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1. Introduction/Background 

Traumatic brain injuries (TBIs) are a common result of high acceleration events and pose a 

health threat to Soldiers exposed to improvised explosive devices as well as sports players who 

are frequently involved in collisions. While severe TBIs may cause obvious superficial damage, 

mild TBIs that might occur several times are harder to detect and diagnose. There are existing 

sensors in the military and civilian sports that are intended to detect and classify the severity of 

impacts using commercially available accelerometers or pressure sensors (or both) (1, 2). The 

main limitation of current acceleration and pressure sensors is that they require a constant source 

of power during monitoring. 

To minimize power consumption, researchers at the U.S. Army Research Laboratory have 

developed an array of 3-axis microelectromechanical system (MEMS) acceleration threshold 

switches to detect acceleration events (3, 4). On a single 3 mm x 3 mm chip, there are five spiral-

shaped springs, each of which are compliant in the x-, y-, and z-axes that close an electrical 

circuit when an acceleration event exceeds a designed threshold, as shown in figure 1. 

 

Figure 1.  Scanning electron micrograph (SEM) of a Generation 3 

sensor; a spiral spring sensor completes a circuit when 

an acceleration threshold is exceeded. 

While the device is idle, the circuits are open, so no power is required except during actual 

events. When a switch is closed, current travels through a resistor network, and the output 

voltage is read across a reference resistor. The lowest output voltage level is read when the 

lowest threshold switch is closed, and the highest output voltage level is read when the highest 

threshold switch is closed. This setup reduces the number of outputs from 31 (+X, –X, +Y, –Y, 

+Z, and –Z for each of five levels plus ground [GND]) to 7 (six voltage readings and GND). The 

tradeoff is that the processor must analyze voltage levels, which are analog values. The analog-

to-digital converter (ADC) takes a minimum of approximately 20 µs for each conversion (5). 



 

2 

The previous program implemented the ADC multiple times per sampling cycle (once for each 

output), for a total of a 100-µs delay between samples. 

Device testing included short bursts of accelerations from a shock tube to simulate the shock 

wave from an explosive blast. The device’s response included many individual switch closures, 

some of which lasted fewer than 100 µs. The delay was causing significant data loss, so the 

device was redesigned with digital outputs and an increased number of threshold levels. The 

outputs of this new version would not be routed through a resistor network. Instead, the raw 

value of 0 or 3.3 V would be sent to the microcontroller, which would read these values as a “0” 

or “1.” When an acceleration threshold was exceeded, the mass would hit three contacts, and 

send a POS or NEG, an X, Y, or Z, and a level 1–8, as shown in figure 2. 

 

Figure 2.  SEM of a Generation 4 sensor. The spiral spring sensor  

touches three contacts when an acceleration  

threshold is exceeded. Duplicate signals are tied  

together to reduce outputs. 

As such, the number of outputs was increased to 14 (X, Y, Z, POS, NEG, Level 1, 2, 3, 4, 5, 6, 7, 

8, and GND). The new digital design eliminates the need for the ADC, and the time and power 

overhead associated with it. The previous Texas Instruments (TI) microcontroller was also 

replaced with a newer and faster model. This report discusses the development of the new 

program to interface the sensor array with the new TI microcontroller. 

2. Hardware and Initial Testing 

The main hardware that was being tested was the TI CC430F5137 microcontroller. The chip was 

in a 48-pin package soldered onto an EM430F5137RF900 target board, which included a Joint 

Test Action Group (JTAG) connector, a radio frequency (RF) antenna socket, and fully 

accessible pins to provide external signals to the ports, as shown in figure 3. The necessary 
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drivers were installed to the computer through provided TI software, and the microcontroller was 

connected via a MSP-FET430UIF USB Flash Emulation Tool. Programs were written in Code 

Composer Studio, version 5. 

 

Figure 3.  EM430F5137RF900 target board. 

A series of test programs were written to test the functionality and capability of the 

microcontroller. Some programs were used from TI’s provided Code examples and from an 

introductory textbook on microcontrollers (6). The initial programs were simple: flashing the 

onboard light-emitting diodes (LEDs) continuously at a single frequency with a software loop, 

using multiple timers to flash the LEDs at different frequencies, and checking for a button input 

via a software poll. 

Once some basic functionality was shown, interrupts were incorporated. Interrupts, which are a 

major component in control algorithms, trigger on specific actions like a button press or a timer 

overflow and redirect the program flow to appropriate subroutines. Software loops that 

continuously poll for input changes and use software delays are power intensive because the 

central processing unit (CPU) is constantly running. Using interrupts, the CPU can be shut down 

during idle times, which reduces power consumption, a major goal of the final design. 

To conclude the initial testing phase, a demo program was written that incorporated basic 

concepts like timer usage, input handling, and data processing as well as more advanced 

concepts like RF transmission, data storage in both RAM and flash, and data retrieval. The demo 

program was to retrieve a stream of binary numbers and send them to a receiver via RF. The 

receiver was to store the data into flash. Then, using switches, the receiver would parse through 

the data in both directions and display the binary number on LEDs. The pseudocode for the 

demo is shown in figure 4, and the code is shown in appendix A. 
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Figure 4.  Pseudocode outlining the steps of the demo program. 

3. Results and Final Program 

The final program had to meet several design specifications. The CPU was to enter a low power 

mode while no input changes were read. Assuming the inputs were initially 0, a rising edge on 

any of the pins would trigger an interrupt, which would wake up the processor. When awake, the 

time recorded by the real-time clock would be stored. All following input changes and the time 

elapsed between samples would be recorded. A software poll, as opposed to interrupt method, 

was used to collect data once the processor was awake, to avoid latency issues because each 

interrupt service introduces a delay of about 6 µs. Data collection would be stopped 500 ms after 

the last input change, which is longer than the duration of a typical acceleration event. The 

samples would be stored into flash memory and transmitted via RF, after which the program 

would re-enter the low power mode. Pseudocode outlining the steps of the program is shown in 

figure 5. The code for the latest version (version 4) is shown in appendix B. 

main(){ 

initialize LEDs and radio operation 

loop forever { 

enter low_power_mode 

 wake up on one of three conditions: 

1) Button is pushed on Port 1 (input) 
2) Radio receives a signal 
3) Button is pushed on Port 2 (output to 

LED) 

} 

} 

1) Button is pushed on Port 1 { 

 Transmit byte via RF 

} 

2) Radio receives a signal { 

 Toggle blinking LED 

 Write to flash 

} 

3) Button is pushed on Port 2 { 

 Cursor through flash memory in desired direction 

 Display binary number on LEDs 

} 



 

5 

main(){ 

initialize the inputs/leds, the real-time clock, the 

sample bank, the flash memory, and the clock 

loop forever { 

enter low_power_mode 

wake up on any input rising edge change 

store the real-time clock value 

process the data via software poll and store in 

RAM. Repeat until 500 ms of no data 

store the data into FLASH 

transmit via RF 

clear variables 

} 

} 

Figure 5.  Pseudocode outlining the steps of the final program. 

