired velocities

{vd1
(k)}, try to find {vd2

(k)} for the follower to minimize

the interaction force. Without loss of generality, we assume

vd1
(k) = vd1

, vd2
(k) = vd2

and the two LIPMs have a stable

periodic motion, then our goal is

minimize: F =

∫ T

0

f2(t)dt

ẋ = Ax

f = cT x

where c = [kc, dc,−kc,−dc, kc]
T .

Using the analytical solution of ẋ = Ax and (28), we

have

F =

∫ T

0

f2(t)dt =

∫ T

0

xT ccT xdt

= x(0)T

(

∫ T

0

eA
T tccT eAtdt

)

x(0)

= uT Qu

1
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Fig. 4. Contour of ‖λ(NAd)‖max, given m1 = 70 kg, z1 = 1.1 m,
m2 = 45 kg, z2 = 0.9 m, and T = 0.75 s

where

Q = (I − NAd)
−T

∫ T

0

eA
T tccT eAtdt (I − NAd)

−1

is a constant matrix, if m, z, T , kc and dc are given.

Our problem can be reformulated as:

minimize: F = uT Qu

subject to: Hu = b (29)

where

H =









1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
1 0 −1 0 1









b = [(τ1/S1)vd1
, 0, 0, 0]T

The problem described in (29) is a typical quadratic

programming problem and can be easily solved. However,

Q needs to be numerically integrated and the calculation is

often time consuming.

Optimal result can be expected if the dance partner robot,

i.e., the follower, can get access to all the state variables and

parameters of the human dancer. However, this is usually

not possible; for physical interaction, only f(t) is available.

Since F is a quadratic, differentiable function of vd2
, if a

specific vd1
exists, we can use gradient descent to update

vd2
at the beginning of each period:

v
(k+1)
d2

= v
(k)
d2

− γ

(

F (k) − F (k−1)

v
(k)
d2

− v
(k−1)
d2

)

(30)

where γ is the step size.

IV. SIMULATION AND EXPERIMENT

A. Simulation

For simulation, we use m1 = 70 kg, z1 = 1.1 m, m2 =
45 kg, z2 = 0.9 m, T = 0.75 s, and vd1

(0) = vd2
(0) = 0.

The three controllers discussed in Section II are compared

in simulations, let vd(0) = 0 and vd(k) = 1 for all k > 0.

m = 45 and z = 0.8. We disturb t3 by −T/4 and

continuously apply a 2 N external force on the single LIPM,

simulation results are shown in Fig. 5.

Due to the external force, the energy error (the distance

between current energy and desired energy levels) keeps

increasing, except at {tk} when the controller is supposed to

work. Although the energy controller reduces energy error to

0 at {tk} (Fig. 5(b)), the velocity is poorly controlled (Fig.

5(a)) with the obvious problem of limping (i.e., LIPM moves

faster when k is even and slower when k is odd).

The latter two controllers both yield acceptable results in

velocity control (Fig. 5(c) and Fig. 5(e)). However, for the

velocity controller, its energy error is not always decreasing

at {tk}, e.g., when k = 3 and k = 5, the energy errors

increase by 0.72 J and 0.87 J, which violates the requirement

in (16). In contrast, the proposed controller can satisfy both

requirements on velocity and energy error control (Fig. 5(e)
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Fig. 5. Single LIPM simulation results. Impulses denote moments of pivot
changes (tk). Energy error is defined as |Edesired − E(t)|

and Fig. 5(f)); the advantage of the proposed controller is

supported by simulation.

The kc–dc–stability contours have been shown in Fig. 4.

Here we choose a stable combination as kc = 100 and

dc = 200. Set vd1
(k) = 1 for all k > 0. Two interactions

with different vd2
(k) are simulated and shown in Fig. 6.

We can see that even vd1
and vd2

are very different, the

interaction is still stable since kc, dc have been properly

selected. However, the quality of the physical interaction

is affected by vd2
: if it is poorly chosen, the interaction

force would be very large (Fig. 6(a)). In contrast, if vd2
is

the solution to the optimization problem given in (29), the

interaction force can be minimized, as shown in Fig. 6(b). To

quantitatively evaluate the interaction forces throughout the

interactions, we can implement a value F̃ , which is defined

as F̃ =
∫ tend

tstart
f2(t)dt/(tend − tstart), where tstart and tend are

the start and end moments of simulation. Then we have

F̃ ≈ 225 N2 in Fig. 6(a) and F̃ ≈ 10 N2 in Fig. 6(b).

