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Supervisory control of multiple autonomous vehicles raises many issues concerning the balance of 

system autonomy with human interaction for optimal operator situation awareness and system 

performance. An unmanned vehicle simulation designed to manipulate the application of automation 

was used to evaluate participants’ performance on image analysis tasks under two automation 

control schemes: adaptable (level of automation directly manipulated by participant throughout 

trials) and adaptive (level of automation adapted as a function of participants’ performance on four 

types of tasks). The results showed that while adaptable automation increased workload, it also 

improved change detection, as well as operator confidence in task-related decision-making.  

 

INTRODUCTION 

 

 Effective supervisory control of multiple autonomous 

systems requires an efficient control scheme that balances 

system autonomy with human interaction. This necessitates 

assistance to the operator, without displacing the operator 

from the central role of overseeing operation of all vehicles. 

Traditionally, static automation has often been used as a 

means to alleviate operator workload and improve overall 

capabilities. Parasuraman, Sheridan, and Wickens (2000) 

define automation as “a device or system that accomplishes 

(partially or fully) a function that was previously, or 

conceivably could be, carried out (partially or fully) by a 

human operator” (p. 287). Inherent to the use of static 

automation, however, are issues of reduced mode and 

situational awareness, complacency, mistrust, and skill 

degradation, all part of the larger user out-of-the-loop problem 

(Endsley & Kiris, 1995; Parasuraman & Riley, 1997). 

 A growing body of literature suggests the problems of 

static automation may be mitigated by the implementation of a 

system of adaptive automation. Adaptive automation has been 

theorized to alleviate some of the drawbacks attributable to 

static automation, including subjective feelings of “automation 

surprise,” mode awareness, situational awareness, as well as to 

contribute overall improved task performance (Cosenzo, 

Parasuraman, Novak, & Barnes, 2006; Kaber & Endsley, 

2003). Adaptable automation (Opperman, 1994) may mitigate 

many of the same ill-effects of automation (Miller & 

Parasuraman, 2007). Adaptive and adaptable automation differ 

according to whether the machine or the operator, 

respectively, possesses ultimate responsibility for controlling 

the level of automation. As suggested by Miller and 

Parasuraman (2007), there exists a tradeoff between control 

and workload on the continuum of adaptive and adaptable 

automation (Figure 1). In this tradeoff, adaptive automation 

represents a shift toward decreased workload with a likely 

accompaniment of decreased user involvement, as a result of 

decreased responsibility in maintaining system control. 

Adaptable automation represents the opposite effect. As the 

user’s responsibility for system supervision is augmented with 

the role of delegating levels of automation, there is an 

increased cognitive demand, albeit with the benefit of yielding 

automation that is more predictable to the user and at a higher 

level of system specificity. 

 The benefits of adaptive automation are well documented 

(Cosenzo et al., 2006; Kaber & Endsley, 2003; Calhoun, 

Ward, & Ruff, 2011), as are the effects of adaptable 

automation, albeit to a lesser extent (Miller, Funk, Goldman, 

Meisner, & Wu, 2005; Parasuraman, Galster, Squire, 

Furukawa, & Miller, 2005; Squire & Parasuraman, 2010). Few 

empirical studies, however, have been conducted to directly 

compare the effects of the two types of automation on human 

and system performance.  

 This study addresses overall task performance as it relates 

to delegation responsibility in a flexible automation system. 

Specifically, two control schemes were compared: adaptable 

automation and adaptive automation. Adaptable automation 

may be useful insofar as it allows a user to specifically tailor 

the level of automation (LOA) to suit current and/or future 

workload. Additionally, this may assist in modifying the 

automated support in accordance with individual differences, 

better fitting the system according to personality, working 

memory capacity, or spatial ability (De Visser, Shaw, 

Mohamed-Ameen, & Parasuraman, 2010; Chen & Barnes, 

2012). The act of delegation itself may also serve to reduce a 

user’s tendency to be complacent and instead promote 

attention towards monitoring system status and task 

completion. However, the steps for a user to change LOAs 

may negatively contribute to workload and mental demand. In 

contrast, an adaptive scheme that automatically rebalances 

workload as the need arises might be more effective for 

optimal human-system performance. 
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Figure 1. Tradeoff in adaptable and adaptive control. Adapted 

with permission from Miller and Parasuraman (2007).  
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METHOD  
 

Experimental Design 

 

 Twelve voluntary participants (5 male, 7 female), ranging 

from age 19 to 26 (mean=22.5) were monetarily compensated 

for participating in the study. All signed consent forms 

allowing use of their data. Participants all self-reported having 

20/20 vision or correctable vision, as well as normal color 

vision. None had prior piloting experience or knowledge of 

the experiment and testbed software. 

 A single factor, within subject design, was employed. 