3.1 Data Structure 

There were two data structures considered for storing data from the 13 digital inputs. In the first 

design, a binary label 0001-1101 (corresponding to the numbers 1 through 13 in decimal) would 

be assigned to each pin. When an input change was detected, the program would determine 

which of the 13 pins changed. A flag, indicating whether the pin was high or low after the 

change, was appended to the label, and the 5 bits of data were stored in a byte, as seen in 

figure 6. With this configuration, every change on a pin is recorded with a byte. However, this 

also means that during each sampling cycle, each of the pins have to be individually checked and 

handled. In the best-case scenario, no changes occur; no extra processing must occur, so the 

cycle time is 4 µs. In the worst case scenario, a change is recorded on all 13 pins, which then 

requires 13 bytes to be stored (1 byte per pin).  The sampling cycle in this case increases to 

25 µs, primarily because of the time required to write the data to RAM. 

 

Figure 6.  Flowchart indicating data processing for an input change in input 12. The final result is  

stored in a byte in RAM. 

A second data structure removed the sampling cycle time’s dependency on the number of input 

changes. The inputs read from the ports during each cycle were bit-shifted and masked so that 

each pin corresponded to a single bit. With 13 input pins, this meant 13 bits were required to 

store the data. The ports were set up with sensor inputs connected to pins 1–7 on port 1 and 

bit-shift 

left once  

append flag 

bit and store 

in a byte 

110002 

 

12 = 11002 

flag = 1 (positive edge) 

 

110012 

Input 12 goes from 

high to low 
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pins 1–6 on port 2. When a change was detected, a logic statement determined which pins 

changed from high to low and vice versa, as shown in figure 7. The drawback of this model was 

that four bytes of data had to be stored whenever even a single input changed—as opposed to the 

first model, which stored only one byte per changed input. However, in this model no more than 

4 bytes of data will ever need to be written from one polling cycle. In contrast, the first model 

could require writing as many as 13 bytes of data. With respect to timings, the model had a best-

case scenario where no change was detected and each sampling cycle takes 4 µs. The worst-case 

scenario was independent of how many inputs changed. If any input changed, the cycle time 

would be 10 µs. Although this is not as fast as the first design in the case of one or two inputs 

changing, it is likely that in the final application of the sensor, multiple directions would be 

experiencing different accelerations in a very short period of time. Therefore, the second design 

has a smaller chance of data loss than the first. 
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Figure 7.  Flowchart depicting data processing in the second data structure. The notation A.B refers to port A, 

pin B. The Z’s indicate signals that can be any value. By using Boolean logic on the previous input 

and the new input, information on which pins rose and which fell can be extracted. 

3.2 Port Initialization 

Ports 1 and 2 were used to handle the sensor outputs. Each port has eight available pins, each 

capable of reading an external signal once an eight-pin header was soldered onto the target 

board. Ports 1 and 2 were specifically used because interrupts can only be enabled on these two 

ports for the CC430F5137. Pins 1–7 on Port 1 and pins 1‒6 on Port 2 were configured as inputs 

with no internal pull-up resistor. The pins read a 0 V as a “0” and 3.3 V as a “1”. One potential 

problem with this design is that until the sensor outputs are connected with the GND pad, which 

is actually 3.3 V, the outputs are floating values. Crosstalk between pins or other factors could 

cause false positives. A simple fix, if this does create a problem, would be to change the GND 

pad to give 0 V and initialize the pull-up resistors in the microcontroller. In this setup, 3.3 V 

1.2, 1.4, 2.1 

rise 
Microcontroller Reads: 

P1IN = 0001010Z2 

P2IN = Z000001Z2 

Initial input all low: 

Last input (X): 

00000000000000002 

bit-shift P2IN 

right once  

P1IN = 0001010Z2 

P2IN = 0Z0000012 

P1IN = 0001010Z2 

P2IN = 0Z000001000000002 

bit-shift P2IN 

left 8 times  

add 

0Z0000010001010Z 2 

 

New input (Y): 

00000001000101002 

mask to eliminate last bit 

and first two bits 

(!X AND Y) + 1 

Rising edge 

00000001000101002 

(X AND !Y) 

Falling edge 

0000000000000002 



 

8 

would be read as a “0” and 0 V would be a “1”. Interrupts can only be triggered in one direction 

at a time, so currently, it is selected to trigger when a low to high voltage transition occurs. The 

interrupt should only be serviced at the first input change, which should be a pin going from the 

initial state (“0”) to the changed state (“1”).  

3.3 Real-time Clock Initialization 

The real-time clock was used so that the time of the day could be recorded when an acceleration 

event occurred. The module was initialized with arbitrary values, but future versions will 

incorporate user input to set the clock. 

3.4 Flash Initialization 

Ten segments of flash memory were reserved to store the data and timestamps. These segments 

were allocated by writing them into the linker file. According to the data sheet, each segment of 

flash is accessible, by default, in blocks of 512 bytes. The program was designed so that each 

sample would consist of four bytes of data and two bytes for the time elapsed. Therefore, each 

flash segment could hold 85 samples, with 2 extra bytes. The last two bytes of each segment 

would be used as a status indicator. 0xEEEE marked a full segment, 0xFEFE marked a partially 

filled segment, and any other two bytes indicated that a blank or corrupted segment that needed 

to be erased. During initialization, the program would parse through the bank of segments, and 

search for the first empty or partially full segment, and point the position marker to the next 

available blank position. 

