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Abstract

This paper presents methods to visualize feature spaces
commonly used in object detection. The tools in this paper
allow a human to put on “feature space glasses” and see
the visual world as a computer might see it. We found that
these “glasses” allow us to gain insight into the behavior
of computer vision systems. We show a variety of experi-
ments with our visualizations, such as examining the linear
separability of recognition in HOG space, generating high
scoring “super objects” for an object detector, and diag-
nosing false positives. We pose the visualization problem as
one of feature inversion, i.e. recovering the natural image
that generated a feature descriptor. We describe four algo-
rithms to tackle this task, with different trade-offs in speed,
accuracy, and scalability. Our most successful algorithm
uses ideas from sparse coding to learn a pair of dictionar-
ies that enable regression between HOG features and natu-
ral images, and can invert features at interactive rates. We
believe these visualizations are useful tools to add to an ob-
Jject detector researcher’s toolbox, and code is available.

1. Introduction

A core building block for most modern recognition sys-
tems is a histogram of oriented gradients (HOG) [5]. While
machines struggle to comprehend raw pixel values, HOG
provides computers with a higher level representation of an
image. The computational power of this representation has
been substantially demonstrated by the community in object
detection [3, 10, 19, 25, 32] as well as scene classification

22, 30] and motion tracking [2, 11].

Yet, the human vision system processes photons—not
high dimensional vectors—making human interpretation of
HOG features potentially counter-intuitive. As object detec-
tion researchers, we often spend considerable time staring at
false positives and asking ourselves: why does our detector
think there is a microwave flying in the sky?

*This paper is a pre-print of our conference paper. Last modified De-
cember 23, 2012.
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Figure 1: In this paper, we present several algorithms for
inverting HOG descriptors back to images. The middle col-
umn is generated only from HOG features.

In this paper, we attempt to give humans a microscope
into the world of HOG. We present four algorithms for vi-
sualizing and inverting HOG features back into natural im-
ages. Each algorithm has different trade-offs, varying in
speed, accuracy, and scalability. Some of our algorithms
use large databases; some are parametric. All of our algo-
rithms are simple to use and understand.'

Our visualizations, shown in Fig.1, are intuitive for hu-
mans to grasp while still remaining true to the information
stored inside each HOG feature, a claim we support with a
user study. We found that this visualization power can give
us insight into the behavior of object detectors. For exam-
ple, when we invert the false positives for an object detector,

ICode is available at ht tp: //mit .edu/vondrick/ihog.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
23 DEC 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Inverting and Visualizing Featuresfor Object Detection £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
M assachusetts I nstitute of Technology,77 M assachusetts REPORT NUMBER
Avenue,Cambridge M A,02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thispaper presents methods to visualize featur e spaces commonly used in object detection. Thetoolsin
this paper allow a human to put on ?featur e space glasses? and see the visual world as a computer might
seeit. Wefound that these ?glasses? allow usto gain insight into the behavior of computer vision systems.
We show avariety of experimentswith our visualizations, such as examining thelinear separ ability of
recognition in HOG space, generating high scoring ?super objects? for an object detector, and diagnosing
false positives. We pose the visualization problem as one of featureinversion, i.e. recovering the natural
image that generated a feature descriptor. We describe four algorithmsto tacklethistask, with different
trade-offsin speed accuracy, and scalability. Our most successful algorithm usesideas from spar se coding
tolearn a pair of dictionariesthat enable regression between HOG features and natural images, and can
invert featuresat interactiverates. We believe these visualizations ar e useful tools to add to an object
detector resear cher ?stoolbox, and code is available.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 8
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



M+§%M+-+“+I+...+-=
+— Py =
T+ T+ -"'"""N =

B an
B o

‘“‘!E’ ‘{ |

+lll+

_-EN B3

Figure 2: Inverting HOG features using exemplar LDA. We train an exemplar LDA model on the HOG descriptor we wish
to invert and apply it to a large database. The left hand side of the above equation are the top detections, while the right hand
side shows the average of the top 100. Even though all top detections are semantically meaningless, their average is close to
the original image, shown on the right. Notice that all the top detections share structure with the original, e.g., the top left
bottles create the smoke stack for the ship, and the middle right hands compose the wings for the bird.