Trials were blocked according to automation type, three 15-

min trials within each block. The order of the blocks 

(automation type) was counterbalanced across participants. 

 

Simulation Testbed 

 

The ALOA (Adaptive Levels of Autonomy, Version 3) 

research testbed developed by OR Concepts Applied (ORCA; 

Johnson, Leen, & Goldberg, 2007) was used. This testbed 

incorporates the ORCA commercially available routing 

software/mission planner to provide needed complexity and 

realism. The testbed consisted of a Dell Precision Workstation 

T7500 computer (64 bit operating system, 12 gigabytes of 

RAM, a Nvidia Quadro FX4800 graphics card, dual Intel 

Xeon 2.66 MHz quad-core processors) and dual 24-in 

widescreen monitors (resolution 1920 x 1200; 59 Hz). 

 

Experimental Tasks 

 

 The tasks incorporated into the experiment were meant to 

represent the cognitive demands envisioned for supervising 

multiple autonomous vehicles. Experimental tasks included: 

detection of the appearance of a map symbol representing a 

hostile aircraft (change detection), allocation of targets 

requiring imaging to vehicles, routing of vehicles to 

accomplish imaging, and analysis of images. Participants were 

instructed to prioritize the tasks, in the order just described, 

with detecting hostile aircraft the top priority and shedding the 

secondary image analysis task if workload became 

unmanageable, as well as other secondary tasks (retrieving 

information from the chat and timeline displays and detecting 

changes in systems status). Figure 2 provides an illustration of 

the formats with labels showing the primary windows utilized 

to accomplish each task. There were approximately 6-7 task 

events every minute of each 15-min trial. More details on each 

task type (as well as any randomization constraints) are 

available in a description of a different experiment using the 

same testbed (Calhoun, Ruff, Draper, & Wright, 2011).  

Some of the task types (change detection, system status, 

and information retrieval) required monitoring displays and 

making inputs in response to information displayed. Other 

tasks (allocation of new imaging tasks to the vehicles, re-

routing the vehicles, and image analysis) employed 

intermediate LOAs that involved both the operator and the 

automation system for completion. For the allocation and re-

routing tasks, the LOA remained constant at one intermediate 

level during the trials. However, for the image analysis task, 

three different intermediate LOAs were employed. 

 

LOAs of Image Analysis Task 

 

 As the vehicles automatically progressed along their 

navigational routes of flight, 30 targets (depicted as dark blue 

triangles in Figure 2) yielded an image that the participant 

analyzed. The prompt for an Image Analysis Task was the 

appearance of a bar in the image analysis window that 

included the vehicle identifier and time remaining for analysis. 

Participants had 20 seconds to complete the analysis before 

the image disappeared and was recorded as a “miss.” Task 

completion began with bar selection which called up a top-

down photo overlaid with 19-26 basic geometric shapes 

(diamonds, squares, circles, and triangles). Analysis of the 

image consisted of counting the number of diamonds. This 

shape counting task was used to minimize participant training 

requirements and yet represent the cognitive demands of 

analyzing images in operational applications. 

 

 
Figure 2. Multiple vehicle supervisory control ALOA testbed showing windows used for tasks. 
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Three different intermediate LOAs were employed for the 

image analysis task. In the low intermediate level, the 

automation presented eight options below the image, each 

with a different number (see Figure 2). Participants were 

tasked with selecting the option that corresponded to the 

number of diamonds in the image (1, 2, … 8). To complete the 

task and clear the photo, participants clicked “Select.” In a 

medium level, the automation highlighted its recommended 

option to assist image analysis and reduce cognitive workload. 

All options were selectable. If the participant agreed with the 

automation’s recommendation, only the “Select” button 

needed to be clicked. However, a different value, followed by 

the “Select” button could be clicked. At a third high LOA, the 

automation presented only its recommended option and the 

automation acted on this option, unless the participant vetoed 

the action within 20 seconds. The reliability of the automation 

was 90%, similar to that employed by Levinthal and Wickens 

(2006) and Moray, Inagaki, and Itoh (2000). 

 

Automation Control Schemes Evaluated 
 

Adaptable Automation. Trials started out with the image 

analysis task in the low LOA. With adaptable control, the 

participant could change the LOA at any time during the trial, 

and as frequently as desired. To change the LOA to any of the 

three described above, participants adjusted a movable marker 

on the LOA tab (rightmost window, Figure 2).  

 Adaptive Automation. Trials with adaptive automation 

also began with the low LOA. If the participant’s workload 

remained within experimenter specified thresholds, the LOA 

stayed at this level. However, if performance exceeded the 

thresholds, indicating the participant was over loaded, the 

LOA increased to the medium LOA. If the participant’s 

performance indicated that the participant was over loaded 

with the medium LOA the LOA increased to high.  