3.5 Clock Initialization 

In order to execute the data processing commands quickly enough, the main CPU clock was 

increased. TI code examples were used to change the CPU clock to either 1 or 12 MHz. The 

former was to be used during flash operations to reduce current draw tenfold, and the latter 

during processing operations to decrease cycle time. An internal signal called REFO, which is 

designed to run at 32,768 Hz, was used as a reference clock for the digitally controlled oscillator 

in place of an external crystal oscillator. 

3.6 Low Power Mode and Interrupts 

Until the first input is received, the CPU was turned off in a low power mode with general 

interrupts enabled to save power. The CC430 offers five low power modes, with higher modes 

turning off more processes. Low power mode 3 was selected because it turns off the CPU and 

main clock, but maintains power to ACLK, which sources the real-time clock. The CPU is 

restarted in less than 5 µs when any signal is read on the input pins (7). 

3.7 Process Algorithm 

After an input was read, the port interrupts were disabled. A software loop was used to poll for 

more samples rather than relying on interrupts to receive inputs because an interrupt-based 
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algorithm would suffer from interrupt latencies, which can be around 6 µs per interrupt.  A 16-bit 

timer was set up sourced by the 12-MHz SMCLK divided by 4, in continuous mode. This timer 

was used to count the number of clock cycles between samples, which was then converted to a 

time in microseconds. For each cycle of the loop, the input pins were sampled, and if a change 

was detected, the four bytes of data and two bytes corresponding to the aforementioned timer 

were stored into an array in RAM. The timer was also reset, so the timer values corresponded to 

the number of clock cycles between samples. In addition, if the timer overflowed 25 times, then 

about 500 ms passed with no change in inputs, ending the loop. The timer could overflow less 

than 25 times, but still record a sample, i.e., an input changed after 20 ms but before the 500 ms 

window ended. In this case, the proper time would be the number of overflow occurrences 

multiplied by 20,000 µs and added to the timer value. However, completing this operation is 

time consuming and would also not fit in the 16 bits available. Instead, a special marker 

(0xFF00) plus the number of overflow occurrences was stored. An example of the timing of the 

sampling and data storage into RAM is shown in figure 8. The voltage level of the pulses (high 

vs. low) has no meaning in this plot; it is only the timing of the transitions that is important. 

 

Figure 8.  An oscilloscope image showing the timing of the sampling and data storage into RAM (CH1). The 

periodic input was used as input to one of the input pins (CH2). 

3.8 Post-processing 

Samples underwent post-processing before they were stored into flash and transmitted. Each 

sample consisted of six bytes, four of which corresponded to the data (i.e., which pins rose and 

which ones fell) and two to the timestamp. The timer value was converted to microseconds. The 

timer started at the end of one sampling cycle and ended when an input changed. It was found 

that 10 clock cycles passed during a sampling cycle with no input change, which corresponded to 

3.5 µs, as seen in figure 8. The timer did not include the period of time needed to process a 
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sample, which was found to be 9.7 µs, as seen in figure 8. Therefore, the number of 

microseconds that elapsed was determined by using the timer value in the equation shown in 

equation 1. 

          
   

  
            (1) 

When applied to the sample in figure 8, where each input pulse was programmed to last 

19.78 µs, the program evaluated the time to be 20 µs. However, consistently but infrequently, the 

time was evaluated to be 16 µs. This error is shown in figure 8, marked by the red label. On the 

left side of the trace, the first input change occurs very early in the sampling cycle, but after the 

actual sampling is complete, so the 3.5-µs cycle completes without a change registering. The 

next cycle is longer, as the change is registered and stored in RAM, which takes 9.7 µs. There 

are no input changes in the third and fourth cycles. The next change is registered in the fifth 

cycle. The actual time elapsed between the two changes is 19.78 µs, but since the program’s time 

is based on the number of cycles that pass, the apparent time is 9.7 + 3.5*2 rounded down to 

16 µs. This mistiming error can occur by chance, and so the 3.5-µs minimum sampling cycle 

time is the limiting factor for the accuracy of the timestamp. This error will be reduced by 

changing the method of calculation. The number of clock cycles will be used along with the 

frequency of the clock to calculate the time elapsed, which is more effective than using 

experimentally determined values to create a formula. 

After filling a segment of flash memory with data, the flag bytes were changed to 0xEEEE, and 

the next available segment was accessed or erased. In the case where all segments were full, no 

more data would be written to flash, instead of overwriting previously full banks. This prioritized 

the first samples collected. In the event of a broken sensor or faulty circuitry, repeated nonsense 

data should not overwrite previous data. Afterwards, all variables in RAM were cleared, and the 

CPU was put into low power mode again. 

4. Summary and Conclusions 

The sampling delay was improved from the previous design. Previously, 100 µs were required 

between samples, causing data loss. With the new program, the delay has been improved to 

roughly 10 µs. The program has timestamp accuracy for each sample of about 3.5 µs. This 

means that, assuming samples are not input faster than the 10-µs delay, the program’s evaluation 

of the time elapsed is accurate to within 3.5 µs. 

There are still improvements that can be made to this program. It is incomplete, because RF 

transmission has not been implemented.  The program will transmit samples that have just 

occurred in the last input cycle. It will also be able to send all data stored in flash upon user 

input. The timing delay will also be reduced after experimentation with different clock rates. The 
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use of an external crystal, which oscillates at more stable frequencies, especially in the case of 

varying conditions like high temperatures, will also be tested. Furthermore, the power 

consumption of the device will be optimized. For example, while decreasing the clock rate to 

1 MHz for flash operation decreases the current tenfold, the time it takes to complete the process 

might also be 10 times faster. The real-time clock module will also be changed to implement 

user-input to set the time. Once the program is complete, device testing with the new generation 

sensors will be conducted. 
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Appendix A. Pseudocode for the demo 

 
#include "RF_Example.h" 

 

#define  PACKET_LEN         (0x01)     // PACKET_LEN <= 61 

#define  RSSI_IDX           (PACKET_LEN+1)  // Index of appended RSSI 

#define  CRC_LQI_IDX        (PACKET_LEN+2)  // Index of appended LQI, checksum 

#define  CRC_OK             (BIT7)          // CRC_OK bit 

#define  PATABLE_VAL        (0x51)          // 0 dBm output 

 

extern RF_SETTINGS rfSettings; 

 

unsigned char packetReceived; 

unsigned char packetTransmit; 

