

Interfacing a Microelectromechanical System (MEMS)

Sensor Array for Traumatic Brain Injury Detection with a

Microcontroller

by Timothy C. Lee and Luke J. Currano

ARL-TR-6240 October 2012

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6240 October 2012

Interfacing a Microelectromechanical System (MEMS)

Sensor Array for Traumatic Brain Injury Detection with a

Microcontroller

Timothy C. Lee and Luke J. Currano

Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

October 2012

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Interfacing a Microelectromechanical System (MEMS) Sensor Array for

Traumatic Brain Injury Detection with a Microcontroller

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Timothy C. Lee and Luke J. Currano

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SER-L

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6240

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Traumatic brain injuries (TBIs) result from exposure to high accelerations and are a serious threat to Soldiers in close contact

with improvised explosive devices as well as sports players who are frequently involved in collisions. To improve TBI

detection, the U.S. Army Research Laboratory (ARL) has developed a sensor small enough to be mounted in the ear. The

sensor consists of an array of 3-axis microelectromechanical system (MEMS) acceleration threshold switches with different

sensitivities that move to contacts under acceleration and complete a circuit. Previously, the outputs, which were voltage levels,

required an analog-to-digital converter, but the implementation of the mechanism introduced a delay of 100 µs between

samples. This delay has caused the loss of data from switch closures that last less than 100 µs, so the sensor was redesigned

with digital outputs, and a new program was developed. Clocked signals were used to simulate sensor data, and tests showed

improved delays of 3 µs to 10 µs.
15. SUBJECT TERMS

Traumatic, brain, injury, microcontroller

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

38

19a. NAME OF RESPONSIBLE PERSON

Luke J. Currano
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-0566

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

Acknowledgments v

Student Bio vi

1. Introduction/Background 1

2. Hardware and Initial Testing 2

3. Results and Final Program 4

3.1 Data Structure ..5

3.2 Port Initialization ...7

3.3 Real-time Clock Initialization ...8

3.4 Flash Initialization ...8

3.5 Clock Initialization ..8

3.6 Low Power Mode and Interrupts ...8

3.7 Process Algorithm ...8

3.8 Post-processing ..9

4. Summary and Conclusions 10

5. References 12

Appendix A. Pseudocode for the demo 13

Appendix B. Code for Version 4 21

Distribution List 30

iv

List of Figures

Figure 1. Scanning electron micrograph (SEM) of a Generation 3 sensor; a spiral spring
sensor completes a circuit when an acceleration threshold is exceeded.1

Figure 2. SEM of a Generation 4 sensor. The spiral spring sensor touches three contacts
when an acceleration threshold is exceeded. Duplicate signals are tied together to reduce
outputs. ...2

Figure 3. EM430F5137RF900 target board. ...3

Figure 4. Pseudocode outlining the steps of the demo program. ..4

Figure 5. Pseudocode outlining the steps of the final program...5

Figure 6. Flowchart indicating data processing for an input change in input 12. The final
result is stored in a byte in RAM. ...5

Figure 7. Flowchart depicting data processing in the second data structure. The notation A.B
refers to port A, pin B. The Z’s indicate signals that can be any value. By using Boolean
logic on the previous input and the new input, information on which pins rose and which
fell can be extracted. ..7

Figure 8. An oscilloscope image showing the timing of the sampling and data storage into
RAM (CH1). The periodic input was used as input to one of the input pins (CH2).9

v

Acknowledgments

I wish to acknowledge Dr. Luke Currano and the members of the Microelectromechanical

System (MEMS) and Energetics laboratory, Marvin Conn and Arthur Harrison.

vi

Student Bio

I am a third-year undergraduate student attending the University of Maryland at College Park. I

intend to graduate with a double degree in electrical engineering and math. I hope to enter the

rising energy sector and develop efficient technologies to improve energy consumption.

1

1. Introduction/Background

Traumatic brain injuries (TBIs) are a common result of high acceleration events and pose a

health threat to Soldiers exposed to improvised explosive devices as well as sports players who

are frequently involved in collisions. While severe TBIs may cause obvious superficial damage,

mild TBIs that might occur several times are harder to detect and diagnose. There are existing

sensors in the military and civilian sports that are intended to detect and classify the severity of

impacts using commercially available accelerometers or pressure sensors (or both) (1, 2). The

main limitation of current acceleration and pressure sensors is that they require a constant source

of power during monitoring.

To minimize power consumption, researchers at the U.S. Army Research Laboratory have

developed an array of 3-axis microelectromechanical system (MEMS) acceleration threshold

switches to detect acceleration events (3, 4). On a single 3 mm x 3 mm chip, there are five spiral-

shaped springs, each of which are compliant in the x-, y-, and z-axes that close an electrical

circuit when an acceleration event exceeds a designed threshold, as shown in figure 1.

Figure 1. Scanning electron micrograph (SEM) of a Generation 3

sensor; a spiral spring sensor completes a circuit when

an acceleration threshold is exceeded.

While the device is idle, the circuits are open, so no power is required except during actual

events. When a switch is closed, current travels through a resistor network, and the output

voltage is read across a reference resistor. The lowest output voltage level is read when the

lowest threshold switch is closed, and the highest output voltage level is read when the highest

threshold switch is closed. This setup reduces the number of outputs from 31 (+X, –X, +Y, –Y,

+Z, and –Z for each of five levels plus ground [GND]) to 7 (six voltage readings and GND). The

tradeoff is that the processor must analyze voltage levels, which are analog values. The analog-

to-digital converter (ADC) takes a minimum of approximately 20 µs for each conversion (5).