Increasing LOA in response to high cognitive/workload 

demands was only one part of the adaptive cycle. The LOAs 

also decreased to re-engage the operator in the task load, if the 

performance measures, in respect to the thresholds, indicated 

that workload had returned to being manageable.  

 

Thresholds for Performance-based Adaptive Automation 

 

 Performance on four different task types (see Table 1) 

determined when the LOA was changed in the adaptive 

automation condition. For each task, two thresholds were 

established, each specifying a time length in seconds.  

 

Table 1. 

 

Thresholds for Level of Automation (LOA) Changes 

 

 

Participants’ 

Task 

Performance Threshold Frequency 

Per 

Trial 
To Lower 

LOA (-1) 

To Increase 

LOA (+1) 

Allocation 5 s 8 s 5 

Image Analysis 5 s 8 s 30 

Change Detection 5 s 8 s 4 

System Status 5 s 8 s 30 

Each time a task type listed in Table 1 was completed, its 

recorded completion time was immediately compared to both 

thresholds. If the measure was less than the lower threshold 

(e.g., < 5 s for allocation task) a ‘-1’ was logged; if greater 

than the higher threshold (> 8 s), a ‘+1’ was logged. If the 

time was within the defined thresholds for that task, a ‘0’ was 

logged. A running count of the logged values was maintained 

throughout the trial and whenever the sum equaled ±4, the 

LOA changed. If the sum was +4, the LOA increased (from 

low to medium or medium to high). The LOA dropped (high 

to medium or medium to low) if the sum equaled -4. For two 

states, the ± 4 value did not result in an LOA change: -4 if 

LOA was already at low and +4 if LOA already at high. Each 

time the LOA changed, the running count was reset to zero. 

(The threshold and adaptive algorithm were determined from 

pilot studies to be sensitive to workload and induce LOA 

changes in this task environment.) Participants were informed 

that the “LOA may change as a result of performance to assist 

your workload throughout the trial LOA.” A scale depicted the 

current LOA in the rightmost window (Figure 2). 

 

Procedures 

 

Participants first read and completed an informed consent 

form and answered a few demographic questions. Next, they 

completed a personality inventory using the 40 Mini-Marker 

Personality Scale (Saucier, 2003).  

Training began with an explanation of the testbed’s 

displays and controls. Participants were briefed on the 

scenarios and were informed that the vehicles flew 

automatically along their flight paths. The automation was 

described as “reliable, but not perfect.” Next, each task type 

was described and practiced, in turn, in a single task 

environment, using the automation condition assigned for the 

first trial block. This was followed by a series of training 

trials, gradually increasing the number of task types included 

in each trial. Training continued until accuracy and response 

times stabilized in trials that matched the task loading of 

experimental trials.  

This portion of training took approximately 120 min to 

complete and was followed by three 15-min experimental 

trials with the assigned automation condition. After each trial, 

participants completed experimenter developed Likert-type 

rating scales addressing task difficulty, trust in automation, 

perceived task performance, situation awareness, workload 

level, adequacy of automation feedback, and impact of 

automation on performance. Similar procedures were used for 

the automation condition assigned for the second trial block  

The entire session time, including training and 

questionnaire completion, was approximately 4 hr per 

participant.  

 

RESULTS 

 

LOA Changes and Automation Control Schemes 

 

 Participants made a mean of 2.24 changes of LOA in the 

adaptable condition. A mean of 3.36 changes were invoked in 

the adaptive condition. In both conditions, the ratio between 
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increases and decreases in LOA was approximately 3:1. In 

adaptable trials, all 12 participants changed the LOA at least 

once during the trials. In the adaptive condition, all 12 

participants experienced an LOA shift at least once throughout 

the trials, with 9 of 12 reporting that they felt the frequency 

with which the LOA changed was sufficient. 

The mean time spent in each LOA as a function of 

automation control scheme is shown in Figure 3 (error bars are 

standard error of the mean in this and other data plots). The 

time spent in each LOA varied significantly by automation 

type (F(2,22) = 4.299, p < .05). Post-hoc multiple comparisons 

indicated that participants spent significantly more time in the 

low LOA in the adaptive condition than in the adaptable 

condition (p = .01). Participants spent significantly more time 

in the medium LOA in the adaptable condition than in the 

adaptive condition (p < .05). In post-trial feedback, 7 of 12 

participants indicated that given the choice, they preferred the 

medium LOA. The results also suggested that the extraversion 

personality factor was a determinant of LOA choice in the 

adaptable control scheme. Increased levels of extraversion 

correlated with selection of the high LOA (r = .789, p < .01), 

as well as the disuse of the medium LOA (r = -.823, p < .01). 

There was not a significant relationship between extraversion 

and the low LOA. The other personality measures did not 

significantly vary with participants’ selection of LOA. 