Simulation of the vd2
updating based on the gradient

descent method is shown in Fig. 7. The original vd2
is set
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Fig. 6. Simulated interaction of two connected LIPM

to 0.3 and γ = 2 × 10−4. The simulation results suggest

that vd2
is able to be adjusted so as to minimize F by using

(30). From Fig. 7(c) we can see that α stays between 0 and

0.5, which implies the controller has lead to the velocity

controller given in (4). Actually, interaction forces usually

drive a single LIPM away from its desired Ed, this makes

the assumptions about N in Section III-A reasonable.

B. Experiment

Experiments have been conducted to test our analysis and

the method for human-robot coordination. The robot used in

the experiment, shown in Fig. 8, is the same mobile robot

as appeared in [9]. The robot emulates LIPM’s dynamics

by implementing a virtual internal model in its controller.

Parameters of this virtual LIPM are set as m2 = 45 kg and

z2 = 0.9 m. When no external force is applied, the velocity

curve of robot is shown in Fig. 9(a), which supports the

validity of the proposed controller in Section II. Since the

virtual dynamics of the robot have no unmodeled factors, the

robot’s real motion is only affected by disturbances and well

matches the simulation results as given in Fig. 5(e).

To minimize the variability contained in human’s motions

and generate relatively repeatable trials, a row of markers,

with 0.4 m separation, are attached to the floor; the human

dancer is asked to keep his toes landing on the marker during

walking, while his motion is synchronized by audio cues with

0.75s period. Parameters of the subject are m1 ≈ 70 kg and

z1 ≈ 1.1 m. The single subject’s velocity curve is obtained

by a motion capture system (VICON 460) and given in Fig.

9(b).

When vd2
is fixed at 0.3 m/s, results of the pHRI exper-

iment are shown in Fig. 10(a). We can see that although

there is a large difference between vd1
and vd2

, the human’s

and robot’s motions are still coupled together; however, the

interaction force is quite large (F̃ ≈ 814 N2).,

When vd2
can be adjusted by (30), with γ = 1 × 10−5,
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Fig. 8. Robot used in experiment
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Fig. 9. Velocity curves of human’s and robot’s independent motions

results are given in Fig. 10(b). The interaction force can be

decreased to F̃ ≈ 414 N2, hence the validity of gradient

descent method is supported.

However, since interaction force is the only feedback for

vd2
updating and usually affected by noises and unmodeled

errors (e.g. kc and dc of human’s arms may keep changing

according to some adaptation rules). Those unmodeled errors

cause large difference between simulation (Fig. 7) and exper-

iment (Fig. 10(b)). It can also be observed that vd2
converges

rather slowly and does not converge to the optimal value

(which should be around 0.7 m/s–0.8 m/s).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first proposed a balance controller

for a simplified human model, LIPM. A pair of dancers

are modeled by two spring-damper-connected LIPMs with

balance controllers. Assuming the perfectly rhythmic and

synchronized motion, the physical interaction is analyzed.

The proposed approach for realizing optimal interaction has

also been supported by simulation and experiment. However,
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Fig. 10. Results of the coupled dynamics of human and robot. Solid curves
in the first row are velocities of the robot; dashed curves are velocities of
the human. F̃ ≈ 814 N2 in (a) and F̃ ≈ 414 N2 in (b).

currently our analysis relies on the assumption that two

dancers’ pivot positions change in synchrony, while in reality

the synchronization error usually exists and may significantly

affect the coupled dynamics. In addition, the gradient descent

method is slow and sensitive to step size. If we can have

more information about the system, either by using additional

sensors or by estimating Q in (29), more options might

become available. Another limitation is that our current

model does not include the dynamics of spins and turns,

which are essential elements of waltz. The above issues will

be addressed in our future work.
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An Inverted Pendulum Model for Reproducing Human’s Body
Dynamics in Waltz and Its Applications in a Dance Partner Robot

Hongbo Wang and Kazuhiro Kosuge

Abstract— A linear inverted pendulum (LIPM) is used to
model the human dancer’s body dynamics in closed changes.
Several assumptions are made: a controller is proposed to
balance the LIPM; the dance frame is considered as a spring-
damper connection; the two dancers are assumed to choose
support positions independently. Motions generated by the
model are compared with human’s real motions. Results of
comparisons suggest the model and the assumptions are effec-
tive in reproducing human dancers’ body dynamics in waltz.
Issues in implementing the model on a dance partner robot are
discussed.

I. INTRODUCTION

Physical interactions between humans involve many as-

pects, including bidirectional flow of force/haptic signals,

proactive/reactive responses to the signals, and humans’

affected body dynamics, etc. Due to the complexity of

human’s body and random factors contained in human’s

motions, many principles and mechanisms underlying phys-

ical human-human interaction (pHHI) are still unknown.