we find the inversions look like true positives. This result
suggests that the false positives are reasonable, and higher
level reasoning may be necessary to solve object detection.
By observing the visual world as object detectors see it, we
can more clearly understand object recognition systems.
The contributions in this paper are two-fold. First, we of-
fer four algorithms to invert HOG features. Second, we use
our inversion algorithms to examine the behavior of object
detectors. To this end, in section 2, we briefly review related
work in reconstructing images given their feature descrip-
tors. In section 3, we describe four algorithms for inverting
and visualizing HOG features. Although we focus on HOG
in this paper, our approach is general and can be applied to
other features as well. In section 4, we evaluate the perfor-
mance of our visualizations with a human study by asking
subjects to identify objects given only their inverse. Finally,
in section 5, we present a variety of experiments using HOG
inversion to visualize the behavior of object detectors.

2. Related Work

There has been relatively little work in feature inversion
so far. Torralba and Oliva, in early work [27], described
a simple iterative procedure to recover images only given
gist descriptors [21]. Weinzaepfel et al. [29] were the first
to reconstruct an image given its keypoint SIFT descrip-
tors [17]. Their approach obtains compelling reconstruc-
tions using a nearest neighbor based approach on a mas-
sive database. We encourage readers to see their full color
reconstructions. However, their approach only focuses on
sparse keypoint SIFT descriptors. Since most object detec-
tors use a dense histogram of visual features, we instead
present algorithms for inverting histogram features for de-
tection, the most popular of which is HOG. Our algorithms
are also quick, allowing for nearly real time visualization.
d’Angelo et al. [6] further developed an algorithm to recon-
struct images given only LBP features [4, |]. Their method
analytically solves for the inverse image and does not re-
quire a dataset. While [29, 6, 27] do a good job at recon-

structing images from SIFT, LBP, and gist features, to our
knowledge, this paper is the first to invert HOG.

This work also complements a recent line of papers that
examine object detectors. Hoiem et al. [13] performed a
large study analyzing the errors that object detectors make.
Parikh and Zitnick [23] introduced a paradigm for human
debugging of object detectors. Divvala et al. [7] analyze
part-based detectors to determine the importance of each
piece in the object detection stack. Tatu et al. [24] explored
the set of images that generate identical HOG descriptors.
Zhu et al. [33] try to determine whether we have reached
Bayes risk for HOG. In this paper, we analyze object detec-
tors by direct inspection: we visualize the world as comput-
ers see it by inverting HOG.

3. Feature Inversion Algorithms

Let z € R be an image and y = ¢(z) be the corre-
sponding HOG feature descriptor. Since ¢(-) is a many-to-
one function, no analytic inverse exists. Hence, we seek an
image x that, when computed HOG on it, closely matches
the original descriptor y:

¢~ (y) = argmin||9(z) — y]l; (1)

zeRP

Optimizing Eqn.1 is challenging. Although Eqn.1 is non-
convex, we tried gradient-descent strategies by numerically
evaluating the derivative in image space with Newton’s
method. Unfortunately, we observed poor results, likely be-
cause HOG is both highly sensitive to noise and Eqn.1 has
frequent local minimas. In the remainder of this section, we
present four different algorithms for inverting HOG.

3.1. Algorithm A: Exemplar LDA (ELDA)

Consider the top detections for the exemplar object de-
tector [12, 19] for a few images shown in Fig.2. Although
all top detections are false positives, notice that each detec-
tion captures some statistics about the query. Even though
the detections are wrong, if we squint, we can see parts of
the original object appear in each detection.



We use this simple observation to produce our first inver-
sion algorithm. Suppose we wish to invert HOG feature y.
We first train an exemplar LDA detector [12] for this query,
w = Y7y — p). We then score w against every slid-
ing window on a large database. The HOG inverse is then
simply the avera}g{e of the top K detections in RGB space:
¢1'(y) = & Si, z where z; is a top detection.

This method, although simple, produces surprisingly ac-
curate reconstructions, even when the database does not
contain the category of the HOG template. We note that
this method may be subject to dataset bias [26] but could
be overcome [15]. We also point out that a similar nearest
neighbor method is used in brain research to visualize what
a person might be seeing [20].

3.2. Algorithm B: Ridge Regression

Unfortunately, running an object detector across a large
database is computationally expensive. In this section, we
present a fast, parametric inversion algorithm.

