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A simplified model describing acoustically-generated parametric instability in a spherical chamber 
is developed for quasi-one-dimensional, low-Mach flames. We demonstrate how sound waves 
generated by a centrally-ignited, outwardly-propagating accelerating flamefront can be 
incorporated into a theory of self-similar flame acceleration in free space developed previously. 
Being reflected from the chamber wall, flame-generated sound waves interact with the flamefront 
and the attendant hydrodynamic flame front cellular instability. This in turn affects the subsequent 
flame shape and propagation speed. It is shown that acoustics modifies the exponent in the self-
similar power-laws flame acceleration, facilitating the transition to detonation in confinement.  
 

1. Introduction 

The dynamics and stability of expanding, globally-spherical flames is an important phenomenon 
in combustion science. In terrestrial situations, expanding flames are of relevance to the 
operation of spark-ignition engines and prevention of spark-initiated hazards, and are employed 
to measure the laminar flame speeds of combustible mixtures. In astrophysics, an expanding 
nuclear flamefront can be the precursor of a supernova event [1]. 

A typical evolution of an expanding flamefront includes several stages. First, an energy 
kernel is deposited at a point, which leads to the ignition and formation of a flame kernel. At this 
stage the flame evolution is controlled by stretch and mixture diffusion, i.e. the Lewis number 
Le . It is noted that initial sustained flame propagation is possible only for 1>Le  mixtures, 
while a 1<Le  flame kernel has to exceed a minimal size to acquire sustained propagation [2-4]. 
Due to the positive stretch effect imposed by the flame expansion, a flamefront is initially 
smooth. However, as the flame grows in size and the stretch intensity reduces, diffusional-
thermal effects come to play, leading to the onset of cellular and pulsating instabilities for 1<Le  
and 1>Le  mixtures, respectively [5]. Subsequently, as the flame thickness as compared to the 
global flame radius is reduced, the generation of hydrodynamic (Darrieus-Landau, DL) 
instability is favored, leading to cell formation over the flame surface regardless of the mixture 
Lewis numbers [6]. The continuous production of new cascades of cells leads to a corresponding 
continuous increase in the total flame surface area as compared to the globally spherical flame, 
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with concomitant increases in the global reactant consumption rate and flame propagation speed. 
Consequently, the flamefront self-accelerates [7, 8].  

While the propagation and structure of initially smooth expanding flames [2-4] as well as the 
transition to cellularity [9-12] have been extensively studied, both theoretically and 
experimentally, and these stages are reasonably well understood, the subsequent development of 
the DL instability requires further study. In particular, studies of hydrodynamically-wrinkled 
expanding flames have been mostly concerned with the self-acceleration nature of the 
propagation, especially on the possibility that the time exponent describing the temporal 
variation of the flame radius could attain a constant value [7, 8, 11, 13-15]. This would then 
imply that the acceleration is self-similar, having a fractal nature. Furthermore, it is anticipated 
that flame acceleration can trigger the body-force (Rayleigh-Taylor, RT) instability and flame 
turbulization, and eventually the transition to detonation.   

The flame dynamics depends strongly on whether combustion occurs in free space or within 
a confinement. A recent analysis [15] shows that the instability-induced flame acceleration in 
free space is quite weak, and an unconfined deflagration-to-detonation transition (DDT) in 
terrestrial conditions due to this mechanism is unlikely. Nevertheless, the situation can be 
different in the case of constant volume combustion. First of all, pressure increases during 
burning within a confinement, which modifies the unstretched laminar flame speed. Second, 
flame interaction with the acoustic dynamics of the confinement is expected to greatly facilitate 
flame acceleration. There are two modes through which a flame can be affected by acoustics. 
One is through pressure variations, which lead to modification of the laminar flame speed and to 
combustion instability when these variations and fluctuations of the heat release rate obey the 
Rayleigh criterion. We focus however on the other mode of acoustic interaction, i.e. on 
modification of the velocity field, which in turn affects the flamefront surface. In particular, we 
are interested in the interaction between the DL instability and the flame-generated sound waves. 
We aim to clarify whether such an interaction intensifies or weakens flame propagation.  

In view of these considerations, we shall extend the formulation of Akkerman et al. [15] to 
analyze the phenomenon of flame-acoustic interaction in a chamber, incorporating the effects of 
the parametric instability [16, 17]. It is shown that acoustics modifies the exponent in the self-
similar power-laws acceleration of the flame.  