2

The previous program implemented the ADC multiple times per sampling cycle (once for each

output), for a total of a 100-µs delay between samples.

Device testing included short bursts of accelerations from a shock tube to simulate the shock

wave from an explosive blast. The device’s response included many individual switch closures,

some of which lasted fewer than 100 µs. The delay was causing significant data loss, so the

device was redesigned with digital outputs and an increased number of threshold levels. The

outputs of this new version would not be routed through a resistor network. Instead, the raw

value of 0 or 3.3 V would be sent to the microcontroller, which would read these values as a “0”

or “1.” When an acceleration threshold was exceeded, the mass would hit three contacts, and

send a POS or NEG, an X, Y, or Z, and a level 1–8, as shown in figure 2.

Figure 2. SEM of a Generation 4 sensor. The spiral spring sensor

touches three contacts when an acceleration

threshold is exceeded. Duplicate signals are tied

together to reduce outputs.

As such, the number of outputs was increased to 14 (X, Y, Z, POS, NEG, Level 1, 2, 3, 4, 5, 6, 7,

8, and GND). The new digital design eliminates the need for the ADC, and the time and power

overhead associated with it. The previous Texas Instruments (TI) microcontroller was also

replaced with a newer and faster model. This report discusses the development of the new

program to interface the sensor array with the new TI microcontroller.

2. Hardware and Initial Testing

The main hardware that was being tested was the TI CC430F5137 microcontroller. The chip was

in a 48-pin package soldered onto an EM430F5137RF900 target board, which included a Joint

Test Action Group (JTAG) connector, a radio frequency (RF) antenna socket, and fully

accessible pins to provide external signals to the ports, as shown in figure 3. The necessary

3

drivers were installed to the computer through provided TI software, and the microcontroller was

connected via a MSP-FET430UIF USB Flash Emulation Tool. Programs were written in Code

Composer Studio, version 5.

Figure 3. EM430F5137RF900 target board.

A series of test programs were written to test the functionality and capability of the

microcontroller. Some programs were used from TI’s provided Code examples and from an

introductory textbook on microcontrollers (6). The initial programs were simple: flashing the

onboard light-emitting diodes (LEDs) continuously at a single frequency with a software loop,

using multiple timers to flash the LEDs at different frequencies, and checking for a button input

via a software poll.

Once some basic functionality was shown, interrupts were incorporated. Interrupts, which are a

major component in control algorithms, trigger on specific actions like a button press or a timer

overflow and redirect the program flow to appropriate subroutines. Software loops that

continuously poll for input changes and use software delays are power intensive because the

central processing unit (CPU) is constantly running. Using interrupts, the CPU can be shut down

during idle times, which reduces power consumption, a major goal of the final design.

To conclude the initial testing phase, a demo program was written that incorporated basic

concepts like timer usage, input handling, and data processing as well as more advanced

concepts like RF transmission, data storage in both RAM and flash, and data retrieval. The demo

program was to retrieve a stream of binary numbers and send them to a receiver via RF. The

receiver was to store the data into flash. Then, using switches, the receiver would parse through

the data in both directions and display the binary number on LEDs. The pseudocode for the

demo is shown in figure 4, and the code is shown in appendix A.

4

Figure 4. Pseudocode outlining the steps of the demo program.

3. Results and Final Program

The final program had to meet several design specifications. The CPU was to enter a low power

mode while no input changes were read. Assuming the inputs were initially 0, a rising edge on

any of the pins would trigger an interrupt, which would wake up the processor. When awake, the

time recorded by the real-time clock would be stored. All following input changes and the time

elapsed between samples would be recorded. A software poll, as opposed to interrupt method,

was used to collect data once the processor was awake, to avoid latency issues because each

interrupt service introduces a delay of about 6 µs. Data collection would be stopped 500 ms after

the last input change, which is longer than the duration of a typical acceleration event. The

samples would be stored into flash memory and transmitted via RF, after which the program

would re-enter the low power mode. Pseudocode outlining the steps of the program is shown in

figure 5. The code for the latest version (version 4) is shown in appendix B.

main(){

initialize LEDs and radio operation

loop forever {

enter low_power_mode

 wake up on one of three conditions:

1) Button is pushed on Port 1 (input)
2) Radio receives a signal
3) Button is pushed on Port 2 (output to

LED)

}

}

1) Button is pushed on Port 1 {

 Transmit byte via RF

}

2) Radio receives a signal {

 Toggle blinking LED

 Write to flash

}

3) Button is pushed on Port 2 {

 Cursor through flash memory in desired direction

 Display binary number on LEDs

}

5

main(){

initialize the inputs/leds, the real-time clock, the

sample bank, the flash memory, and the clock

loop forever {

enter low_power_mode

wake up on any input rising edge change

store the real-time clock value

process the data via software poll and store in

RAM. Repeat until 500 ms of no data

store the data into FLASH

transmit via RF

clear variables

}

}

Figure 5. Pseudocode outlining the steps of the final program.

3.1 Data Structure

There were two data structures considered for storing data from the 13 digital inputs. In the first

design, a binary label 0001-1101 (corresponding to the numbers 1 through 13 in decimal) would

be assigned to each pin. When an input change was detected, the program would determine

which of the 13 pins changed. A flag, indicating whether the pin was high or low after the

change, was appended to the label, and the 5 bits of data were stored in a byte, as seen in

figure 6. With this configuration, every change on a pin is recorded with a byte. However, this

also means that during each sampling cycle, each of the pins have to be individually checked and

handled. In the best-case scenario, no changes occur; no extra processing must occur, so the

cycle time is 4 µs. In the worst case scenario, a change is recorded on all 13 pins, which then

requires 13 bytes to be stored (1 byte per pin). The sampling cycle in this case increases to

25 µs, primarily because of the time required to write the data to RAM.