Let X € R” be a random variable representing a gray
scale image and Y € R be a random variable of its corre-
sponding HOG point. We define these random variables
to be normally distributed on a D 4 d-variate Gaussian
P(X,Y) ~ N(u,X) with parameters u = [#x #v | and
N — E¥x Exvy

Xxy Zyy
calculate the most likely image from the Gaussian P condi-
tionedon Y = y:

} . In order to invert a HOG feature y, we

(bgl(y) =argmax P(X = z|Y =y) 2)
r€RDP
It is well known that Gaussians have a closed form condi-
tional mode:

05 (y) = SxvSyy (y — py) + px 3)

Under this inversion algorithm, any HOG point can be in-
verted by a single matrix multiplication, allowing for inver-
sion in under a second.

We estimate 1 and X on a large database. In practice, X
is not positive definite; we add a small uniform prior (i.e.,
D=+ ) so X can be inverted. Since we wish to invert
any HOG point, we assume that P(X,Y) is stationary [12],
allowing us to efficiently learn the covariance across mas-
sive datasets. We invert a arbitrary dimensional HOG point
by marginalizing out unused dimensions.

3.3. Algorithm C: Direct Optimization

We found that ridge regression yields blurred inversions.
Intuitively, since HOG is invariant to shifts up to its bin size,
there are many images that map to the same HOG point.
Ridge regression is reporting the statistically most likely
image, which is the average over all shifts. This causes
ridge regression to only recover the low frequencies of the
original image.

Figure 3: Some pairs of dictionaries for U and V. The left
of every pair is the gray scale dictionary element and the
right is the positive components elements in the HOG dic-
tionary. Notice that the gray patches are correlated with the
HOG patches.

We now provide an algorithm to recover the high fre-
quencies. Let U € RP*X be a natural image basis (e.g.,
the first K eigenvectors of ¥xx € RP*P). Any image
x € RP can be encoded by coefficients p € R¥ in this ba-
sis: x = Up. Since ridge regression only recovers the first
few principal components of U, there is a residual term of
high frequencies left to be recovered:

K K
x =Y Up; =Low+High=¢5'(y) + > _Upi 4
i=J

i=1

where ¢§1(-) was able to only recover .J components. The
goal of our third approach is to explicitly recover the high
frequency components, i.e. the second term. We wish to
minimize:

o' (y) = argglin [6(Ae5 () + Up) —ylls (5
pERK

for some hyperparameter A € R. Empirically we found
success optimizing Eqn.5 using coordinate descent on p
with random restarts. We use an over-complete basis cor-
responding to sparse Gabor-like filters for U. We compute
the eigenvectors of ¥ x x across different scales and trans-
late smaller eigenvectors to form U.

3.4. Algorithm D: Paired Dictionary Learning

Direct optimization obtains highly accurate results, but
since optimization requires computing HOG features on a
large number of candidate images, convergence is slow. In
our final algorithm, we propose a fast approximation.

Let z € RP be an image and y € R? be its HOG de-
scriptor. The key observation is that if we write x and y in
terms of bases U € RP*K and V € R¥*X respectively,
but with shared coefficients o € R¥,

r=Ua and y=Va (6)



then inversion can be obtained by first projecting the HOG
features y onto the HOG basis V/, then projecting « into the
natural image basis U:

¢p' (v) = Ud )
where & = argmin||ly — V|| st Jlo|li <A @8)

Since efficient solvers for Eqn.8 exist [18, 16], we are able
to invert HOG patches in under a second.

This paired dictionary trick requires finding appropriate
bases U and V such that Eqn.6 holds. To do this, we solve
a paired dictionary learning problem, inspired by recent su-
perresolution sparse coding work [31, 28]:

N

argmin zi — Uail[3 + l|¢(z:) — Vaill3
rgmin 3 _ (1 B+ 10@) = Vailld)

st leills <AV UIS <31, [[VIE < 7

After a few algebraic manipulations, the above objective
simplifies to a standard sparse coding and dictionary learn-
ing problem with concatenated dictionaries, which we opti-
mize using SPAMS [18]. Optimization typically took a few
hours on medium sized problems. We estimate U and V'
with a dictionary size K € O(103) and training samples
N € O(10°) from a large database. See Fig.3 for a visual-
ization of the learned dictionary pairs.