Since understandings of the pHHI may facilitate designs of

robots which can be intuitively controlled through physical

human-robot interaction (pHRI), a number of investigations

have been directed for studying and reproducing the subtle

features in the interaction [1]–[5].

Waltz is a typical case of pHHI. When dancing together,

two dancers can communicate with each other through phys-

ical interactions. At higher level, the force or haptic signals

can be used by the male dancer to suggest his selection of

the next dance step, and the female dancer uses the signals to

estimate the leader’s intentions. At lower level, two dancers’

body dynamics are coupled together; both of the dancers’

motions are affected by the interaction forces, resulting in

modified motion trajectories. To understand mechanisms of

pHHI in waltz and apply them to a dance partner robot,

we have proposed some methods for realizing intention

estimation [6] and cooperative motion generation [7]. A

dance partner robot, PBDR (Partner Ballroom Dance Robot)

has also been developed in the aim of creating a robot

who can dance with human through physical interaction in

human-like ways.

Usually, researchers assume that repeatability and pre-

dictability exist in human’s behaviors, in another word, there

exists a human model (which could be deterministic or

probabilistic, explicit or implicit), through which the status of

interaction can be estimated. Aside from the human model,

The authors are with the Department of Bioengineering and Robotics,
Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579,
Japan {h wang, kosuge}@irs.mech.tohoku.ac.jp

since interaction involves at least two entities, it is also

necessary to implement a robot model which defines the

robot’s responses to the force/haptic signals.
In the case of the dance partner robot, the human dancer

and the robot were also modeled at higher level (step

intention suggestion and estimation) and lower level (coupled

body dynamics):

1) At the intention suggestion/estimation level, the human

dancer is assumed to be capable of producing different

time–force/torque patterns for different selected steps.

On the robot side, several hidden Markov models

(HMM) were implemented to select a step with max-

imum likelihood [6].

2) At the body dynamics level, the human dancer model

contains one parameter—stride length. The robot is

able to learn this parameter from trials and use it

to scale the robot’s pre-recorded trajectories. To de-

fine its responses to force/torque inputs, the robot

was modeled as an inertial mass affected by external

force/torque and ground friction [7].

Although the above models have been proved to be ef-

fective as successful cooperated dancing can be generated in

experiments, the simple inertial mass model has hidden some

important features in the physical interaction. When the robot

acts like a mass on the ground, which is quite different from

the behavior of a real female dancer, the resultant pHRI will

be deviated from real pHHI. Therefore, to make the human-

robot cooperated dance more life-like , it is necessary to have

the robot behave like a human dancer, i.e., the robot should

contain a sufficiently precise model of a female dancer’s

body dynamics.
Rather than a free mass moving on flat ground, human’s

body dynamics in walking is often modeled as an inverted

pendulum. The linear inverted pendulum mode (LIPM) [8]

and its 3-D extension (3D-LIPM) [9] proposed by Kajita et

al. are widely used for biped gait planning. The LIPM is

considered as simplified model since it assumes the biped

as an inverted pendulum with massless legs, while applying

some restrictions on its center-of-mass (CoM) trajectories,

upper body rotations and ankle input torques.
It is certain that those simplifications and restrictions will

introduce some errors, which make LIPM less accurate than

a more sophisticated, whole body model (e.g., a 34-DOF

humanoid model). However, LIPM is an affordable model

for our analysis, especially when two coupled systems are

involved. The model’s simplicity ensures that we can find

some qualitative and (approximate) quantitative rules of the

interaction, and make use of these rules to control the dance

978-1-4244-9315-9/10/$26.00 ©2010 IEEE - 182 - SI International 2010



partner robot. Therefore, in this paper, we will model a waltz

dancer as LIPM and analyze his/her behavior in single and

paired dance. We will also discuss the model’s accuracy,

as well as issues in implementing the model on the current

robot.

In Section II, a single female dancer is modeled as an

LIPM, comparisons between real motion data and model-

predicted data are directed to evaluate the model’s goodness.

In Section III, the two coupled dancers are modeled as

two connected LIPM, dynamics of the coupled systems

are analyzed and comparisons with the experiment data are

made. In Section IV, issues in using LIPM in a dancer robot

are briefly discussed. Conclusion is given in Section V.

