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Abstract:   

We have successfully synthesized high quality β-FeSe-type iron 

chalcogenide nanowires (NWs) from annealing thin films prepared by pulse 

laser deposition method. Three kinds of NWs with nominal composition (FeSe0.9, 

FeSe0.3Te0.7 and FeTe0.8S0.2) have been prepared and carefully characterized by 

transmission electron microscope (TEM). Most analyzed NWs reveal good 

tetragonal structure along the (100) crystal direction. The energy dispersive 

spectroscopy studies and high resolution TEM (HRTEM) image demonstrate 

good compositional uniformity, except a thin layer of oxide on the surface. The 

FeSe0.9 NWs don’t show superconductivity because of highly Se rich. The other 

two types of NWs show a high and sharp superconducting transition. In addition, 

a transition tail is observed in the NWs with size smaller than 100nm, which 

might be due to the thermally activated phase slip effect.  

 
Introduction:    

Iron chalcogenides have received renewed attention following the 

unexpected discovery of superconductivity in tetragonal PbO-type β-FeSe with 

critical temperature (Tc) of 8K [1]. The superconducting transition temperature 

can be enhanced to 15K and 10K by substituting tellurium and sulphur 

respectively [2,3]. Recently, Xue et al. reported a zero resistance at 30K and an 

onset temperature over 55K in one unit cell FeSe film on SrTiO3 substrate [4]. In 

addition, a clear diamagnetic signal around 40K was observed in as-grown FeSe 

nano-particles [5]. These results indicate that interesting phenomena may 

happen in iron chalcogenide superconductors when their size goes to 

nanometer scale. 

Comparing with other two kinds of nano-scale samples, ultrathin film and 
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nano-particles, crystalline nanowire (NW) in general is more difficult to be 

prepared. NWs can be artificially made through thin film deposition and 

nano-patterning technologies. Nevertheless, naturally grown crystalline NW is 

expected to be superior to the artificially made NWs in many aspects, which can 

be used for fundamental property studies. For example, several reports have 

demonstrated better superconducting properties in crystalline NWs [6, 7]. 

Crystalline superconducting NWs are commonly used to study 

superconductivity related phenomena, such as superconducting phase slip 

[8-11], anti-proximity effect [12], interplay between superconductivity and 

ferromagnetism [13], and quantum oscillation [14]. 

Growths of non-superconducting crystalline iron chalcogenide NWs have 

been reported, such as FeS2 grown by solvothermal process [15] and thermal 

sulfidation [16], and Fe7S8 grown by electrodeposition method on anodic 

aluminum oxide (AAO) templates [17]. However, there was no report of the 

PbO-type iron chalcogenide NWs yet so far. This report describes the first time 

the growth and characterization of PbO-type iron chalcogenide superconducting 

NWs with nominal composition of FeSe0.9, FeSe0.3Te0.7 and FeTe0.8S0.2.  
 (a)                        (b)                      (c) 

      

(d)                       (e)                       (f) 

     

Figure 1 (a)-(c) SEM images of as-grown NWs on substrate. The nominal composition of thin film 
is (a) FeSe0.9, and (b), FeSe0.3Te0.7, and (c) FeTe0.8S0.2. NWs are tens to hundreds nanometer in 
diameter and several to tens micrometer in length. (d)-(f) The HRTEM images and diffraction 
pattern of NWs. The NWs are grown along [100] direction. The a-axis lattice constant is 3.728Å, 
3.809 Å, and 3.846 Å for FeSe0.9, FeSe0.3Te0.7, and FeTe0.8S0.2 NWs respectively. 
 

Growth and Structure Characterization of Nanowires 

The synthesis of PbO-type iron chalcogenide NWs follows a simple 



two-step process; so call on-film formation of NWs (OFF-ON) method [18]. First, 

th PbO-type iron chalcogenide thin films on (100) MgO substrate are prepared 

by pulse laser deposition (PLD) technique [19]. Then these films are sealed in 

vacuumed quartz tube and annealed at 400℃ for 120 hours for NW growth. 

NWs with nominal composition of FeSe0.9, FeSe0.3Te0.7, and FeTe0.8S0.2 were 

prepared. NWs prefer to grow near the edge of thin film. The as-grown NWs are 

easily detached from substrate for property characterization.  