Figure 6. Flowchart indicating data processing for an input change in input 12. The final result is

stored in a byte in RAM.

A second data structure removed the sampling cycle time’s dependency on the number of input

changes. The inputs read from the ports during each cycle were bit-shifted and masked so that

each pin corresponded to a single bit. With 13 input pins, this meant 13 bits were required to

store the data. The ports were set up with sensor inputs connected to pins 1–7 on port 1 and

bit-shift

left once

append flag

bit and store

in a byte

110002

12 = 11002

flag = 1 (positive edge)

110012

Input 12 goes from

high to low

6

pins 1–6 on port 2. When a change was detected, a logic statement determined which pins

changed from high to low and vice versa, as shown in figure 7. The drawback of this model was

that four bytes of data had to be stored whenever even a single input changed—as opposed to the

first model, which stored only one byte per changed input. However, in this model no more than

4 bytes of data will ever need to be written from one polling cycle. In contrast, the first model

could require writing as many as 13 bytes of data. With respect to timings, the model had a best-

case scenario where no change was detected and each sampling cycle takes 4 µs. The worst-case

scenario was independent of how many inputs changed. If any input changed, the cycle time

would be 10 µs. Although this is not as fast as the first design in the case of one or two inputs

changing, it is likely that in the final application of the sensor, multiple directions would be

experiencing different accelerations in a very short period of time. Therefore, the second design

has a smaller chance of data loss than the first.

7

Figure 7. Flowchart depicting data processing in the second data structure. The notation A.B refers to port A,

pin B. The Z’s indicate signals that can be any value. By using Boolean logic on the previous input

and the new input, information on which pins rose and which fell can be extracted.

3.2 Port Initialization

Ports 1 and 2 were used to handle the sensor outputs. Each port has eight available pins, each

capable of reading an external signal once an eight-pin header was soldered onto the target

board. Ports 1 and 2 were specifically used because interrupts can only be enabled on these two

ports for the CC430F5137. Pins 1–7 on Port 1 and pins 1‒6 on Port 2 were configured as inputs

with no internal pull-up resistor. The pins read a 0 V as a “0” and 3.3 V as a “1”. One potential

problem with this design is that until the sensor outputs are connected with the GND pad, which

is actually 3.3 V, the outputs are floating values. Crosstalk between pins or other factors could

cause false positives. A simple fix, if this does create a problem, would be to change the GND

pad to give 0 V and initialize the pull-up resistors in the microcontroller. In this setup, 3.3 V

1.2, 1.4, 2.1

rise
Microcontroller Reads:

P1IN = 0001010Z2

P2IN = Z000001Z2

Initial input all low:

Last input (X):

00000000000000002

bit-shift P2IN

right once

P1IN = 0001010Z2

P2IN = 0Z0000012

P1IN = 0001010Z2

P2IN = 0Z000001000000002

bit-shift P2IN

left 8 times

add

0Z0000010001010Z 2

New input (Y):

00000001000101002

mask to eliminate last bit

and first two bits

(!X AND Y) + 1

Rising edge

00000001000101002

(X AND !Y)

Falling edge

0000000000000002

8

would be read as a “0” and 0 V would be a “1”. Interrupts can only be triggered in one direction

at a time, so currently, it is selected to trigger when a low to high voltage transition occurs. The

interrupt should only be serviced at the first input change, which should be a pin going from the

initial state (“0”) to the changed state (“1”).

3.3 Real-time Clock Initialization

The real-time clock was used so that the time of the day could be recorded when an acceleration

event occurred. The module was initialized with arbitrary values, but future versions will

incorporate user input to set the clock.

3.4 Flash Initialization

Ten segments of flash memory were reserved to store the data and timestamps. These segments

were allocated by writing them into the linker file. According to the data sheet, each segment of

flash is accessible, by default, in blocks of 512 bytes. The program was designed so that each

sample would consist of four bytes of data and two bytes for the time elapsed. Therefore, each

flash segment could hold 85 samples, with 2 extra bytes. The last two bytes of each segment

would be used as a status indicator. 0xEEEE marked a full segment, 0xFEFE marked a partially

filled segment, and any other two bytes indicated that a blank or corrupted segment that needed

to be erased. During initialization, the program would parse through the bank of segments, and

search for the first empty or partially full segment, and point the position marker to the next

available blank position.

3.5 Clock Initialization

In order to execute the data processing commands quickly enough, the main CPU clock was

increased. TI code examples were used to change the CPU clock to either 1 or 12 MHz. The

former was to be used during flash operations to reduce current draw tenfold, and the latter

during processing operations to decrease cycle time. An internal signal called REFO, which is

designed to run at 32,768 Hz, was used as a reference clock for the digitally controlled oscillator

in place of an external crystal oscillator.

3.6 Low Power Mode and Interrupts

Until the first input is received, the CPU was turned off in a low power mode with general

interrupts enabled to save power. The CC430 offers five low power modes, with higher modes

turning off more processes. Low power mode 3 was selected because it turns off the CPU and

main clock, but maintains power to ACLK, which sources the real-time clock. The CPU is

restarted in less than 5 µs when any signal is read on the input pins (7).