 

unsigned char RxBuffer[64]; 

unsigned char RxBufferLength = 0; 

const unsigned char TxBuffer[33]=  

{PACKET_LEN, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 

 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 

 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 

 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 

 0x1F, 0x20}; 

const unsigned char TxBuffer2[2]= {PACKET_LEN, 0x02}; 

unsigned char buttonPressed = 0; 

unsigned int i = 0; 

unsigned char TxIndex = 0; 

 

unsigned char transmitting = 0; 

unsigned char receiving = 0; 

 

char *base_addr = (char *)0x1880; 

short * Flash_ptr = (short *) 0;     // segC or segD 

char * curPtr = (char *) 0; 

char ptrOffset = 0; 

unsigned char ptrDir = 1;                         // 1 = forward, 0 = backward 

 

void erase_Flash (void); 

void write_Seg (unsigned char[], unsigned char); 

void setLED(char); 

 

 

void main( void ) 

{ 

  // Stop watchdog timer to prevent time out reset 

  WDTCTL = WDTPW + WDTHOLD; 

 

  // Increase PMMCOREV level to 2 for proper radio operation 

  SetVCore(2); 

 

  ResetRadioCore(); 

  InitRadio(); 
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  InitButtonLeds(); 

 

  ReceiveOn(); 

  receiving = 1; 

 

  while (1) 

  { 

    __bis_SR_register( LPM3_bits + GIE ); 

    __no_operation(); 

 

    if (buttonPressed)                      // Process a button press->transmit 

    { 

      P3OUT |= BIT6;                        // Pulse LED during Transmit 

      buttonPressed = 0; 

      ReceiveOff(); 

      receiving = 0; 

      unsigned char TxStuff[2]; 

      TxStuff[0] = PACKET_LEN; 

      TxStuff[1] = TxBuffer[(TxIndex==0||TxIndex>31)?32:TxIndex]; 

      Transmit( (unsigned char*) TxStuff, sizeof TxStuff); 

 

      transmitting = 1; 

 

      P1IE |= BIT6;                         // Re-enable button press 

    } 

    else if(!transmitting) 

    { 

      ReceiveOn(); 

      receiving = 1; 

    } 

  } 

} 

 

void InitButtonLeds(void) 

{ 

  // Set up the button as interruptible 

  P1DIR = ~(BIT1+BIT2+BIT3+BIT4+BIT5+BIT6); 

  P1REN |= (BIT1+BIT2+BIT3+BIT4+BIT5+BIT6); 

  P1OUT |= (BIT1+BIT2+BIT3+BIT4+BIT5+BIT6); 

  P1IE |= BIT6; 

  P1IES |= BIT6; 

  P1IFG &= ~BIT6; 

 

  //P1.7 is GND 

  //P1DIR.7 is already 1 

  P1OUT &= ~BIT7; 

 

  // Set up Port 2 

  P2DIR = 0x3F; 

  P2REN |= (BIT6+BIT7); 

  P2OUT |= (BIT6+BIT7); 

  P2OUT &= ~(BIT1+BIT2+BIT3+BIT4+BIT5); 

  P2IE |= (BIT6+BIT7); 

  P2IES |= (BIT6+BIT7); 

  P2IFG &= ~(BIT6+BIT7); 

 

  // Initialize Port J 
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  PJOUT = 0x00; 

  PJDIR = 0xFF; 

  // Set up LEDs 

  P1OUT &= ~BIT0; 

  P1DIR |= BIT0; 

  P3OUT &= ~BIT6; 

  P3DIR |= BIT6; 

} 

 

void InitRadio(void) 

{ 

  // Set the High-Power Mode Request Enable bit so LPM3 can be entered 

  // with active radio enabled 

  PMMCTL0_H = 0xA5; 

  PMMCTL0_L |= PMMHPMRE_L; 

  PMMCTL0_H = 0x00; 

 

  WriteRfSettings(&rfSettings); 

 

  WriteSinglePATable(PATABLE_VAL); 

} 

 

void Transmit(unsigned char *buffer, unsigned char length) 

{ 

  RF1AIES |= BIT9; 

  RF1AIFG &= ~BIT9;                         // Clear pending interrupts 

  RF1AIE |= BIT9;                           // Enable TX end-of-packet interrupt 

 

  WriteBurstReg(RF_TXFIFOWR, buffer, length); 

 

  Strobe( RF_STX );                         // Strobe STX 

} 

 

void ReceiveOn(void) 

{ 

  RF1AIES |= BIT9;                          // Falling edge of RFIFG9 

  RF1AIFG &= ~BIT9;                         // Clear a pending interrupt 

  RF1AIE  |= BIT9;                          // Enable the interrupt 

 

  // Radio is in IDLE following a TX, so strobe SRX to enter Receive Mode 

  Strobe( RF_SRX ); 

} 

 

void ReceiveOff(void) 

{ 

  RF1AIE &= ~BIT9;                          // Disable RX interrupts 

  RF1AIFG &= ~BIT9;                         // Clear pending IFG 

 

  // It is possible that ReceiveOff is called while radio is receiving a packet. 

  // Therefore, it is necessary to flush the RX FIFO after issuing IDLE strobe 

  // such that the RXFIFO is empty prior to receiving a packet. 

  Strobe( RF_SIDLE ); 

  Strobe( RF_SFRX  ); 

} 

 

#pragma vector=CC1101_VECTOR 

__interrupt void CC1101_ISR(void) 
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{ 

  switch(__even_in_range(RF1AIV,32))        // Prioritizing Radio Core Interrupt 

  { 

    case  0: break;                         // No RF core interrupt pending 

    case  2: break;                         // RFIFG0 

    case  4: break;                         // RFIFG1 

    case  6: break;                         // RFIFG2 

    case  8: break;                         // RFIFG3 

    case 10: break;                         // RFIFG4 

    case 12: break;                         // RFIFG5 

    case 14: break;                         // RFIFG6 

    case 16: break;                         // RFIFG7 

    case 18: break;                         // RFIFG8 

    case 20:                                // RFIFG9 

      if(receiving)       // RX end of packet 

      { 

        // Read the length byte from the FIFO 

        RxBufferLength = ReadSingleReg( RXBYTES ); 

        ReadBurstReg(RF_RXFIFORD, RxBuffer, RxBufferLength); 

 