Unfortunately, the paired dictionary learning formula-
tion suffers on problems of nontrivial scale. In practice, we
only learn dictionaries for 5 x 5 HOG templates. In order
to invert a w x h HOG template y, we invert every 5 X 5
subpatch inside y and average overlapping patches in the fi-
nal reconstruction. We found that this approximation works
well in practice.

4. Evaluation

In this section, we evaluate our four inversion algorithms
using both qualitative and quantitative measures. We use
PASCAL VOC 2011 [8] as our dataset and we invert patches
corresponding to objects. Any algorithm that required train-
ing could only access the training set. During evaluation,
only images from the validation set are examined. The
database for exemplar LDA excluded the category of the
patch we were inverting to reduce the effect of biases.

We show our inversions in Fig.4 for a few object cate-
gories. Exemplar LDA and ridge regression tend to pro-
duce blurred visualizations. Direct optimization recovers
high frequency details at the expense of extra noise. Paired
dictionary learning produces the best visualization for HOG
descriptors. By learning a sparse dictionary over the visual
world and the correlation between HOG and natural images,
paired dictionary learning recovered high frequencies with-
out introducing significant noise.
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Figure 4: We show the results for all four of our inversion
algorithms on held out image patches on similar dimensions
common for object detection. In general, exemplar LDA
produces grainy inversions. Ridge regression is blurry, but
fast. Direct optimization is able to recover high frequencies
at the expense of extra noise; notice the eyes on the sheep
and cat, and details on the bus. Paired dictionary learn-
ing often perceptually performs the best, striking a middle
ground between crisp and blurry.



Category | ELDA Ridge Direct PairDict
aeroplane | 0.634 0.633 0.596 0.609
bicycle 0452 0577 0.513 0.561
bus 0.627 0.632 0.587 0.585
cat 0.749 0.712  0.687 0.705
cCoOwW 0.720 0.663  0.632 0.650
horse 0.686 0.633 0.586 0.635
tvmonitor | 0.711 0.640 0.638 0.629
Mean 0.671 0.656 0.620 0.637

Table 1: We evaluate the performance of our inversion al-
gorithm by comparing the inverse to the ground truth image
using the mean normalized cross correlation. Higher is bet-
ter; a score of 1 is perfect. In general, exemplar LDA does
slightly better at reconstructing the original pixels.

SIFT Comparison: We compare our HOG inversions
against SIFT reconstructions on the INRIA Holidays dataset
[14]. Fig.5 shows a qualitative comparison between paired
dictionary learning and Weinzaepfel et al. [29]. Notice that
HOG inversion is more blurred than key point SIFT since
HOG is histogram based.

Dimensionality: HOG inversions are sensitive to the di-
mensionality of their templates. For medium (10 x 10)
to large templates (40 x 40), we obtain reasonable perfor-
mance. But, for small templates (5 x 5) the inversion is
blurred. Fig.6 shows examples as the HOG descriptor di-
mensionality changes.

In the remainder of this section, we evaluate our algo-
rithms under two benchmarks: first, an inversion metric that
measures how well our inversions reconstruct the original
images, and second, a visualization challenge conducted on
Amazon Mechanical Turk designed to determine how well
people can infer the original category from the inverse. The
first experiment measures the algorithm’s reconstruction er-
ror, while the second experiment analyzes the recovery of
high level semantics.

4.1. Inversion Benchmark

We consider the inversion performance of our algorithm:
given a HOG feature y, how well does our inverse ¢! (y)
reconstruct the original pixels x for each algorithm? Since
HOG is invariant up to a constant shift and scale, we score
each inversion against the original image with normalized
cross correlation. Our results are shown in Tab.1. Overall,
exemplar LDA does the best at pixel level reconstruction.

4.2. Visualization Benchmark

While the inversion benchmark evaluates how well the
inversions reconstruct the original image, it does not cap-
ture the high level content of the inverse: is the inverse of a
sheep still a sheep? To evaluate this, we conducted a study
on Amazon Mechanical Turk. We sampled 2,000 windows

(c) Keypoint SIFT [29]

Figure 5: We compare our paired dictionary learning ap-
proach on HOG with the algorithm of [29] on SIFT. Since
HOG is invariant to color, we are only able to recover a
grayscale image. Furthermore, our blurred inversion shows
that HOG is a more coarse descriptor than keypoint SIFT.