Participants’ questionnaire ratings indicated that the 

adaptable automation increased participant confidence in 

decision-making ability for the image task more than the 

adaptive automation (F(1,11) = 13.200, p < .01). Additionally, 

ratings were more favorable for adaptable automation in 

general, with 8 out 12 of participants indicating that they 

preferred it to adaptive automation, and 7 out of 12 indicating 

they preferred it for the image analysis task. 

 

 
Figure 3. Mean time spent in each level of automation  

as a function of automation control scheme. 

 

Task Performance with Adaptable and Adaptive 

Automation 

 

 Image Analysis Task. Paired comparisons of all 

participants indicated no significant differences between 

control schemes in all performance measures. However, 

removing data for participants who only made a single LOA 

change in the trial during the first 5 s yielded a valuable sub-

group for investigation. In all, 6 participants were removed for 

lack of manipulation of automated capabilities. In order to 

maximize the effect of a limited sample size, pairwise 

deletion, one-way ANOVAs were used to analyze collected 

data. The results indicated that the mean time to complete the 

image analysis task showed marginally significant differences 

as a function of automation condition (F(1,16) = 4.067, p = 

.06). Mean image task completion time was slightly slower 

with adaptable automation (< 1 s) compared to that with 

adaptive automation (Figure 4). Image analysis accuracy was 

90% in both conditions (not statistically different, p = .815). 
 

 
Figure 4. Mean image analysis task time for 

adaptable and adaptive automation control conditions. 

 

Other Tasks. The image analysis task was the only task in 

which the LOA could change as a function of the adaptable or 

adaptive control schemes. Performance on other tasks, 

however, may have also benefitted from attentional resources 

freed up with image analysis automation. In fact, a pairwise 

deletion, one-way ANOVA of the change detection task 

showed an advantage for adaptable automation (Figure 5): 

mean change detection rate was higher (100%) with adaptable 

automation compared to that with adaptive automation 

(91.7%; F(1,14) = 5.250, p < .05). Mean response time for this 

task was higher in the adaptable (7.3 s) compared to the 

adaptive conditions (6.0 seconds), but this difference was not 

significant (p = .353). 

 

 
Figure 5. Mean change detection rate for  

adaptable and adaptive conditions. 

 

DISCUSSION 

 

 Adaptive and adaptable automation have been proposed 

as an alternative to traditional automation to mitigate 

automation bias and complacency, reduce workload, and 

improve situational awareness. Key distinctions remain to be 

made parsing the unique effects of both adaptive and 

adaptable automation. The present research suggests that 

adaptable automation augments change detection, in 

comparison to performance with a performance-based 

adaptive control scheme. The act of delegating LOAs itself 
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may serve to better keep the operator in-the-loop and alert to 

unexpected stimuli. While change blindness may be mitigated 

by an adaptive automation system (Parasuraman, Barnes, & 

Cosenzo, 2007; Parasuraman, Cosenzo, & de Visser, 2009), 

there may be additional benefit to more directly involving the 

operator in decision processes that force attention to error-

prone systems. Adaptable automation serves this function, 

focusing the operator on system operations. 

The cognitive overhead of delegating LOAs in any 

adaptable system is inherently larger than that of a system in 

which the operator is removed from the decision-making 

process. This heightened demand on attentional resources has 

been noted elsewhere (Kirlik, 1993) for increasing workload 

beyond that imposed by the task itself. This increase in 

workload is theorized in Figure 1 and represents the cost of 

reducing unpredictability in an automated system. 

Alternatively, adaptable automation may have facilitated a 

speed-accuracy tradeoff in which participants conceded 

current task performance for improved performance across all 

task demands. Another factor to consider is that the 

results reflect the benefits of manipulating LOAs to change the 

control between the operator and the system, rather than the 

control scheme in effect.  

 Certain personality characteristics may influence 

automation use. Automation use may be moderated by the 

extraversion of the user: highly extraverted participants chose 

the highest LOA which only required a response if they 

wanted to veto the automation’s recommendation. In contrast, 

less extraverted participants chose a LOA that required a 

consent response. Interestingly, measures of agreeableness and 

conscientious were unrelated with automation usage. More 

research is warranted in order to better understand how 

personality may affect reliance on automation. 

 Future work remains for the study of control schemes 

enabling human supervision of multiple autonomous vehicles. 

In the present experiment, only the LOA of one task, the 

image analysis task, was manipulated in the adaption control 

schemes. A simulation environment with multiple automated 

tasks within the overall task setting needs to be evaluated for 

effective LOA interactions and enhanced supervisory control 

of multiple autonomous vehicles. Of particular concern is 

whether mode awareness problems are induced as noted by Di 

Nocera, Lorenz, and Parasuraman (2005) and Calhoun, Ruff, 

et al. (2011). Personality measures may also relate to other 

aspects of performance with automated systems, in addition to 

LOA selection in an adaptable control scheme. 
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