II. MODELING A SINGLE DANCER WITH LIPM

A. The Linear Inverted Pendulum Mode

Consider a simplified human body model with a massless

leg in sagittal plane, as shown in Fig. 1(a). The origin of the

coordinate frame is at the supporting point. By applying the

following constraints:

1) The CoM of the whole body moves along a straight

line defined by z = kx + h, h �= 0;

2) The angular velocity of the upper body is a constant;

we can then consider the system as an inverted pendulum

with a massless, extendable leg and a point mass, as shown

in Fig. 1(b). Since two constraints exist in the 3-DOF system,

the resultant system has one DOF, with linear dynamics

defined by the following equation [8]

ẍ =
g

h
x +

1
mh

u (1)

where g is the gravity acceleration, m is the mass of the

body, and u is the torque input on the ankle.

When the supporting point is not at the origin, (1) can be

rewritten as

ẍ =
g

h
x − g

h
p (2)

where p is the position of the supporting point. Notice that

the term u in (1) does not appear in (2), because changes

of u can be substituted by changes of p; this simplification

is reasonable, as for real human walking, we can consider

the changes of ankle torque as the result of CoP (center

of pressure) changes. p is used as the input to stabilize the

system.

Although LIPM has been successfully implemented by

many biped walking systems, when to model human dancers’

body dynamics in waltz, some difficulties exist:

x

z

(a) Simplified human body model

x

z

(b) Linear inverted pendulum

Fig. 1. Simplification of body dynamics

1) Human’s motion contains large variability, as human

body has too many DOFs and can be affected by too

many random factors. This is a common problem that

all assumed human models are facing.

2) LIPM is a largely simplified model, it might be unable

to include many crucial features in human dancers’

body dynamics.

3) LIPM is intrinsically unstable, hence we need assume

a controller to stabilize LIPM; however, the difference

between the assumed controller and human’s real con-

troller would introduce additional errors.

In the following, after modeling waltz sequence with LIPM

and comparing the simulation and the experiment results, we

will examine and discuss the effects of the above difficulties.

B. Modeling The Dancing Sequence

Closed changes are the elementary steps in waltz as

no rotation is involved; closed changes can be analyzed

separately in sagittal plane and frontal plane, while in this

paper we concentrate on the dynamics in sagittal plane. The

step diagram of left closed change (CCL) is given in Fig. 2,

in which the male dancer initiates the dance with his left

foot. Similarly, right closed change (CCR) is the mirrored

moves of CCL, as in CCR the male dancer begins with his

right foot.

In this section we are to analyze a single dancer’s body

dynamics in sagittal plane. Consider a single dancer’s moves

in CCL/CCR. If we approximate those moves with the LIPM

model, a sequence of motions of an inverted pendulum can be

obtained, as illustrated in Fig. 3. The numbers (1,2,3) indicate

moments of supporting point changes. In Fig. 3, initiaion–1,

1–2, and 2–3 respectively correspond to Fig. 2(b), Fig. 2(c),

and Fig. 2(d). p1 and p2 are the landing locations of Fig. 2(b)

and Fig. 2(c). In order to use the LIPM model, we assume the

CoM follows a series of straight segments, which in Fig. 3

are dashed lines with arrowheads.

C. The Assumed Controller

As mentioned in Section II-A, an assumed controller

which guides and balances the LIPM is essential for model-

ing the dance sequence. One straightforward method is firstly

(a) Initial position (b) First move

(c) Second move (d) Third move

Fig. 2. Left closed change (CCL)
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Fig. 3. Approximate motion sequence of CCL

solving the homogeneous form of (2) and using its solution to

control p. Assuming that when t0 < t < t1 support changes

do not happen, i.e., p(t) is a constant for t0 < t < t1. Then

we have a homogeneous differential equation

ẍ′ = (g/h)x′ (3)

where x′ = x − p is the CoM’s relative position with the

supporting point. And for t0 < t < t1, ẋ′ = ẋ, ẍ′ = ẍ.

The analytical solutions for this equation are a set of linear

combinations of et/τ and e−t/τ , where τ =
√

h/g.

In waltz, dancers’ support changes are synchronized with

music beats. If we consider the constant beat period (denoted

by T ) between two support changes, the analytical solutions

to (3) can be written as

x′(kT + T ) = Cx′(kT ) + τSẋ′(kT )
ẋ′(kT + T ) = (S/τ)x′(kT ) + Cẋ′(kT ) (4)

where τ =
√

h/g, C = cosh(T/τ), S = sinh(T/τ).
From (4), we have

x′(kT ) = −(τC/S)ẋ′(kT ) + (τ/S)ẋ′(kT + T ) (5)

The new support position p(kT ) = x(kT ) − x′(kT ), and in

single support phase ẋ(kT ) = ẋ′(kT ), hence

p(kT ) = x(kT ) + (τC/S)ẋ(kT ) − (τ/S)ẋ(kT + T ) (6)

Equation (6) is the proposed controller while ẋ(kT + T ) is

a reference velocity we want to achieve.