Figure 6: Our inversion algorithms are sensitive to the HOG
template size. Larger templates are easier to invert since
they are less invariant. We show how performance degrades
as the template becomes smaller. Dimensions in HOG space
shown: 40 x 40, 20 x 20, 10 x 10, and 5 x 5.

corresponding to objects in PASCAL VOC 2011. We then
showed participants an inversion from one of our algorithms
and asked users to classify it into one of the 20 categories.
Each window was shown to three different users. Users
were required to pass a training course and qualification
exam before participating in order to guarantee users unser-
stood the task. Users could optionally select that they were
not confident in their answer. We also compared our al-
gorithms against the standard black-and-white HOG glyph
popularized by [5].

Our results in Tab.2 show that paired dictionary learn-
ing and direct optimization provide the best visualization
of HOG descriptors for humans. Ridge regression and ex-
emplar LDA performs better than the glyph, but they suf-
fer from blurred inversions. Human performance on the
HOG glyph is generally poor, and participants were even
the slowest at completing that study. Interestingly, the glyph
does the best job at visualizing bicycles, likely due to their
unique circular gradients. Overall, our results suggest that
visualizing HOG with the glyph is misleading, and using
richer diagrams is useful for interpreting HOG vectors.

There is strong correlation with the accuracy of humans
classifying the HOG inversions with the performance of
HOG based object detectors. We found human classifica-
tion accuracy on inversions and the state-of-the-art object
detection AP scores from [9] are correlated with a Spear-
man’s rank correlation coefficient of 0.77. This result sug-



Category |ELDA Ridge Direct PairDict Glyph|Expert
bicycle |0.327 0.127 0.362 0.307 0.405]| 0.438

bird 0.364 0.263 0.378 0.372 0.193|0.059
bottle 0.269 0.282 0.283 0.446 0.312|0.222
car 0.397 0.457 0.617 0.585 0.359|0.389
cat 0.219 0.178 0.381 0.199 0.139|0.286

chair 0.099 0.239 0.223 0.386 0.119|0.167
table 0.152 0.064 0.162 0.237 0.071|0.125
horse 0.260 0.290 0.354 0.446 0.144]|0.150
motorbike| 0.221 0.232 0.396 0.224 0.298] 0.350
person 0.458 0.546 0.502 0.676 0.301|0.375
sofa 0.138 0.100 0.162 0.293 0.104 | 0.000
Mean 0.282 0.258 0.355 0.383 0.191]0.233

Table 2: We evaluate visualization performance across
twenty PASCAL VOC categories by asking Mechanical
Turk workers to classify our inversions. Numbers are per-
cent classified correctly; higher is better. Chance is 0.05.
Glyph refers to the standard black-and-white HOG diagram
popularized by [5]. Paired dictionary learning provides the
best visualizations for humans. Expert refers to PhD stu-
dents in computer vision performing the same visualization
challenge with HOG glyphs. Notice that even HOG experts
can benefit from paired dictionary learning. Interestingly,
the glyph is best for bicycles.

PairDict

Figure 7: We show the confusion matrices for each of our
four algorithms as well as the standard HOG black-and-
white glyph visualization. The vertical axis is the ground
truth category and the horizontal axis is the predicted cat-
egory. Notice that common confusions are similar to er-
rors caused made by detectors. The expert confusion matrix
refers to the workers who are computer vision PhD students.

Glyph (Expert)

gests that humans can predict the performance of object de-
tectors by only looking at HOG visualizations.

Fig.7 shows the classification confusion matrix for all
algorithms. Participants tended to make the same mistakes
that object detectors make. Notice that bottles are often con-
fused with people, motorbikes with bicycles, and animals
with other animals. Users incorrectly showed a strong prior
that the inversions were for people, evidenced by a bright

(a) Human Vision

(b) HOG Vision

Figure 8: HOG inversion reveals the world that object de-
tectors see. The left shows a man standing in a dark room.
If we compute HOG on this image and invert it, the previ-
ously dark scene behind the man emerges. Notice the wall
structure, the lamp post, and the chair in the bottom right
hand corner.

vertical bar in the confusion matrix.