Figure 1 (a)-(c) show the SEM images of as-grown PbO-type iron 

chalcogenide NWs on substrate. The NWs are tens to hundreds nanometers in 

diameter and several to tens micrometers in length. In general, number density 

and size of FeSe0.9 NWs are lower and smaller. The high resolution transmission 

electron microscope (HRTEM) images demonstrate excellent crystalline of 

tetragonal structure in these NWs, as shown in Fig. 1 (d)-(f). The growth of NWs 

is found to be along [100] direction, as indicated in the sets. The X-ray diffraction 

patterns demonstrate good square lattice in ab-plane.  

 

 

Figure 2 Surface oxidation of NWs. (a)-(c) The HRTEM images show an oxide layer of few 
nanometers on the surface of as-grown NWs. (d) BF-STM image and line profile illustrate an oxide 
layer of 40nm thickness on the surface of 170nm FeSe0.9 NW six months later. (e) The EDS line 
profiles of iron, selenium, and oxygen. Oxygen becomes dominant except of the center of NW, 
verifying the existence of thick oxide layer on the surface.  
 

It has been reported that the surface of PbO-type iron chalcogenide can be 

easily oxidized [20, 21]. It is important to know the thickness and growth rate of 

oxide layer after NWs are grown because this oxide layer needs to be removed 

before metal deposition for electrical contact. The HRTEM image of NW shows an 



amorphous layer at edge, which is identified as the surface oxide. The as-grown 

NW has a few nanometers thick oxide layer on the surface, as illustrated in Figure 

2 (a)-(c). After stored in a vacuumed desiccator for two months, the oxide layer 

becomes about 10nm thick, not shown in this paper. The growth rate of surface 

oxide is similar for FeSe0.9, FeSe0.3Te0.7, and FeTe0.8S0.2 NWs. Figure 2(d) shows 

the back field TEM image and EDS line profile of a 170nm FeSe0.9 NW six months 

after growth. The amorphous layer increases to 40nm thick, which is about 5-10 

times thicker. The EDS line-profile demonstrates high oxygen and iron 

concentration except of center area, as shown in Fig. 2(e), indicating that this 

amorphous layer is iron oxide. 

 

  

Figure 3 The normalized resistance of NWs with different size. (a) FeSe0.9 NWs with size of 
115nm and 80nm. (b) FeSe0.3Te0.7 NWs with size of 335nm and 79nm. (c) FeTe0.8S0.2 NWs with 
size of 220nm and 90nm. A long transition tail is observed in both FeSe0.3Te0.7 and FeTe0.8S0.2 NWs 
with small size. 
 

Superconductivity of nanowires 

Most FeSe0.9 NWs show insulating or high resistance. Figure 3(a) present the 

normalized resistance versus temperature curves of FeSe0.9 NWs which have 

lower resistance. No superconducting transition is observed in both NWs. To 

investigate the reason responsible for vanish of its superconductivity, we analyze 

the chemical composition of many NWs by energy dispersive X-ray spectroscopy 

(EDS). All NWs have good uniformity in composition but chalcogen rich. The 

-FeSe phase [22]. 

However, the results of HRTEM and X-ray diffraction demonstrate a good 

tetragonal crystal structure with lattice constants of a=3.728Å and c=5.363 Å, 

-FeSex bulk sample (a=3.775Å and c=5.512 

Å) [23]. Based on these results, our FeSe0.9 -FeSe phase which 

structure is tetragonal with wider Se concentration range, 48.5~62 at% or 

0.94~1.63 in Se/Fe ratio and smaller lattice constant in Se rich sample [22]. 

Recently, M. de Souza et. al. reported a superconducting transition at 8.5K in 

-Fe0.91 -FeSe1.1) sample which synthesized under high pressure [24]. 

However, the Se concentration in our FeSe0.9 NWs is still too high, resulting in 

insulating or high resistive characteristic. We believe that b-FeSe phase NWs 

could be prepared by using a Se-deficient thin film or reducing the annealing 



temperature.  

 

 

Figure 4 Magnetic field dependence of superconducting transition of (a) FeSe0.3Te0.7 and (b) 
FeTe0.8S0.2 NWs. The phase diagram is shown in the insets. The upper critical field is estimated to 
be 151 and 127 Tesla for FeSe0.3Te0.7 and FeTe0.8S0.2 NW respectively, using the WHH formula [32] 
and the initial slope of phase diagram in the inset.  
 