D. Experiment

To evaluate the effectiveness of the LIPM in modeling

a single dancer’s body dynamics, a professional female

dancer’s real motions were used for comparisons. CCL (with

period T = 0.75 s) was performed three times by the same

female dancer and her body motions were measured and

recorded by a motion capture system (VICON 460) at the rate

of 120 frames per second. Since it is difficult to distinguish

the moment of initiation, the moments of peak velocities in

the three trials were used to align the data along the time

axis, as shown in Fig. 5(a).

To approximate the human dancer’s motions, the LIPM

model needs several parameters, which are listed in Table I.

The first set of parameters includes m, ht1 , and ht2 (ht1

and ht2 are respectively the heights of CoM at fall and

rise positions in waltz), which defines the dancer’s physical

conditions.

An important point to be noticed is that obtaining accurate

CoM locations from motion capture data is itself a challenge

[10], [11]. For simplicity, here we choose a point on the

pelvis as the approximate CoM location. Hence ht1 and ht2

in Table I are two estimations. Although causing inaccuracy,

the errors in CoM estimation are partly compensated by the

following facts:

1) In waltz, the human’s upper body keeps a fixed con-

figuration while the lower body movements are fairly

moderate; these avoid the CoM to be deviated too

much from the pelvis.

2) On the model side, due to the existence of the con-

troller (Section II-C), the resultant movement is not

sensitive to ht1 or ht2 . An example is given in Fig. 4;

the variations in ht1 and ht2 does not largely affect the

result.

Another set of parameters includes ẋ(T ), ẋ(2T ) and

ẋ(3T ), which are velocities measured from motion capture

data (as shown in Fig. 5(a)) and represent some features of

the female dancer’s motions. ẋ(0) is assumed to be 0.

Results of the comparisons are given in Fig. 5. The “+”

markers represent motions generated by the LIPM model.

Aside from CoM positions and velocities, another set of

criteria is the comparisons of p(t). LIPM gives the results as

p(T ) = 0.77 m and p(2T ) = 0.80 m, while the experiment

results are p(T ) = 0.75 m and p(2T ) = 0.90 m. The error

at p(2T ) is not negligible; however, considering the fact that

the human dancer’s supporting point (or CoP) can be located

anywhere within the support polygon, the above error is

acceptable. In addition, it should be noticed that only ẋ(T )
and ẋ(2T ) were given to the LIPM model, other data (ẋ at

t �= kT , x, and p) are all generated by the model.

According to the results of comparisons, the LIPM model

approximates the female dancer’s real motions quite well.

Another phenomenon is that the large variability expected

in human’s motions was not observed. Here we can give

a tentative explanation to these results: because waltz has
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Time elapsed (s)

Support position (m)

CoM position (m)
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Fig. 4. CoM positions, velocities and support positions generated by LIPM
with four sets of height parameters. First set: ht1 = 0.9, ht2 = 1.0; second
set: ht1 = 1.0, ht2 = 0.9; third set: ht1 = 0.8, ht2 = 1.1; fourth set:
ht1 = 1.0, ht2 = 1.0.

TABLE I

PARAMETERS FOR LIPM AND ITS CONTROLLER

m ≈ 45 kg
ht1 ≈ 0.9 m(T < t ≤ 2T )
ht2 ≈ 1.0 m(0 < t ≤ T, 2T < t ≤ 3T )
ẋ(0) 0

ẋ(T ) ≈ 1.27 m·s−1

ẋ(2T ) ≈ 0.16 m·s−1

ẋ(3T ) ≈ 0.10 m·s−1
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Fig. 5. Comparison of theoretical and trial data

applied many constraints to human’s motions (e.g., constant

walking period, CoM trajectories regulated by rise and fall,

and straight upper body, etc.), it is possible that these

constraints might reinforce the repeatability in different trials

and make the human body behave like an inverted pendu-

lum. Though the underlying reasons are still not clear, our

proposed approach, which uses a simple inverted pendulum

to model human’s body dynamics in waltz, is supported by

the comparisons.

III. MODELING THE PHYSICAL INTERACTION

A. Modeling The Interaction Between Two LIPM

Waltz involves physical interactions between two dancers,

whose body dynamics can be modeled as two LIPM con-

nected by a dance frame, as shown in Fig. 6. The equations

describing the dynamics of the two-LIPM system are

ẍ1 =
g

h1
(x1 − p1) − f

m1
(7)

ẍ2 =
g

h2
(x2 − p2) +

f

m2
(8)

where f is the compression force between the two dancers.