We also asked computer vision PhD students to classify
HOG glyphs in order to compare Mechanical Turk workers
with experts in HOG. Our results are summarized in the last
column of Tab.2. HOG experts performed slightly better
than common people on the glyph challenge, but experts on
glyphs did not beat common people on other visualizations.
This result suggests that our algorithms produce more intu-
itive visualizations even for object detection researchers.

5. Experiments

The underlying motivation of this paper has been to de-
velop feature inversion algorithms and use these visualiza-
tions to analyze object detectors. In this section, we present
several experiments that use our inversions to put on “HOG
glasses” to analyze the behvaior of HOG.

How Detectors See the World: In our first experiment,
we attempt to reveal how object detectors see the visual
world. Fig.8a shows a normal photograph of a man, but
Fig.8b shows how HOG sees the same man. Since HOG
is invariant to illumination changes, the background of the
scene, invisible to the human eye, materializes, demonstrat-
ing the clutter that HOG catches.

Top False Positives: Seeing the world through the eyes
of HOG can be helpful for understanding object detector
errors. We train a single mixture component using SVM
and HOG. Fig.9 shows the top false detections for a few
categories and their inverses. Notice that the inversions look
like the positive class while the original image patch does
not. This experiment suggests that the false positives that
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Aeroplane

Horse

Figure 9: We trained a single mixture component model
with SVM for a few classes. This figure shows some of
the top false positives and their inversions. Notice that the
inversions look like true positives—the airplane’s wings and
body, and horse’s legs and torso appear in the inversion, but
not necessarily in the original image.

object detectors predict in HOG space are reasonable and
higher level reasoning may be necessary to improve object
recognition performance.

Interpolation in Feature Space: Since object detection is
computationally expensive, most state-of-the-art object de-
tectors today depend on linear classifiers. Fig.10 analyzes
whether recognition is linear separable in HOG space by
inverting the midpoint between two positive examples. Not
surprisingly, our results show that frequently the midpoint
no longer resembles the positive class. Since linear classi-
fiers assume that the midpoint of any positive example is
also a positive, this result indicates that perfect car detec-
tion is not possible with a single linear separator in HOG
space. Car detection may be solvable with view based mix-
ture components, motivating much recent work in increas-
ing model complexity [19, 10].

Prototypical Objects: We analyze an object detector’s
prototypical example of an object. Fig.11 shows the positive
component of the weight vector for a few object detectors
trained with [10]. The prototypes highlights the parts of
objects that each detector finds discriminative. Notice how
that prototypes look similar to the average of the class.

Super Objects: In Fig.12, we examine how the appear-
ance of objects change as we make an object “more posi-
tive” or “more negative.” We move perpendicularly to the
class decision boundary in HOG space. As the object be-
comes more and more positive, the key gradients become
more pronounced, but if the object is downgraded towards
the negative world, the object starts looking like noise. This
experiment gives an intuitive visualization of what each ob-

L)
Positive #1 Midpoint Positive #2

Figure 10: We linearly interpolate between examples in
HOG space and invert its path. First two rows: occasion-
ally, the interpolation of two examples is still in the posi-
tive class even under extreme viewpoint change. Last two
rows: frequently, however, the midpoint is no longer the
positive. This demonstrates that a single linear separator in
HOG space is insufficient for perfect object detection.

Figure 11: We invert the positive components of a few root
templates from the deformable parts model [10]. Notice the
airplane tail wing, the right facing bus, the typical bottle,
and a person leaning his head.

ject detector finds important.

6. Conclusion

We have presented four algorithms for inverting and vi-
sualizing features for object detection. While this paper has
focused on HOG, our algorithms are general and can be ap-
plied to any feature descriptor. We evaluated our method
against a difficult dataset with a large human study and we
presented several experiments that use feature inversion in
order to see the world through the eyes of an object detector.
Our best performing algorithm, paired dictionary learning,
uses ideas from sparse coding to regress between feature
descriptors and their natural images. Since efficient solvers
for sparse coding now exist, we are able to invert features
at nearly interactive rates. We hope that others find these
visualizations useful in their own research.
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for this research was provided by a NSF GRFP to CV and a



To Negative World To Positive World

Figure 12: We train single component, linear SVM object
detectors with HOG for a variety of categories and translate
in HOG space orthogonal to the decision hyperplane. Mov-
ing towards the right is making the object more positive and
to the left is making it more negative. The full color im-
age on the right is the original image. Moving towards the
positive world causes the discriminative gradients of the ex-
ample to increase, and moving to the negative world causes
the example to become more like background noise.