3.7 Process Algorithm

After an input was read, the port interrupts were disabled. A software loop was used to poll for

more samples rather than relying on interrupts to receive inputs because an interrupt-based

9

algorithm would suffer from interrupt latencies, which can be around 6 µs per interrupt. A 16-bit

timer was set up sourced by the 12-MHz SMCLK divided by 4, in continuous mode. This timer

was used to count the number of clock cycles between samples, which was then converted to a

time in microseconds. For each cycle of the loop, the input pins were sampled, and if a change

was detected, the four bytes of data and two bytes corresponding to the aforementioned timer

were stored into an array in RAM. The timer was also reset, so the timer values corresponded to

the number of clock cycles between samples. In addition, if the timer overflowed 25 times, then

about 500 ms passed with no change in inputs, ending the loop. The timer could overflow less

than 25 times, but still record a sample, i.e., an input changed after 20 ms but before the 500 ms

window ended. In this case, the proper time would be the number of overflow occurrences

multiplied by 20,000 µs and added to the timer value. However, completing this operation is

time consuming and would also not fit in the 16 bits available. Instead, a special marker

(0xFF00) plus the number of overflow occurrences was stored. An example of the timing of the

sampling and data storage into RAM is shown in figure 8. The voltage level of the pulses (high

vs. low) has no meaning in this plot; it is only the timing of the transitions that is important.

Figure 8. An oscilloscope image showing the timing of the sampling and data storage into RAM (CH1). The

periodic input was used as input to one of the input pins (CH2).

3.8 Post-processing

Samples underwent post-processing before they were stored into flash and transmitted. Each

sample consisted of six bytes, four of which corresponded to the data (i.e., which pins rose and

which ones fell) and two to the timestamp. The timer value was converted to microseconds. The

timer started at the end of one sampling cycle and ended when an input changed. It was found

that 10 clock cycles passed during a sampling cycle with no input change, which corresponded to

3.5 µs, as seen in figure 8. The timer did not include the period of time needed to process a

10

sample, which was found to be 9.7 µs, as seen in figure 8. Therefore, the number of

microseconds that elapsed was determined by using the timer value in the equation shown in

equation 1.

 (1)

When applied to the sample in figure 8, where each input pulse was programmed to last

19.78 µs, the program evaluated the time to be 20 µs. However, consistently but infrequently, the

time was evaluated to be 16 µs. This error is shown in figure 8, marked by the red label. On the

left side of the trace, the first input change occurs very early in the sampling cycle, but after the

actual sampling is complete, so the 3.5-µs cycle completes without a change registering. The

next cycle is longer, as the change is registered and stored in RAM, which takes 9.7 µs. There

are no input changes in the third and fourth cycles. The next change is registered in the fifth

cycle. The actual time elapsed between the two changes is 19.78 µs, but since the program’s time

is based on the number of cycles that pass, the apparent time is 9.7 + 3.5*2 rounded down to

16 µs. This mistiming error can occur by chance, and so the 3.5-µs minimum sampling cycle

time is the limiting factor for the accuracy of the timestamp. This error will be reduced by

changing the method of calculation. The number of clock cycles will be used along with the

frequency of the clock to calculate the time elapsed, which is more effective than using

experimentally determined values to create a formula.

After filling a segment of flash memory with data, the flag bytes were changed to 0xEEEE, and

the next available segment was accessed or erased. In the case where all segments were full, no

more data would be written to flash, instead of overwriting previously full banks. This prioritized

the first samples collected. In the event of a broken sensor or faulty circuitry, repeated nonsense

data should not overwrite previous data. Afterwards, all variables in RAM were cleared, and the

CPU was put into low power mode again.

4. Summary and Conclusions

The sampling delay was improved from the previous design. Previously, 100 µs were required

between samples, causing data loss. With the new program, the delay has been improved to

roughly 10 µs. The program has timestamp accuracy for each sample of about 3.5 µs. This

means that, assuming samples are not input faster than the 10-µs delay, the program’s evaluation

of the time elapsed is accurate to within 3.5 µs.

There are still improvements that can be made to this program. It is incomplete, because RF

transmission has not been implemented. The program will transmit samples that have just

occurred in the last input cycle. It will also be able to send all data stored in flash upon user

input. The timing delay will also be reduced after experimentation with different clock rates. The

11

use of an external crystal, which oscillates at more stable frequencies, especially in the case of

varying conditions like high temperatures, will also be tested. Furthermore, the power

consumption of the device will be optimized. For example, while decreasing the clock rate to

1 MHz for flash operation decreases the current tenfold, the time it takes to complete the process

might also be 10 times faster. The real-time clock module will also be changed to implement

user-input to set the time. Once the program is complete, device testing with the new generation

sensors will be conducted.

12

5. References

1. Duma, S. M.; Manoogian, S. J.; Bussone, W. R.; Brolinson, P. G.; Goforth, M. W.;

Donnenwerth, J. J.; Greenwald, R. M.; Chu, J. J.; Crisco, J. J. Analysis of Real-time Head

Accelerations in Collegiate Football Players. Clin J Sport Med. 2005, 15, 3–8.

2. Sauser, B. Fighting Head Trauma in Iraq. Technology Review. MIT, 18 Sept. 2007.

http://www.technologyreview.com/news/408688/fighting-head-trauma-in-iraq/ (accessed 16

Aug. 2012).

3. Smith, G. L.; Fan, L.; Balestrieri, R. E.; Jean, D. L. Micromechanical Shock Sensor, U.S.

Patent US 6,737,979, May 18, 2004.