        // Stop here to see contents of RxBuffer 

        __no_operation(); 

 

        // Check the CRC results 

        if(RxBuffer[CRC_LQI_IDX] & CRC_OK) { 

         //if(RxBuffer[1]==0x20) 

         //{ 

            //#32 received 

            TA1CCTL0 = CCIE;                           

     // CCR0 interrupt enabled 

            TA1CCR0 = 25000; 

            TA1CTL = TASSEL_2 + MC_2 + TACLR + ID_1;          

     // SMCLK, contmode, clear TAR 

         //} 

         write_Seg(RxBuffer, RxBufferLength-2); 

        } 

 

      } 

      else if(transmitting)      // TX end of packet 

      { 

        RF1AIE &= ~BIT9;                // Disable TX end-of-packet interrupt 

        P3OUT &= ~BIT6;                 // Turn off LED after Transmit 

        transmitting = 0; 

      } 

      else while(1);        // trap 

      break; 

    case 22: break;                         // RFIFG10 

    case 24: break;                         // RFIFG11 

    case 26: break;                         // RFIFG12 

    case 28: break;                         // RFIFG13 

    case 30: break;                         // RFIFG14 

    case 32: break;                         // RFIFG15 

  } 

  __bic_SR_register_on_exit(LPM3_bits); 

} 

 

// Timer A0 interrupt service routine 
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#pragma vector=TIMER1_A0_VECTOR 

__interrupt void TIMER1_A0_ISR(void) 

{ 

  P1OUT ^= BIT0;                            // Toggle P1.0 

  TA1CCR0 += 25000;                         // Add Offset to CCR0 

  if(TA1CCR0 >= 60000) 

   TA1CTL = MC_0; 

} 

 

void write_Seg (unsigned char buffer[], unsigned char length) { 

 unsigned int i; 

 __disable_interrupt();                     

     // 5xx Workaround: Disable global 

                         // interrupt while erasing. Re-Enable 

                         // GIE if needed 

 

 FCTL3 = FWKEY;                            // Clear Lock bit 

 if(Flash_ptr == 0 || Flash_ptr == (short *)base_addr || Flash_ptr >= 

(short *)(base_addr+2*(1+*(base_addr)))){ 

  erase_Flash(); 

  curPtr = base_addr; 

  ptrOffset = 0; 

 } 

 setLED(buffer[1]); 

 

 FCTL1 = FWKEY+WRT;                        

             // Set WRT bit for write operation 

 

 for (i = 1; i < length; i++)        // length-2; do not want CRC_OK extra 

 { 

   *Flash_ptr++ = buffer[i];          // Write value to flash 

 } 

 FCTL1 = FWKEY;                            // Clear WRT bit 

 FCTL3 = FWKEY+LOCK;                       // Set LOCK bit 

 __enable_interrupt();    // Enable global interrupt 

 return; 

} 

 

void erase_Flash(){ 

 FCTL1 = FWKEY+ERASE;                    // Set Erase bit 

 *Flash_ptr = 0;                         // Dummy write to erase Flash seg 

 while(BUSY & FCTL3); 

 base_addr = (char *)0x1880; 

 Flash_ptr = (short *) base_addr; 

 *Flash_ptr = 0; 

 while(BUSY & FCTL3); 

} 

 

 

void setLED(char val){ 

  if(val >= 32) val = 0; 

  P2OUT &= 0xC1; 

  P2OUT |= (val << 1); 

  __no_operation(); 

} 

 

#pragma vector=PORT1_VECTOR 
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__interrupt void PORT1_ISR(void) 

{ 

  switch(__even_in_range(P1IV, 16)) 

  { 

    case  0: break; 

    case  2: break;                         // P1.0 IFG 

    case  4: break;                         // P1.1 IFG 

    case  6: break;                         // P1.2 IFG 

    case  8: break;                         // P1.3 IFG 

    case 10: break;                         // P1.4 IFG 

    case 12: break;                         // P1.5 IFG 

    case 14:                                // P1.6 IFG 

        P1IE = 0;                           // Debounce by disabling buttons 

        P1IFG &= ~BIT6; 

        //P1IES ^= BIT6; 

        buttonPressed = 1; 

        TxIndex = (~(P1IN >> 1)) & ~(0xE0); 

        __bic_SR_register_on_exit(LPM3_bits); // Exit active 

     break; 

    case 16: break;                         // P1.7 IFG 

  } 

} 

 

#pragma vector=PORT2_VECTOR 

__interrupt void PORT2_ISR(void) 

{ 

  switch(__even_in_range(P2IV, 16)) 

  { 

    case  0: break; 

    case  2: break;                         // P2.0 IFG 

    case  4: break;                         // P2.1 IFG 

    case  6: break;                         // P2.2 IFG 

    case  8: break;                         // P2.3 IFG 

    case 10: break;                         // P2.4 IFG 

    case 12: break;                         // P2.5 IFG 

    case 14:                                // P2.6 IFG 

     P2IE &= ~BIT6; 

     P2IES ^= BIT6; 

     ptrDir ^= 1; 

     if(ptrDir){ 

      P1OUT |= BIT0; 

      P3OUT &= ~BIT6; 

     } else { 

      P1OUT &= ~BIT0; 

      P3OUT |= BIT6; 

     } 

     P2IE |= BIT6; 

     P2IFG &= ~BIT6; 

        __bic_SR_register_on_exit(LPM3_bits); // Exit active 

     break; 

    case 16:                                // P2.7 IFG 

     P2IE &= ~BIT7; 

     if(ptrDir)                          // go forward 

     { 

      if((short *)(base_addr+ptrOffset+2)<Flash_ptr) 

       ptrOffset+=2; 

     } else {                            // go backward 
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      if(ptrOffset>=2) 

       ptrOffset -= 2; 

     } 

     setLED(*(base_addr+ptrOffset)); 

     P2IE |= BIT7; 

     P2IFG &= ~BIT7; 

        __bic_SR_register_on_exit(LPM3_bits); // Exit active 

     break; 

  } 

} 
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21 

Appendix B. Code for Version 4 

This is the latest version to-date (version 4). 