2. Formulation 

We consider a flamefront with the normal propagation speed with respect to the unburned 
mixture LS  and the density expansion factor bu ρρ /≡Θ , which propagates outwardly from an 
ignition point in the center of a spherical chamber of radius CR  as illustrated in Fig. 1. The radial 
velocity of the flame front in the laboratory reference frame, LU , and that with respect to the 
reactive mixture, wU , and the average radial velocity of the flow immediately upstream of the 
front FU  are respectively given by  
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dt
dR

U F
L = ,       

dt
dRU

U FL
w Θ
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Θ
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−Θ
=−Θ=
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where ( )tRF  is the instantaneous global flame radius. During the early stage of burning, the 
flame expands with a constant speed, LF SdtdR Θ=/ . Subsequently, when the flame radius 
exceeds some critical value 0R , the front becomes corrugated due to the onset of flame front 
instability and the flame accelerates. An outwardly-accelerating flamefront generates sound 
waves, which intensify with an increase in the global flame radius, and at a certain stage these 
acoustics can modify the flame dynamics. Upon reflection from the chamber wall, the flame-
generated sound waves interact with the hydrodynamic flame instability and influence the 
subsequent flame shape and propagation speed. In particular, this can initiate the onset of the 
flamefront parametric instability.  

 
Figure 1: Schematic of an outwardly-propagating, accelerating flame within a confinement 

 
In this work we start a systematic study of flame-acoustic interaction by using a simplified 

quasi-one-dimensional (1D) model. Our basic assumptions are: 

• The Landau limit of an infinitely thin flamefront.  

• Only radial waves are under consideration, which renders the problem quasi-1D. 

• The characteristic acoustic time (a time needed for sound to travel from the flame to the 
chamber wall and back) is assumed to be much smaller than the characteristic DL time 
(a time needed for a new cascade of DL cells to develop), which basically corresponds 
to the requirement of a low Mach number. 

• Consideration limited to the intermediate stage of flame expansion within a confinement, 
ideally with CF RRR <<<<0 . 

The first inequality, FRR <<0 , denotes that self-similar flame acceleration is attained, and sound 
waves are strong enough. The second inequality, CF RR << , is of primary importance for the 
analysis. First of all, it means that an increase in the overall pressure inside the chamber due to 
combustion is small. Consequently we neglect pressure variations, and assume LS  to be constant 
and neglect the pressure-related aspects of the acoustics. Hence we focus on the sound-generated 
velocity field in the vicinity of the flame. Furthermore, as demonstrated below, with the 
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condition CF RR <<  we can neglect the time-dependence of the acoustic frequency (but not the 
amplitude), and subsequently develop a self-similar formulation. It is noted that with the above 
assumptions a simplified model of flame-acoustic interaction can be developed, which provides 
us with a basic qualitative understanding of the process and allows further development of the 
analysis.  

Within the quasi-1D formulation, the flamefront can be described as 

( ) ( ) ( )tFtRtR F ,~, xx += ,        (2) 

where F~  represents small deviations of the flame shape from the globally-spherical one, 
FRF <<|~| . In the linear approach, the small perturbations can be described as 

( ) ( ) )exp(,~ xkx ⋅= itftF , and the dispersion relation for the perturbation amplitude takes the 
form [16] 

 fgkAfkSA
t
fkS

t
f

aLL
~

1
2 22

2

2

=Θ−
∂
∂

+Θ
Θ

+
∂
∂ ,      (3) 

where )1/()1( +Θ−Θ=A  is the Atwood number and ag~  the general acceleration field. Equation 
(3) describes the linear stage of the DL and RT instabilities in the acceleration field. Without an 
external acceleration, 0~ =ag , it reduces to the DL dispersion relation [6]. Hereafter we assume 
that the acceleration is only through sound waves, and the acoustical field is represented by a 
dominant mode ( )tUur ωsin~ = . Consequently, ( )tUdtudg ra ωω cos/~~ == , and Eq. (3) becomes 

( ) ftUkAfkSA
t
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+
∂
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First, we shall investigate an arbitrary coherent acoustic field. Then a specific case of flame-
generated acoustics within a spherical confinement will be considered. 

3. Solution 

Here we employ the approach of Bychkov [17] on the parametric instability of a premixed 
flamefront in an oscillating field, which in turn is based on the classical theory of parametric 
instability of an oscillator [18]. The parametric instability is related to the mode of frequency half 
as that of the oscillating field, and the solution to Eq. (4) takes the form       

 ( )ttftff σωω exp
2

sin
2

cos 21 ⎥
⎦

⎤
⎢
⎣
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⎟
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⎜
⎝
⎛= ,       (5) 

where the coefficients 1f  and 2f  are free parameters of the problem, and σ  is the growth rate of  
parametric instability, which is generally complex. Substituting Eq. (5) into Eq. (4), collecting 
the terms containing )2/cos( tω  and )2/sin( tω , and omitting terms of higher frequencies, we 
find  
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We emphasize that this approach is rigorous for high-frequency oscillations and large-scale 
perturbations, and it works as an evaluation of the parametric stability limits otherwise. 
Eliminating 1f  and 2f  from Eqs. (6) and (7) we obtain the dispersion relation 
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The parametric instability is triggered if 0}Re{ >σ , i.e. when 
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For an asymptotic solution, only the leading terms in (9) are retained. Consequently two limits 
exist. For kSA L

2/1)(2 Θ>>ω  parametric instability is triggered at large wavenumbers (small 
scales) satisfying 

AUkk 2/0 ω=> ,         (10) 

while in the opposite limit of kSA L
2/1)(2 Θ<<ω , the parametric instability is triggered at small 

wavenumbers satisfying  
2

1 2/ LSUkk Θ=< ω .         (11)  

Obviously, in the present work we focus on the high-frequency case, Eq. (10). 