4. Currano, L. J.; Becker, C. R.; Lunking, D.; Smith, G. L.; Isaacson, B.; Thomas, L. Triaxial

Inertial Switch with Multiple Thresholds and Resistive Ladder Readout. Sensors and

Actuators A: Physical, in press. Retrieved from http://www.sciencedirect.com

5. Thomas, L. Personal communication, July 2012.

6. Davies, J. H. MSP430 Microcontroller Basics. Oxford: Newnes, 2008.

7. Texas Instruments, CC430 Family User’s Guide, SLAU259B datasheet, May 2009 [Revised

July 2010].

http://www.sciencedirect.com/

13

Appendix A. Pseudocode for the demo

#include "RF_Example.h"

#define PACKET_LEN (0x01) // PACKET_LEN <= 61

#define RSSI_IDX (PACKET_LEN+1) // Index of appended RSSI

#define CRC_LQI_IDX (PACKET_LEN+2) // Index of appended LQI, checksum

#define CRC_OK (BIT7) // CRC_OK bit

#define PATABLE_VAL (0x51) // 0 dBm output

extern RF_SETTINGS rfSettings;

unsigned char packetReceived;

unsigned char packetTransmit;

unsigned char RxBuffer[64];

unsigned char RxBufferLength = 0;

const unsigned char TxBuffer[33]=

{PACKET_LEN, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,

 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,

 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E,

 0x1F, 0x20};

const unsigned char TxBuffer2[2]= {PACKET_LEN, 0x02};

unsigned char buttonPressed = 0;

unsigned int i = 0;

unsigned char TxIndex = 0;

unsigned char transmitting = 0;

unsigned char receiving = 0;

char *base_addr = (char *)0x1880;

short * Flash_ptr = (short *) 0; // segC or segD

char * curPtr = (char *) 0;

char ptrOffset = 0;

unsigned char ptrDir = 1; // 1 = forward, 0 = backward

void erase_Flash (void);

void write_Seg (unsigned char[], unsigned char);

void setLED(char);

void main(void)

{

 // Stop watchdog timer to prevent time out reset

 WDTCTL = WDTPW + WDTHOLD;

 // Increase PMMCOREV level to 2 for proper radio operation

 SetVCore(2);

 ResetRadioCore();

 InitRadio();

14

 InitButtonLeds();

 ReceiveOn();

 receiving = 1;

 while (1)

 {

 __bis_SR_register(LPM3_bits + GIE);

 __no_operation();

 if (buttonPressed) // Process a button press->transmit

 {

 P3OUT |= BIT6; // Pulse LED during Transmit

 buttonPressed = 0;

 ReceiveOff();

 receiving = 0;

 unsigned char TxStuff[2];

 TxStuff[0] = PACKET_LEN;

 TxStuff[1] = TxBuffer[(TxIndex==0||TxIndex>31)?32:TxIndex];

 Transmit((unsigned char*) TxStuff, sizeof TxStuff);

 transmitting = 1;

 P1IE |= BIT6; // Re-enable button press

 }

 else if(!transmitting)

 {

 ReceiveOn();

 receiving = 1;

 }

 }

}

void InitButtonLeds(void)

{

 // Set up the button as interruptible

 P1DIR = ~(BIT1+BIT2+BIT3+BIT4+BIT5+BIT6);

 P1REN |= (BIT1+BIT2+BIT3+BIT4+BIT5+BIT6);

 P1OUT |= (BIT1+BIT2+BIT3+BIT4+BIT5+BIT6);

 P1IE |= BIT6;

 P1IES |= BIT6;

 P1IFG &= ~BIT6;

 //P1.7 is GND

 //P1DIR.7 is already 1

 P1OUT &= ~BIT7;

 // Set up Port 2

 P2DIR = 0x3F;

 P2REN |= (BIT6+BIT7);

 P2OUT |= (BIT6+BIT7);

 P2OUT &= ~(BIT1+BIT2+BIT3+BIT4+BIT5);

 P2IE |= (BIT6+BIT7);

 P2IES |= (BIT6+BIT7);

 P2IFG &= ~(BIT6+BIT7);

 // Initialize Port J

15

 PJOUT = 0x00;

 PJDIR = 0xFF;

 // Set up LEDs

 P1OUT &= ~BIT0;

 P1DIR |= BIT0;

 P3OUT &= ~BIT6;

 P3DIR |= BIT6;

}

void InitRadio(void)

{

 // Set the High-Power Mode Request Enable bit so LPM3 can be entered

 // with active radio enabled

 PMMCTL0_H = 0xA5;

 PMMCTL0_L |= PMMHPMRE_L;

 PMMCTL0_H = 0x00;

 WriteRfSettings(&rfSettings);

 WriteSinglePATable(PATABLE_VAL);

}

void Transmit(unsigned char *buffer, unsigned char length)

{

 RF1AIES |= BIT9;

 RF1AIFG &= ~BIT9; // Clear pending interrupts

 RF1AIE |= BIT9; // Enable TX end-of-packet interrupt

 WriteBurstReg(RF_TXFIFOWR, buffer, length);

 Strobe(RF_STX); // Strobe STX

}

void ReceiveOn(void)

{

 RF1AIES |= BIT9; // Falling edge of RFIFG9

 RF1AIFG &= ~BIT9; // Clear a pending interrupt

 RF1AIE |= BIT9; // Enable the interrupt

 // Radio is in IDLE following a TX, so strobe SRX to enter Receive Mode

 Strobe(RF_SRX);

}

void ReceiveOff(void)

{

 RF1AIE &= ~BIT9; // Disable RX interrupts

 RF1AIFG &= ~BIT9; // Clear pending IFG

 // It is possible that ReceiveOff is called while radio is receiving a packet.

 // Therefore, it is necessary to flush the RX FIFO after issuing IDLE strobe

 // such that the RXFIFO is empty prior to receiving a packet.