If we approximately consider the dance frame as a rigid

connection as in Fig. 6(a), then we have x1 = x2 − d, ẋ1 =
ẋ2, and ẍ1 = ẍ2. By defining the following error of the

female dancer’s supporting location as e = p2 − p1 − d, and

letting x = x1 and p = p1, the dynamics of the two-LIPM

system are

Mẍ = Kx − Kp − k2e (9)

f =
m1m2

M

[
(

g

h1
− g

h2
)(x − p) +

g

h2
e
]

(10)

where M = m1 + m2, k1 = m1g/h1, k2 = m2g/h2, and

K = k1 + k2. Some rough characteristics of the interaction

can directly be obtained from (9) and (10): according to (9),

x

z

1p 2p

d

(a) Rigid connection

x

z

1p 2p

(b) Spring-damper connection

Fig. 6. Dancers’ model as two inverted pendulums

if the female dancer follows perfectly, i.e., e(t) = 0 for all t,
then the two-LIPM system will behave like a single LIPM,

with time constant
√

M/K. According to (10), as long as

h1 �= h2, even e(t) = 0 for all t, f(t) is still not always

0; on the other hand, (10) also suggests the possibility of

eliminating f(t) by controlling e(t).
Alternatively, we can also assume that the two dancers

are connected by spring and damper as shown in Fig. 6(b).

This spring-damper assumption is more accurate than the

rigid one, as distance changes between the two dancers were

observed in experiments. According to this assumption, the

interaction force f is

f = −kc(x2 − x1 − dk) − Dc(ẋ2 − ẋ1) (11)

where kc is the spring constant, Dc is the damping ratio,

and dk is the natural length of the assumed spring. The two-

LIPM system’s behavior is hence determined by (11) along

with (7) and (8).

B. Analyzing The Interaction

Interaction between two dancers’ body dynamics is one

of the crucial features we want to investigate and reproduce

with robot. Because the interaction is influenced by too

many physical and non-physical factors (e.g., empirically,

merely the presence of a partner would influence the dancer’s

expectations about the future moves), it is very difficult to

reveal the mechanisms in the interaction. However, with the

LIPM model and some additional assumptions, it is possible

to analyze the interaction with the approximate model.

From the female dancer’s point of view, two assumptions

of the interaction can be made. The first one assumes that

the female dancer follows the male dancer perfectly (i.e.,

p2 = p1 + d where d is constant), while the second one

assumes the female dancer to be completely independent

(i.e., p2 is determined only by and (6), as if she is dancing

alone). Then the above two assumptions are examined both

with the rigid-connection model (Fig. 6(a)) and the spring-

damper-connection model (Fig. 6(b)).

Simulation results based on the second assumption, in

which the female dancer chooses p2 independently, are

shown in Fig. 7. The two dancers have different parameters

(m1 = 70 kg, h1 = 1.2 m, m2 = 50 kg, h2 = 0.8 m) but

are given the same desired velocities at t = kT , k = 1, 2, 3.

When kc = Dc = 0, the dancers can be considered as two

separated LIPM (Fig. 7(a)). In contrast, when kc, Dc �= 0,
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Fig. 7. Simulation results: independent female dancer
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a physical connection is established and dynamics of the

two dancers are coupled in spite that their controllers are

independent. The coupled velocities under the condition

kc = Dc = 1000 (which is nearly a rigid connection) are

shown in Fig. 7(b).

If the female dancer’s support position completely follows

p1+d (i.e., e(t) = 0 for all t), the dance cannot be continued

if the connection is too weak (e.g., kc = Dc = 140), since

she will rapidly loose balance (Fig. 8(a)). If the connection is

strong (or rigid), the system can then be balanced by the male

dancer’s controller; however, the desired velocities cannot be

reached, because the male dancer’s controller does not take

the female dancer’s body dynamics into account (Fig. 8(b)).

Based on the above analysis, it might be reasonable to

assume the two dancers’ support positions are independently

controlled while their body dynamics are coupled through

the physical connection—the dance frame.

C. Experiment

A dance sequence which consists of a CCR and a CCL was

performed by two dancers. Two LIPM with spring-damper

connection are used as the system model. The two LIPM

are assumed to have independent controllers. Because it is

relatively difficult to determine the desired velocities for the

controllers, the two dancers’ real velocities at t = kT were

used as approximations. Results of comparisons are given in

Fig. 9.