/* 

 * Timothy Lee 

 * 8/1/2012 

 * 

 * Version 4 fully implements the flash storage of the sample and time stamp 

 */ 

 

#include "cc430x513x.h" 

 

//  Functions 

void init_CLK(int); 

void init_RTC(void); 

void init_LED(void); 

int init_Flash_sec(void); 

void process(void); 

void write_Seg(); 

void erase_Seg(unsigned short*); 

 

//  Variables 

unsigned short samp0[255] = { 0 }; 

unsigned short samp1[255] = { 0 }; 

unsigned short samp2[255] = { 0 }; 

unsigned short samp3[255] = { 0 }; 

unsigned short samp4[255] = { 0 }; 

unsigned short* sampBank[5] = { samp0, samp1, samp2, samp3, samp4 }; 

unsigned char sBankPtr = 0, sampPtr = 0; 

char flag = 0; 

 

//RF variables 

 

//  Flash variables 

char spaceAvail = 1; 

#pragma DATA_SECTION(T0, ".mydata0"); 

#pragma DATA_ALIGN (T0, 2);  // reserve 2 bytes for each variable 

unsigned short T0[256]; 

#pragma DATA_SECTION(T1, ".mydata1"); 

#pragma DATA_ALIGN (T1, 2);  // reserve 2 bytes for each variable 

unsigned short T1[256]; 

#pragma DATA_SECTION(T2, ".mydata2"); 

#pragma DATA_ALIGN (T2, 2);  // reserve 2 bytes for each variable 

unsigned short T2[256]; 

#pragma DATA_SECTION(T3, ".mydata3"); 

#pragma DATA_ALIGN (T3, 2);  // reserve 2 bytes for each variable 

unsigned short T3[256]; 

#pragma DATA_SECTION(T4, ".mydata4"); 

#pragma DATA_ALIGN (T4, 2);  // reserve 2 bytes for each variable 

unsigned short T4[256]; 

#pragma DATA_SECTION(T5, ".mydata5"); 

#pragma DATA_ALIGN (T5, 2);  // reserve 2 bytes for each variable 



 

22 

unsigned short T5[256]; 

#pragma DATA_SECTION(T6, ".mydata6"); 

#pragma DATA_ALIGN (T6, 2);  // reserve 2 bytes for each variable 

unsigned short T6[256]; 

#pragma DATA_SECTION(T7, ".mydata7"); 

#pragma DATA_ALIGN (T7, 2);  // reserve 2 bytes for each variable 

unsigned short T7[256]; 

#pragma DATA_SECTION(T8, ".mydata8"); 

#pragma DATA_ALIGN (T8, 2);  // reserve 2 bytes for each variable 

unsigned short T8[256]; 

#pragma DATA_SECTION(T9, ".mydata9"); 

#pragma DATA_ALIGN (T9, 2);  // reserve 2 bytes for each variable 

unsigned short T9[256]; 

unsigned short* bank[10] = { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9 }; 

unsigned char curBankPtr = 0, curDataPtr = 0; 

#define FULL 0xEEEE 

#define INUSE 0xFEFE 

#define DEFAULT 0xFFFF 

 

void main(void) { 

 WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog Timer 

 int i1=0, j1=0; 

 for ( i1 = 0; i1 < 5; i1++) 

  for( j1 = 0; j1<255; j1++) 

   sampBank[i1][j1] = 0; 

 init_LED(); 

 init_RTC(); 

 spaceAvail = init_Flash_sec(); 

 init_CLK(12); 

 // USE spaceAvail FLAG! 

 

 //  Timer0 A0 will time how long the processing mode takes 

 while (1) { 

 

  //  A button input will wake the program up 

  __bis_SR_register(LPM3_bits + GIE); 

  // Enter LPM3, enable interrupts 

  __no_operation(); // For debugger 

  if ((P1IE || P2IE) == 0) { 

   //  The real time clock will reserve a space and add its  

   //  time value when process is done 

   //  RTC CODE HERE 

   TA0CTL = TASSEL_2 | MC_2 | ID_2 | TAIE | TACLR; 

   //  continuous mode, /4, interrupt enabled (overflow),  

   //  clear 

   process(); 

   //  Clear timers 

   TA0CTL &= MC_0; //  Stop the processing timer 

 

   //  Program resulting data into flash 

   write_Seg(); 

 

   //  Transmit data over RF 

 

   //  Clear variables 

   flag = 0; 

   int i=0, j=0; 
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   for ( i = 0; i < sBankPtr+1; i++) 

    for( j = 0; j<256; j++) 

     sampBank[i][j] = 0; 

   sBankPtr = 0; 

   sampPtr = 0; 

  } 

 

  P1IE |= ~BIT0; 

  P2IE |= (BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6); 

 } //end while 

} // end main 

 

//  Process method 

//  Once awake, the software will poll the inputs for a certain length of time 

//  ~500 ms 

void process() { 

 //  Samples are of the form 

 //  00YYYYYYXXXXXXXXX0 

 //  Ys are bits 1-6 from port 2. Xs are bits 1-7 from port 1 

 volatile unsigned short lastIn = 0, newIn, temp, lastTime = 0; 

 while (flag < 25) { 

  //  P1 bits directly put into first 8 bits 

  //  P2 bits shifted right once to eliminate pin 0, then left  

  //  shifted 8 times to proper place 

  //  Final is anded with 0011 1111 1111 1110 = 3FFE 

  newIn = (P1IN + ((P2IN >> 1) << 8)) & 0x3FFE; 

  //  XOR inputs to show differences 

  if ((newIn ^ lastIn) != 0) { 

   if (sampPtr == 255) { 

    sampPtr = 0; 

    sBankPtr++; 

   } 

   //  If there are differences, then store the positive edge  

   //  results first, then negative edge results 

   //  newIn & ~lastIn gives positive edge results (+1   

   //  indicates pos edge) 

   //  lastIn & ~newIn gives negative edge results (0 on lsb  

   //  indicates neg edge) 

   sampBank[sBankPtr][sampPtr++] = (newIn & ~lastIn) + 1; 

   sampBank[sBankPtr][sampPtr++] = lastIn & ~newIn; 

   //  if samplePtr reaches X (500), then all spaces in the  

   //  array are full 

   //  Is this to be expected? samplePtr = 500 means 250  

   //  changes have been detected in a 500 ms time period 

   //  With 13 inputs, 250 allows for each input to change 20  

   //  times 

   TA0CTL &= MC_0; 