We now analyze flame-generated acoustics within a spherical confinement in this limit. Then 
the instantaneous acoustic amplitude can be estimated as wF UUU )1(~ −Θ= , Eq. (1), while the 
acoustic frequency is given by 

 ( ) CsFCsa RcRRc //2 ππτπω ≈−== ,      (12) 

where sc  is the sound speed. Equations (1), (10) and (12) constitute the cut-off wavenumber for 
the parametric instability in the form 

  
( ) wC

s

UR
c

k 20 1
1

2 −Θ
+Θ

=
π .        (13) 

The parametric instability is triggered only at small scales, less than 0/2 kπ , while the large-scale 
flame evolution is still controlled by the DL instability. Consequently, we can adopt the self-
similarity formulation on large scales, 

( ) αCttRF = ,          (14)  
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which can also be expressed in the form D
Fw RU ∝ , i.e. 

( )D
FLw RkSU 0

~/ = ,         (15) 

where αα /)1( −=D  is the fractal excess, and 0k , given by Eq. (13), assumes the role of the 
largest self-similarity wavenumber. It is related to the smallest fractal cascade, and LS~  is the 
flame speed at the scale 0/2 kπ , so it describes the pure effect of the parametric instability. We 
emphasize that unlike the situation of flame expansion in free space, the parameter C  of Eq. 
(14), and 0k  of Eq. (15), depend on t  (and FR ) because of wU  in Eq. (13), which modifies the 
exponent in the general self-similar power law. Indeed, combining Eqs. (1), (13) and (15), we 
obtain 
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which can be integrated over any interval ),( 21 tt  as 
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Consequently, Eq. (14) is now replaced by a new asymptotic 
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It is noted that the quantity LS~  may also include dependence on time, but we omit this possibility 
in the present work. 

4. Discussion 

As a result, based on a simple model we have obtained a modified power law, Eq. (18), which 
accounts for flame-sound interaction in a spherical confinement. According to various 
experimental measurements, the exponent α  falls in the range of 5.125.1 −=α  [7, 8, 11]. For 
instance, Gostintsev et al. [11] suggested 2/3=α . In contrast, the recent, well-controlled 
experiments of Jomaas and Law [8], conducted in a quiescent, confined environment, showed 
that α  is about 3/4 . The formulation above allows reconciliation of such a discrepancy, at least 
qualitatively. That is, having αtRF ∝  in free space, we can predict αα /)12( −∝ tRF  for the same 
combustible mixture within a confinement. Furthermore, even within the same confinement, one 
can find αtRF ∝  when the radial sound waves are too weak, which will evolve to αα /)12( −∝ tRF  
later, when the effect of acoustics becomes stronger. Taking 2/3=α  as in [11], we find 

3/4/)12( =− αα  in agreement with [8]. Since ααα <− /)12(  for any 1>α , Eq. (18) exhibits 
a lower power dependence as compared to Eq. (14). However, this does not necessarily mean 
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that the acceleration proceeds slower within a confinement because the process depends strongly 
on the pre-exponential constant 1C  in Eq. (18). In fact, we can readily extend our recent 
formulation on self-similar flame acceleration and the detonation triggering in free space [15] to 
Eq. (18) instead of Eq. (14). In particular, the instant and position of the detonation triggering 
can be estimated as 

 )1(2
expl

−Ω≈ α
α

ϕt ,  )1(2
12

expl
−
−

Ω≈ α
α

ψR ,      (19)     

where ϕ  and ψ  are the characteristic time and length scales, determined by 
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with the adiabatic exponent γ , the ignition temperature iT  scaled by the room temperature 0T ,   

1
1

12
1

3
2

1 −−
−

=
γα

αB ,  
Θ
−Θ

+=
1

12 BB .     (22) 

The result is shown in Fig. 2 for 8=Θ , 5/7=γ , and 2/3=α . For typical 03TTi ≈  we have 
ϕ10expl ≈t  and ψ25expl ≈R , which is definitely far from terrestrial conditions.   
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Figure 2: Scaled instant and position of explosion for 8=Θ , 5/7=γ , and 2/3=α  
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Concluding remarks 

In this paper we have developed a simple, quasi-1D model for interaction of an outwardly-
expanding accelerating flamefront with acoustics in a spherical confinement. The formulation is 
based on the assumptions of zero flame thickness, low-Mach flows and self-similar flame 
dynamics. The model accounts for triggering of the parametric instability, and it describes the 
flame evolution at the intermediate stage, when the flamefront is far from the ignition point as 
well as the chamber wall. This model is then incorporated into a previous formulation on self-
accelerating flames in free space, demonstrating the potential of facilitated transition to 
detonation due to confinement. 
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