According to Fig. 9(a) and Fig. 9(b), the assumed two-

LIPM system and their independent controllers are able

to model the real dancers’ dynamics. The male dancer’s

simulated and real support positions are compared in Fig.

9(c). The two dashed lines are toe and heel locations of the

male dancer; the solid line is the model’s simulated support

position. If we consider the dashed lines as upper and lower

bounds of a support polygon, then the solid line should be

located inside or on the edge of the polygon.

IV. DISCUSSION

A. Issues in Implementing LIPM on a Mobile Robot

Instead of focusing on kinesiology, the final goal of

our study is developing a robot that can dance waltz with

human by emulating a female dancer’s behaviors. Because

the previous model cannot represent dancers’ body dynamics

with sufficient closeness, while the LIPM and the assumed
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Fig. 8. Simulation results: e(t) = 0 for all t
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Fig. 9. Comparisons of simulation and experiment data

controller gave good approximations, it would be better to

have the robot to adopt the LIPM as its dynamics model.

With a motor actuated, omni-directional mobile base and

a force/torque sensor in the waist, the developed prototype,

PBDR, is able to emulate an LIPM’s dynamics (given in (8)),

as long as the speed and the acceleration do not exceed the

motors’ limits. The controller described in (6) can be used

to direct and balance the robot at low level, while another

high level controller is also needed to feed the low level

controller with desired velocities, which could be obtained

from experiments or determined by other rules.

In essence, adopting the LIPM model means we are

turning an intrinsically stable mobile robot into an unstable

inverted pendulum, then applying an extra controller to re-

stabilize the system. It may look strange and redundant of

doing this, while additional dangers are introduced due to the

new system’s instability; however, as our goal is the life-like

pHRI, there are many advantages in doing this:

1) The robot can react to the interaction force in a more

human-like way.

2) Stride length adjustments are more dynamic, i.e., it is

not a constant parameter learned in trials, but a com-

promise between dance trajectories and body balance.

3) During the transition time between two dance steps,

the robot is in an unstable equilibrium state; the motion

direction can easily be changed by a slight force. This

fact has the potential to be utilized to estimate the male

dancer’s intentions.

The value of the above advantages to the study of pHRI

makes it worthy to implement the LIPM model on the dance

partner robot.

B. LIPM versus Other Models/Methods

There are many alternatives to LIPM: two typical exam-

ples are human-like model and curve fitting. The former

one is supposed to be more precise than LIPM, while the
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latter one is supposed to be equivalent to LIPM in generating

dancing trajectories. Nevertheless, LIPM is still selected over

the other two alternatives; the reasons are explained below.

Although a model with fewer simplifications is generally

more precise than LIPM in reproducing human-like motions,

it is consequently more complicated. The complexity of the

model implies many difficulties in analysis and a result which

may be hard to simplify and interpret. In addition, a precise

and complicated model usually requires more parameters;

if those parameters can not be properly defined to reflect

human’s real motions, the model’s fidelity would still be

decreased. Due to the above facts, selecting the model is

a compromise between accuracy and practicality.

On one hand, limited knowledge of human’s dynamics

and control in waltz, along with the complexity of analysis,

restrict us from implementing an over-complicated model.

On the other hand, as a mobile robot, PBDR’s vertical motion

is independent of its horizontal motion, while LIPM can

generate sufficiently accurate motion in horizontal plane (and

less accurate in vertical plane); therefore, precise motions can

be yielded by using LIPM for horizontal motion and using

recorded trajectories for vertical motion. For these reasons

we choose LIPM as the compromise point.

Another comparison is between LIPM and curve fitting

methods. Similar dancing trajectories, e.g., Fig. 5, Fig. 9(a),

and Fig. 9(b), can simply be produced by curve fitting.

Indeed, if the robot is supposed to dance on its own, curve

fitting is more straightforward than LIPM. However, the

robot is expected to physically interact with human dancer;

curve fitting can be used to yield a trajectory, but the body

dynamics model would still be needed to respond to external

forces/torques (e.g., the term f in (7) and (8)) in a human-

like way. Compared with curve fitting, LIPM not only fits

trajectory but also serves as a dynamics model. The purpose

of using LIPM is to facilitate investigating the pHRI in waltz,

which is difficult to be addressed by curve fitting methods.

V. CONCLUSION AND FUTURE WORK

Human and robot models are two crucial parts in pHRI;

selections of those models can largely affect pHRI’s qual-

ities. Because the robot model adopted by a dance partner

robot (PBDR) was not sufficiently accurate in representing

human’s body dynamics in waltz, a linear inverted pendulum

(LIPM) model, which has been widely used in biped gait

generation, is implemented and evaluated.