 Strobe(RF_SIDLE);

 Strobe(RF_SFRX);

}

#pragma vector=CC1101_VECTOR

__interrupt void CC1101_ISR(void)

16

{

 switch(__even_in_range(RF1AIV,32)) // Prioritizing Radio Core Interrupt

 {

 case 0: break; // No RF core interrupt pending

 case 2: break; // RFIFG0

 case 4: break; // RFIFG1

 case 6: break; // RFIFG2

 case 8: break; // RFIFG3

 case 10: break; // RFIFG4

 case 12: break; // RFIFG5

 case 14: break; // RFIFG6

 case 16: break; // RFIFG7

 case 18: break; // RFIFG8

 case 20: // RFIFG9

 if(receiving) // RX end of packet

 {

 // Read the length byte from the FIFO

 RxBufferLength = ReadSingleReg(RXBYTES);

 ReadBurstReg(RF_RXFIFORD, RxBuffer, RxBufferLength);

 // Stop here to see contents of RxBuffer

 __no_operation();

 // Check the CRC results

 if(RxBuffer[CRC_LQI_IDX] & CRC_OK) {

 //if(RxBuffer[1]==0x20)

 //{

 //#32 received

 TA1CCTL0 = CCIE;

 // CCR0 interrupt enabled

 TA1CCR0 = 25000;

 TA1CTL = TASSEL_2 + MC_2 + TACLR + ID_1;

 // SMCLK, contmode, clear TAR

 //}

 write_Seg(RxBuffer, RxBufferLength-2);

 }

 }

 else if(transmitting) // TX end of packet

 {

 RF1AIE &= ~BIT9; // Disable TX end-of-packet interrupt

 P3OUT &= ~BIT6; // Turn off LED after Transmit

 transmitting = 0;

 }

 else while(1); // trap

 break;

 case 22: break; // RFIFG10

 case 24: break; // RFIFG11

 case 26: break; // RFIFG12

 case 28: break; // RFIFG13

 case 30: break; // RFIFG14

 case 32: break; // RFIFG15

 }

 __bic_SR_register_on_exit(LPM3_bits);

}

// Timer A0 interrupt service routine

17

#pragma vector=TIMER1_A0_VECTOR

__interrupt void TIMER1_A0_ISR(void)

{

 P1OUT ^= BIT0; // Toggle P1.0

 TA1CCR0 += 25000; // Add Offset to CCR0

 if(TA1CCR0 >= 60000)

 TA1CTL = MC_0;

}

void write_Seg (unsigned char buffer[], unsigned char length) {

 unsigned int i;

 __disable_interrupt();

 // 5xx Workaround: Disable global

 // interrupt while erasing. Re-Enable

 // GIE if needed

 FCTL3 = FWKEY; // Clear Lock bit

 if(Flash_ptr == 0 || Flash_ptr == (short *)base_addr || Flash_ptr >=

(short *)(base_addr+2*(1+*(base_addr)))){

 erase_Flash();

 curPtr = base_addr;

 ptrOffset = 0;

 }

 setLED(buffer[1]);

 FCTL1 = FWKEY+WRT;

 // Set WRT bit for write operation

 for (i = 1; i < length; i++) // length-2; do not want CRC_OK extra

 {

 *Flash_ptr++ = buffer[i]; // Write value to flash

 }

 FCTL1 = FWKEY; // Clear WRT bit

 FCTL3 = FWKEY+LOCK; // Set LOCK bit

 __enable_interrupt(); // Enable global interrupt

 return;

}

void erase_Flash(){

 FCTL1 = FWKEY+ERASE; // Set Erase bit

 *Flash_ptr = 0; // Dummy write to erase Flash seg

 while(BUSY & FCTL3);

 base_addr = (char *)0x1880;

 Flash_ptr = (short *) base_addr;

 *Flash_ptr = 0;

 while(BUSY & FCTL3);

}

void setLED(char val){

 if(val >= 32) val = 0;

 P2OUT &= 0xC1;

 P2OUT |= (val << 1);

 __no_operation();

}

#pragma vector=PORT1_VECTOR

18

__interrupt void PORT1_ISR(void)

{

 switch(__even_in_range(P1IV, 16))

 {

 case 0: break;

 case 2: break; // P1.0 IFG

 case 4: break; // P1.1 IFG

 case 6: break; // P1.2 IFG

 case 8: break; // P1.3 IFG

 case 10: break; // P1.4 IFG

 case 12: break; // P1.5 IFG

 case 14: // P1.6 IFG

 P1IE = 0; // Debounce by disabling buttons

 P1IFG &= ~BIT6;

 //P1IES ^= BIT6;

 buttonPressed = 1;

 TxIndex = (~(P1IN >> 1)) & ~(0xE0);

 __bic_SR_register_on_exit(LPM3_bits); // Exit active

 break;

 case 16: break; // P1.7 IFG

 }

}

#pragma vector=PORT2_VECTOR

__interrupt void PORT2_ISR(void)

{

 switch(__even_in_range(P2IV, 16))

 {

 case 0: break;

 case 2: break; // P2.0 IFG

 case 4: break; // P2.1 IFG

 case 6: break; // P2.2 IFG

 case 8: break; // P2.3 IFG

 case 10: break; // P2.4 IFG

 case 12: break; // P2.5 IFG

 case 14: // P2.6 IFG

 P2IE &= ~BIT6;

 P2IES ^= BIT6;

 ptrDir ^= 1;

 if(ptrDir){

 P1OUT |= BIT0;