On the contrary, sharp superconducting transition at 14.5 K and 10.3 K is 

observed in FeSe0.3Te0.7 and FeTe0.8S0.2 NWs with a size of 335nm and 220nm 

respectively, as shown in Fig. 4(b) and 4(c). The EDS data shows that the ratio of 

Se/Te and S/Te is 0.33/0.67 and 0.08/0.92. Comparing with bulk/film/crystal 

samples with similar composition [2, 25-27], these NWs have slightly higher 

transition temperature and much narrower transition width. Beside of 

superconducting properties, most reports on high Te substituted FeSe1-xTex 

samples have semiconducting-like temperature dependence at low temperature. 

Chang et. al. reported that such temperature dependence is attributed to weak 

localization effect which results from high scattering rate of carriers by 

impurities [28]. The NWs have metallic-like temperature dependence, indicating 

a lower impurity concentration or better crystalline quality. For NWs with smaller 

size, also shown in in Fig. 4(b) and 4(c), the superconducting temperature is 

slightly lower, but with a long transition tail. We rule out the possibility of quality 

degradation in small size NW because their TEM results demonstrate similar 

crystal quality. Because of the existence of surface oxide, the dimension of actual 

superconducting area is smaller than the outer dimension of NWs. Moreover, we 

expect a thicker oxide layer in those NWs after exposed to air and fabricating 

process for making electrical leads, such as shown in Fig. 2(d). The dimension of 

superconducting area should be much reduced and the thermally activated phase 

slip (TAPS) effect might become important [29, 30], resulting in a long transition 

tail.  

Figure 4 shows the magnetic field dependence of superconducting 

transition of (a) FeSe0.3Te0.7 and (b) FeTe0.8S0.2 NWs. The superconducting 

transition tail is slightly broadened in FeSe0.3Te0.7 NW as external magnetic field 



applied, which is similar to results of bulk [31] and crystal [25]. For FeTe0.8S0.2 

NW, superconducting transition shifts almost in parallel to low temperature, 

which is same as the earlier reports [3, 27]. The insets demonstrate the phase 

diagram of NWs. According to WHH theory [32], the critical magnetic field at 

zero temperature can be estimated from the initial slope of phase diagram, 

Hc2(0) = 0.693|dHc2/dt|, where t is the reduced temperature, TC(H)/TC(0). The 

estimated HC2(0) of 335nm FeSe0.3Te0.7 and 220nm FeTe0.8S0.2 NWs is 151 and 

127 Tesla, respectively. These values are higher than the reported values, ~100 

Tesla for FeSe0.3Te0.7 [31] and 70 Tesla for FeTe0.8S0.2 [3] bulk samples.  

Conclusions 

High quality NWs are helpful in studying the intrinsic properties of newly 

discovered iron chalcogenide superconductors. In this paper, we have presented 

a simple two-step method to synthesize highly crystalline iron chalcogenide NWs. 

Three kinds of NWs with nominal composition (FeSe0.9, FeSe0.3Te0.7 and 

FeTe0.8S0.2) have been prepared and carefully characterized by TEM. The NWs 

show highly crystalline along the (100) crystal direction. A few nanometers thick 

oxide is observed on the surface in fresh NWs, and becomes thicker gradually as 

exposed to air. The FeSe0.9 NWs demonstrate tetragonal structure with smaller 

lattice constant, highly Se rich, and high resistance. We speculate that the grown 

FeSe0.9 NWs might be - -FeSe phase. Comparing with 

bulk samples, FeSe0.3Fe0.7 and FeTe0.8S0.2 NWs reveal a high and sharp 

superconducting transition. Combining with the results of normal state resistance 

behavior and upper magnetic critical field, we conclude that these FeSe0.3Fe0.7 

and FeTe0.8S0.2 NWs have excellent quality. More intrinsic properties of iron 

chalcogenide superconductors can be studied by using these NWs. In addition, the 

FeSe0.3Fe0.7 and FeTe0.8S0.2 NWs with size smaller than 100nm always show a long 

resistive transition tail. We ruled out the possibility of non-uniformity either in 

stoichiometry or in size. The most possible reason responsible for this 

phenomenon is the thermally activated phase slip effect. More detail experiment 

will be done to verify our speculation.  
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