   //  Store the number of clock cycles since the last data  

   //  capture event 

   //  This will be 0 if this is a new capture cycle 

   //  If flag is not 0, then an overflow has occurred.  This  

   //  means the input is coming after a wait period of > 20  

   //  ms 

   //  A space will be filled with FF00 + flag so that it can  

   //  be checked during postprocessing 

   sampBank[sBankPtr][sampPtr++] = (flag) ? 0xFF00 + flag : TA0R; 

   //  Equation to convert each time from the timer value to  
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   //  actual time periods is 

   //  time[timePtr] = (short) (3.4/10.5*(TA0R - 22)); 

   //  However as this takes 20 us for each conversion, it  

   //  will be done in post-processing before writing to  

   //  flash/transmission 

   //  In addition, if data is continuously sent at a rate of  

   //  < 12 us, the timer will be periodically off.  In   

   //  addition, the time 

   //  obtained above is an estimate and can be off by a few  

   //  microseconds (error gets worse with more time). 

 

   //  Start processing timer 

   flag = 0; 

   TA0CTL = TASSEL_2 | MC_2 | ID_2 | TAIE | TACLR; 

   //  continuous mode, /4, interrupt enabled (overflow),  

   //  clear 

  } 

  lastIn = newIn; 

  P3OUT ^= BIT1; 

 } //  end while 

 __no_operation(); //  For Debugging 

} //  end Process 

 

void write_Seg() { 

 __disable_interrupt(); // 5xx Workaround: Disable global 

         // interrupt while erasing. Re-Enable 

         // GIE if needed 

 // SET DCOCLK TO 1 MHZ AGAIN AND THEN RESET AFTER FLASH 

 init_CLK(1); 

 

 FCTL3 = FWKEY; 

 FCTL1 = FWKEY + WRT; 

 unsigned char i = 0, j = 0; 

 //  Iterate through the samples 

 for (i = 0; i < sBankPtr + 1; i++) { 

  for (j = 0; j < 255; j += 3) 

   //  If there has been a measurement, the first of the 3  

   //  numbers 

   //  will end in a 1 (pos edge).  If it is 0, then this  

   //  space has not 

   //  been used, and we are done 

   if (sampBank[i][j] == 0) 

    j = 252; 

   else { 

    bank[curBankPtr][curDataPtr++] = sampBank[i][j]; 

    while (FCTL3 & BUSY) 

     ; 

    bank[curBankPtr][curDataPtr++] = sampBank[i][j + 1]; 

    while (FCTL3 & BUSY) 

     ; 

    bank[curBankPtr][curDataPtr++] = sampBank[i][j + 2]; 

    while (FCTL3 & BUSY) 

     ; 

    //  If the segment is full, mark the segment and  

    //  increment the bank pointer 

    //  Initialize the new bank 

    if (curDataPtr == 255){ 
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     bank[curBankPtr++][curDataPtr++] = FULL; 

     init_Flash_sec(); 

    } 

   } 

 } 

 FCTL1 = FWKEY; 

 FCTL3 = FWKEY + LOCK; 

 __enable_interrupt(); 

 

 //  Reset the clock to 12 MHz 

 init_CLK(12); 

} //  End write_Seg 

 

//  erase_Seg erases a segment in Flash 

//  It also writes 0xFEFE into the 255th location to indicate the segment is 

//  IN USE 

void erase_Seg(unsigned short *S) { 

 __disable_interrupt(); 

 FCTL3 = FWKEY; 

 FCTL1 = FWKEY + ERASE; 

 *S = 0; 

 while (FCTL3 & BUSY) 

  ; 

 FCTL1 = FWKEY + WRT; 

 S[255] = 0xFEFE; 

 FCTL1 = FWKEY; // Clear WRT bit 

 FCTL3 = FWKEY + LOCK; // Set LOCK bit 

} // end erase_Seg 

 

//  Timer0_A5 CC1-4 

//  This vector is triggered with TA0 TAIFG. 

//  Set up to occur only with overflow events 

#pragma vector = TIMER0_A1_VECTOR 

__interrupt void TIMER0_A1_ISR(void) { 

 TA0CTL = TASSEL_2 | MC_2 | ID_2 | TAIE | TACLR;  

 //  continuous mode, /4, interrupt enabled (overflow), clear 

 TA0CTL &= ~TAIFG; 

 flag++; 

} //  end Timer0 CC1-4 interrupt vector 

 

//  Timer0_A5 CC0 

//  This vector is triggered with TA0 CCR0 interrupt is triggered i.e. TA0CCR0 

//  is reached 

//  The interrupt is cleared automatically 

#pragma vector = TIMER0_A0_VECTOR 

__interrupt void TIMER0_A0_ISR(void) { 

 __bic_SR_register_on_exit(LPM3_bits); 

} //  end Timer0 CC0 interrupt vector 

 

//  Port 1 Interrupt Vector 

//  Can be used to wake up the processor in the event of a change in port 1 

#pragma vector=PORT1_VECTOR 

__interrupt void Port1_ISR(void) { 

 P1IE = 0; 

 P2IE = 0; 

 while (P2IFG != 0 || P1IFG != 0) { 

  P1IFG = 0; 
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  P2IFG = 0; 

 } 

 __bic_SR_register_on_exit(LPM3_bits); 

} //  end port 1 interrupt vector 

 

//  Port 2 Interrupt Vector 

//  Can be used to wake up the processor in the event of a change in port 2 

#pragma vector=PORT2_VECTOR 

__interrupt void Port2_ISR(void) { 

 P1IE = 0; 

 P2IE = 0; 

 while (P2IFG != 0 || P1IFG != 0) { 

  P1IFG = 0; 

  P2IFG = 0; 

 } 

 __bic_SR_register_on_exit(LPM3_bits); 

} //  end port 2 interrupt vector 

 

//  Real-Time Clock Interrupt Vector 

#pragma vector=RTC_VECTOR 

__interrupt void RTC_ISR(void) { 

 switch (__even_in_range(RTCIV, 16)) { 

 case 0: 

  break; // No interrupts 

 case 2: // RTCRDYIFG 

  P3OUT ^= BIT6; 

  RTCCTL01 &= ~RTCHOLD; 