 P3OUT &= ~BIT6;

 } else {

 P1OUT &= ~BIT0;

 P3OUT |= BIT6;

 }

 P2IE |= BIT6;

 P2IFG &= ~BIT6;

 __bic_SR_register_on_exit(LPM3_bits); // Exit active

 break;

 case 16: // P2.7 IFG

 P2IE &= ~BIT7;

 if(ptrDir) // go forward

 {

 if((short *)(base_addr+ptrOffset+2)<Flash_ptr)

 ptrOffset+=2;

 } else { // go backward

19

 if(ptrOffset>=2)

 ptrOffset -= 2;

 }

 setLED(*(base_addr+ptrOffset));

 P2IE |= BIT7;

 P2IFG &= ~BIT7;

 __bic_SR_register_on_exit(LPM3_bits); // Exit active

 break;

 }

}

20

INTENTIONALLY LEFT BLANK.

21

Appendix B. Code for Version 4

This is the latest version to-date (version 4).

/*

 * Timothy Lee

 * 8/1/2012

 *

 * Version 4 fully implements the flash storage of the sample and time stamp

 */

#include "cc430x513x.h"

// Functions

void init_CLK(int);

void init_RTC(void);

void init_LED(void);

int init_Flash_sec(void);

void process(void);

void write_Seg();

void erase_Seg(unsigned short*);

// Variables

unsigned short samp0[255] = { 0 };

unsigned short samp1[255] = { 0 };

unsigned short samp2[255] = { 0 };

unsigned short samp3[255] = { 0 };

unsigned short samp4[255] = { 0 };

unsigned short* sampBank[5] = { samp0, samp1, samp2, samp3, samp4 };

unsigned char sBankPtr = 0, sampPtr = 0;

char flag = 0;

//RF variables

// Flash variables

char spaceAvail = 1;

#pragma DATA_SECTION(T0, ".mydata0");

#pragma DATA_ALIGN (T0, 2); // reserve 2 bytes for each variable

unsigned short T0[256];

#pragma DATA_SECTION(T1, ".mydata1");

#pragma DATA_ALIGN (T1, 2); // reserve 2 bytes for each variable

unsigned short T1[256];

#pragma DATA_SECTION(T2, ".mydata2");

#pragma DATA_ALIGN (T2, 2); // reserve 2 bytes for each variable

unsigned short T2[256];

#pragma DATA_SECTION(T3, ".mydata3");

#pragma DATA_ALIGN (T3, 2); // reserve 2 bytes for each variable

unsigned short T3[256];

#pragma DATA_SECTION(T4, ".mydata4");

#pragma DATA_ALIGN (T4, 2); // reserve 2 bytes for each variable

unsigned short T4[256];

#pragma DATA_SECTION(T5, ".mydata5");

#pragma DATA_ALIGN (T5, 2); // reserve 2 bytes for each variable

22

unsigned short T5[256];

#pragma DATA_SECTION(T6, ".mydata6");

#pragma DATA_ALIGN (T6, 2); // reserve 2 bytes for each variable

unsigned short T6[256];

#pragma DATA_SECTION(T7, ".mydata7");

#pragma DATA_ALIGN (T7, 2); // reserve 2 bytes for each variable

unsigned short T7[256];

#pragma DATA_SECTION(T8, ".mydata8");

#pragma DATA_ALIGN (T8, 2); // reserve 2 bytes for each variable

unsigned short T8[256];

#pragma DATA_SECTION(T9, ".mydata9");

#pragma DATA_ALIGN (T9, 2); // reserve 2 bytes for each variable

unsigned short T9[256];

unsigned short* bank[10] = { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9 };

unsigned char curBankPtr = 0, curDataPtr = 0;

#define FULL 0xEEEE

#define INUSE 0xFEFE

#define DEFAULT 0xFFFF

void main(void) {

 WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog Timer

 int i1=0, j1=0;

 for (i1 = 0; i1 < 5; i1++)

 for(j1 = 0; j1<255; j1++)

 sampBank[i1][j1] = 0;

 init_LED();

 init_RTC();

 spaceAvail = init_Flash_sec();

 init_CLK(12);

 // USE spaceAvail FLAG!

 // Timer0 A0 will time how long the processing mode takes

 while (1) {

 // A button input will wake the program up

 __bis_SR_register(LPM3_bits + GIE);

 // Enter LPM3, enable interrupts

 __no_operation(); // For debugger

 if ((P1IE || P2IE) == 0) {

 // The real time clock will reserve a space and add its

 // time value when process is done

 // RTC CODE HERE

 TA0CTL = TASSEL_2 | MC_2 | ID_2 | TAIE | TACLR;

 // continuous mode, /4, interrupt enabled (overflow),

 // clear

 process();

 // Clear timers

 TA0CTL &= MC_0; // Stop the processing timer

 // Program resulting data into flash

 write_Seg();

 // Transmit data over RF

 // Clear variables

 flag = 0;

 int i=0, j=0;

23

 for (i = 0; i < sBankPtr+1; i++)

 for(j = 0; j<256; j++)

 sampBank[i][j] = 0;

 sBankPtr = 0;

 sampPtr = 0;

 }

 P1IE |= ~BIT0;

 P2IE |= (BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6);

 } //end while

} // end main

// Process method

// Once awake, the software will poll the inputs for a certain length of time

// ~500 ms

void process() {

 // Samples are of the form

 // 00YYYYYYXXXXXXXXX0

 // Ys are bits 1-6 from port 2. Xs are bits 1-7 from port 1

 volatile unsigned short lastIn = 0, newIn, temp, lastTime = 0;

 while (flag < 25) {

 // P1 bits directly put into first 8 bits

 // P2 bits shifted right once to eliminate pin 0, then left

 // shifted 8 times to proper place

 // Final is anded with 0011 1111 1111 1110 = 3FFE

 newIn = (P1IN + ((P2IN >> 1) << 8)) & 0x3FFE;