For simplicity, waltz closed changes (CCL and CCR) in

sagittal plane are converted into a sequence of motions of

an LIPM (or two). Several assumptions are made on the

controller ((6)), the connection (Fig. 6), and the interaction

(Section III-B). By comparing model-generated motions with

human dancers’ real motions, the validities of the model

and the assumptions are supported. For the dance partner

robot, since the LIPM model can preserve the basic features

in human’s body dynamics while offering several additional

advantages, it is an appropriate robot model for implemen-

tation.

However, our analysis are still far from complete: due

to the difficulties in measuring the interaction force f(t)
(given in (7) and (8)) and assuming the desired velocities, the

analysis in Section III is rather preliminary. In addition, the

presented discussions only involve the closed changes, while

more dance steps with body rotations are not addressed.

These issues need to be considered in our future work.

VI. ACKNOWLEDGMENTS

This work was supported by the Asian Office of Aerospace

Research and Development (AOARD), Air Force Office of

Scientific Research (AFOSR) under grant number FA2386-

10-1-4126.

REFERENCES

[1] H. Kazerooni, “Human/robot interaction via the transfer of power
and informationsignals,” IEEE Transactions on System, Man, and
Cypernetics, vol. 20, no. 2, pp. 450–463, 1990.

[2] K. B. Reed, J. Patton, and M. Peshkin, “Replicating Human-Human
Physical Interaction,” Proceedings 2007 IEEE International Confer-
ence on Robotics and Automation, pp. 3615–3620, Apr. 2007.

[3] S. Ikemoto, H. B. Amor, T. Minato, H. Ishiguro, and B. Jung,
“Physical interaction learning: Behavior adaptation in cooperative
human-robot tasks involving physical contact,” RO-MAN 2009 - The
18th IEEE International Symposium on Robot and Human Interactive
Communication, pp. 504–509, Sep. 2009.

[4] Z. Wang, A. Peer, and M. Buss, “An HMM approach to realistic haptic
human-robot interaction,” EuroHaptics conference, 2009 and Sympo-
sium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems. World Haptics 2009. Third Joint, pp. 374–379, 2009.

[5] J. Hölldampf, A. Peer, and M. Buss, “Virtual partner for a haptic
interaction task,” in Human Centered Robot Systems, ser. Cognitive
Systems Monographs. Springer Berlin Heidelberg, 2009, vol. 6, pp.
183–191.

[6] T. Takeda, Y. Hirata, and K. Kosuge, “Dance step estimation method
based on HMM for dance partner robot,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 2, pp. 699–706, 2007.

[7] T. Takeda, Y. Hirata, and K. Kosuge, “Dance partner robot cooperative
motion generation with adjustable length of dance step stride based
on physical interaction,” 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3258–3263, Oct. 2007.

[8] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain—theory and basic experiment,” Advanced Robotics, 1991.
’Robots in Unstructured Environments’, 91 ICAR., Fifth International
Conference on, pp. 741–746 vol.1, jun. 1991.

[9] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa,
“The 3D linear inverted pendulum mode: a simple modeling for
a biped walking pattern generation,” Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems, no. 4,
pp. 239–246, 2001.

[10] M. Thirunarayan, D. Kerrigan, M. Rabuffetti, U. Croce, and M. Saini,
“Comparison of three methods for estimating vertical displacement
of center of mass during level walking in patients,” Gait & Posture,
vol. 4, no. 4, pp. 306–314, 1996.

[11] E. M. Gutierrez-Farewik, A. Bartonek, and H. Saraste, “Comparison
and evaluation of two common methods to measure center of mass
displacement in three dimensions during gait.” Human movement
science, vol. 25, no. 2, pp. 238–56, 2006.

- 187 - SI International 2010


	FinalReportContent2
	2_WCICA
	Main Menu
	Previous View
	-------------
	Search
	Print

	FinalReportContent2
	Introduction
	Approach and Results
	Modeling
	A single dancer's model
	Model of the coupled dynamics

	Analysis
	System model with synchronization errors
	Stability of the coupled dynamics
	Numerical results

	Sensing Human
	Sensing timing of dance
	Sensing state of human

	Control
	Admittance controller
	Admittance controller with virtual coupling
	LIPM with virtual coupling
	Experiments


	Conclusions

	1_ToH
	2_WCICA
	Main Menu
	Previous View
	-------------
	Search
	Print

	3_ICRA
	4_IROS
	5_SII