Google research award, ONR MURI N000141010933 and
NSF Career Award No. 0747120 to AT.

References

[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina
keypoint. In CVPR, 2012. 2

[2] S. Avidan. Ensemble tracking. PAMI, 2007. 1

[3] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In /CCV, 2009.
1

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary
robust independent elementary features. ECCV, 2010. 2

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 1, 5, 6

[6] E. d Angelo, A. Alahi, and P. Vandergheynst. Beyond bits:
Reconstructing images from local binary descriptors. /CPR,
2012. 2

[7]1 S. Divvala, A. Efros, and M. Hebert. How important are
deformable parts in the deformable parts model? Technical
Report, 2012. 2

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. 1JCV, 2010. 4

[9] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In Computer
vision and pattern recognition (CVPR), 2010 IEEE confer-
ence on, pages 2241-2248. IEEE, 2010. 5

[10] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. PAMI, 2010. 1,7
[11] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking

via on-line boosting. In BMVC, 2006. 1

[12] B. Hariharan, J. Malik, and D. Ramanan. Discriminative
decorrelation for clustering and classification. ECCV, 2012.
2,3

[13] D.Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error
in object detectors. ECCV, 2012. 2

[14] H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
Computer Vision—-ECCV 2008, pages 304-317, 2008. 5

[15] A. Khosla, T. Zhou, T. Malisiewicz, A. Efros, and A. Tor-
ralba. Undoing the damage of dataset bias. 2012. 3

[16] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse
coding algorithms. NIPS, 2007. 4

[17] D. Lowe. Object recognition from local scale-invariant fea-
tures. In ICCV, 1999. 2

[18] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary
learning for sparse coding. In /CML, 2009. 4

[19] T. Malisiewicz, A. Gupta, and A. Efros. Ensemble of
exemplar-svms for object detection and beyond. In ICCV,
2011. 1,2,7

[20] S. Nishimoto, A. Vu, T. Naselaris, Y. Benjamini, B. Yu, and
J. Gallant. Reconstructing visual experiences from brain ac-
tivity evoked by natural movies. Current Biology, 2011. 3

[21] A. Oliva, A. Torralba, et al. Building the gist of a scene:
The role of global image features in recognition. Progress in
Brain Research, 2006. 2

[22] M. Pandey and S. Lazebnik. Scene recognition and weakly
supervised object localization with deformable part-based
models. In ICCV, 2011. 1

[23] D. Parikh and C. Zitnick. Human-debugging of machines. In
Workshop on Computational Social Science and the Wisdom
of Crowds, NIPS, 2011. 2

[24] A. Tatu, F. Lauze, M. Nielsen, and B. Kimia. Exploring the
representation capabilities of the hog descriptor. In ICCV
Workshops, 2011. 2

[25] P. Torr and A. Zisserman. Latent svms for human detection
with a locally affine deformation field. 1

[26] A. Torralba and A. Efros. Unbiased look at dataset bias. In
CVPR, 2011. 3

[27] A. Torralba and A. Oliva. Depth estimation from image
structure. PAMI, 2002. 2

[28] S. Wang, L. Zhang, Y. Liang, and Q. Pan. Semi-coupled dic-
tionary learning with applications to image super-resolution
and photo-sketch synthesis. In CVPR, 2012. 4

[29] P. Weinzaepfel, H. Jégou, and P. Pérez. Reconstructing an
image from its local descriptors. In CVPR, 2011. 2, 5

[30] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun
database: Large-scale scene recognition from abbey to zoo.
In CVPR, 2010. 1

[31] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-
resolution via sparse representation. Transactions on Image
Processing, 2010. 4

[32] Q. Zhu, M. Yeh, K. Cheng, and S. Avidan. Fast human de-
tection using a cascade of histograms of oriented gradients.
In CVPR, 2006. 1

[33] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we
need more training data or better models for object detec-
tion? BMVC, 2012. 2