  RTCCTL01 &= ~RTCRDYIFG; 

  break; 

 case 4: 

  break; // RTCEVIFG 

 case 6: 

  break; // RTCAIFG 

 case 8: // RT0PSIFG 

  RTCCTL01 &= ~RT0PSIFG; 

  __bic_SR_register_on_exit(LPM3_bits); 

  break; 

 case 10: // RT1PSIFG 

  RTCCTL01 &= ~RT1PSIFG; 

  __bic_SR_register_on_exit(LPM3_bits); 

  break; 

 case 12: 

  break; // Reserved 

 case 14: 

  break; // Reserved 

 case 16: 

  break; // Reserved 

 default: 

  break; 

 } //  end case 

} //  end Real-Time Clock Interrupt Vector 

 

//  Real-Time Clock Initialization 

void init_RTC() { 

 RTCCTL01 = RTCHOLD | RTCMODE; //  hex-mode, hold, calendar mode 

//  Base clock = ACLK = 32kHz 

//  RT0 clock /256 
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//  RT1 clock RT0 /128 

 RTCPS1CTL |= RT1PSIE + RT1IP_6; 

//  Enable RT1 Interrupt, Prescaler set /128 

 RTCTIM0 = 0x0000; //  0 sec 0 min 

 RTCHOUR = 0x11; //  17 hour 

 RTCDOW = 0; //  Day of the week - 0 

 /* 

 RTCDATE = 0x0719; //  Date 7/19 

 RTCYEAR = 0x2012; //  Year 2012 

 */ 

 RTCCTL01 &= ~RTCHOLD; //  Activate RTC 

} // end RTC 

 

//  Clock Initialization 

void init_CLK(int n) { 

 UCSCTL3 |= SELREF_2; // Set DCO FLL reference = REFO 

 UCSCTL4 |= SELA_2; // Set ACLK = REFO 

 

 __bis_SR_register(SCG0); 

// Disable the FLL control loop 

 UCSCTL0 = 0x0000; // Set lowest possible DCOx, MODx 

 if (n == 12) { 

  UCSCTL1 = DCORSEL_5; // Select DCO range 24MHz operation 

  UCSCTL2 = FLLD_1 + 374; // Set DCO Multiplier for 12MHz 

 } else if (n == 1) { 

  UCSCTL1 = DCORSEL_1; 

  UCSCTL2 = FLLD_1 + 30; 

 } 

// (N + 1) * FLLRef = Fdco 

// (374 + 1) * 32768 = 12MHz 

// Set FLL Div = fDCOCLK/2 

 __bic_SR_register(SCG0); 

// Enable the FLL control loop 

 

// Worst-case settling time for the DCO when the DCO range bits have been 

// changed is n x 32 x 32 x f_MCLK / f_FLL_reference. See UCS chapter in 5xx 

// UG for optimization. 

// 32 x 32 x 12 MHz / 32,768 Hz = 375000 = MCLK cycles for DCO to settle 

 if (n == 1) 

  __delay_cycles(31250); 

 else if (n == 12) 

  __delay_cycles(375000); 

 

 

// Loop until XT1,XT2 & DCO fault flag is cleared 

 do { 

  UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + XT1HFOFFG + DCOFFG); 

  // Clear XT2,XT1,DCO fault flags 

  SFRIFG1 &= ~OFIFG; // Clear fault flags 

 } while (SFRIFG1 & OFIFG); // Test oscillator fault flag 

} 

 

//  LED Initialization 

void init_LED() { 

//  Port 1.0 Green LED, Port 3.6 Red LED 

//  Port 1.1-1.7 inputs for levels 1-7 

//  Port 2.1-2.6 inputs for level 8, Z, Y, X, NEG, POS 
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//  Port 2.7 OUTPUT GND 

//  0 is Input, 1 is Output 

 P1DIR = BIT0; 

 P2DIR = ~(BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6); 

 P3DIR |= BIT6; 

 

 P2OUT |= (BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6); 

 P2OUT &= ~BIT7; 

//  Enable Interrupts from low to high 

 P1IES &= BIT0; 

 P2IES &= ~(BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6); 

 P1IE |= ~BIT0; 

 P2IE |= (BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6); 

//  Clear IFG 

 P1IFG = 0; 

 P2IFG = 0; 

//  LEDs 

 P3DIR |= BIT6; 

 P3OUT &= ~BIT6; 

 P1OUT &= ~BIT0; //  Green LED 

 

//TESTING PURPOSES FOR THIRD VERSION 

 P3DIR |= BIT1; 

 P3OUT |= BIT1; 

 P3OUT &= ~BIT1; 

 

} //  end LED Initialization 

 

//  init_Flash_sec goes through the bank to initialize the bank and data pointer 

//  If the segment is marked as in use, then iterate through to retrieve the    

//  next available data pointer 

//  If the segment is marked as full, go to the next segment 

//  If the segment is marked as blank, erase the bank 

int init_Flash_sec() { 

 unsigned char i = 0, j = 0; 

 //  Iterate through at most 10 banks 

 while (i < 10) { 

  //  If the ith segment's last entry is 0xFFFF, then it is an  

  //  empty segment 

  //  Erase the segment so it can be written to, set the pointers  

  //  to 0 

  //  Return a 1 indicating space is available 

  //  If the ith segment's last entry is 0xFEFE, then the segment  

  //  has been erased 

  //  It may be partially full, so iterate through until a default  

  //  byte is found 

  if (bank[i][255] == INUSE) { 

   curBankPtr = i; 

   for (j = 0; j < 255; j += 3) 

    if (bank[i][j] == DEFAULT) { 

     curDataPtr = j; 

     return 1; 

    } 

   //  If no data points are found, then the data is corrupt 

   //  Ignore this segment and increment to the next 

   i++; 

  } 
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  //  If the ith segment's last entry is 0xEEEE, then the segment  

  //  is full 

  //  Increment the index to the next segment, as no more room is  

  //  available in this seg 

  else if (bank[i][255] == FULL) 

   i++; 

  else 

  //  If the last entry is none of the above, then the flash memory 

  //  is corrupt or blank 

  //  Treat as if it were a DEFAULT 

  { 

   erase_Seg(bank[i]); 

   curBankPtr = i; 

   curDataPtr = 0; 

   return 1; 

  } 

 } 

 //  If none of the segments are in use or reset, then there is no flash 

 //  available 

 return 0; 

} //  end init_Flash_sec 
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