 // XOR inputs to show differences

 if ((newIn ^ lastIn) != 0) {

 if (sampPtr == 255) {

 sampPtr = 0;

 sBankPtr++;

 }

 // If there are differences, then store the positive edge

 // results first, then negative edge results

 // newIn & ~lastIn gives positive edge results (+1

 // indicates pos edge)

 // lastIn & ~newIn gives negative edge results (0 on lsb

 // indicates neg edge)

 sampBank[sBankPtr][sampPtr++] = (newIn & ~lastIn) + 1;

 sampBank[sBankPtr][sampPtr++] = lastIn & ~newIn;

 // if samplePtr reaches X (500), then all spaces in the

 // array are full

 // Is this to be expected? samplePtr = 500 means 250

 // changes have been detected in a 500 ms time period

 // With 13 inputs, 250 allows for each input to change 20

 // times

 TA0CTL &= MC_0;

 // Store the number of clock cycles since the last data

 // capture event

 // This will be 0 if this is a new capture cycle

 // If flag is not 0, then an overflow has occurred. This

 // means the input is coming after a wait period of > 20

 // ms

 // A space will be filled with FF00 + flag so that it can

 // be checked during postprocessing

 sampBank[sBankPtr][sampPtr++] = (flag) ? 0xFF00 + flag : TA0R;

 // Equation to convert each time from the timer value to

24

 // actual time periods is

 // time[timePtr] = (short) (3.4/10.5*(TA0R - 22));

 // However as this takes 20 us for each conversion, it

 // will be done in post-processing before writing to

 // flash/transmission

 // In addition, if data is continuously sent at a rate of

 // < 12 us, the timer will be periodically off. In

 // addition, the time

 // obtained above is an estimate and can be off by a few

 // microseconds (error gets worse with more time).

 // Start processing timer

 flag = 0;

 TA0CTL = TASSEL_2 | MC_2 | ID_2 | TAIE | TACLR;

 // continuous mode, /4, interrupt enabled (overflow),

 // clear

 }

 lastIn = newIn;

 P3OUT ^= BIT1;

 } // end while

 __no_operation(); // For Debugging

} // end Process

void write_Seg() {

 __disable_interrupt(); // 5xx Workaround: Disable global

 // interrupt while erasing. Re-Enable

 // GIE if needed

 // SET DCOCLK TO 1 MHZ AGAIN AND THEN RESET AFTER FLASH

 init_CLK(1);

 FCTL3 = FWKEY;

 FCTL1 = FWKEY + WRT;

 unsigned char i = 0, j = 0;

 // Iterate through the samples

 for (i = 0; i < sBankPtr + 1; i++) {

 for (j = 0; j < 255; j += 3)

 // If there has been a measurement, the first of the 3

 // numbers

 // will end in a 1 (pos edge). If it is 0, then this

 // space has not

 // been used, and we are done

 if (sampBank[i][j] == 0)

 j = 252;

 else {

 bank[curBankPtr][curDataPtr++] = sampBank[i][j];

 while (FCTL3 & BUSY)

 ;

 bank[curBankPtr][curDataPtr++] = sampBank[i][j + 1];

 while (FCTL3 & BUSY)

 ;

 bank[curBankPtr][curDataPtr++] = sampBank[i][j + 2];

 while (FCTL3 & BUSY)

 ;

 // If the segment is full, mark the segment and

 // increment the bank pointer

 // Initialize the new bank

 if (curDataPtr == 255){

25

 bank[curBankPtr++][curDataPtr++] = FULL;

 init_Flash_sec();

 }

 }

 }

 FCTL1 = FWKEY;

 FCTL3 = FWKEY + LOCK;

 __enable_interrupt();

 // Reset the clock to 12 MHz

 init_CLK(12);

} // End write_Seg

// erase_Seg erases a segment in Flash

// It also writes 0xFEFE into the 255th location to indicate the segment is

// IN USE

void erase_Seg(unsigned short *S) {

 __disable_interrupt();

 FCTL3 = FWKEY;

 FCTL1 = FWKEY + ERASE;

 *S = 0;

 while (FCTL3 & BUSY)

 ;

 FCTL1 = FWKEY + WRT;

 S[255] = 0xFEFE;

 FCTL1 = FWKEY; // Clear WRT bit

 FCTL3 = FWKEY + LOCK; // Set LOCK bit

} // end erase_Seg

// Timer0_A5 CC1-4

// This vector is triggered with TA0 TAIFG.

// Set up to occur only with overflow events

#pragma vector = TIMER0_A1_VECTOR

__interrupt void TIMER0_A1_ISR(void) {

 TA0CTL = TASSEL_2 | MC_2 | ID_2 | TAIE | TACLR;

 // continuous mode, /4, interrupt enabled (overflow), clear

 TA0CTL &= ~TAIFG;

 flag++;

} // end Timer0 CC1-4 interrupt vector

// Timer0_A5 CC0

// This vector is triggered with TA0 CCR0 interrupt is triggered i.e. TA0CCR0

// is reached

// The interrupt is cleared automatically

#pragma vector = TIMER0_A0_VECTOR

__interrupt void TIMER0_A0_ISR(void) {

 __bic_SR_register_on_exit(LPM3_bits);

} // end Timer0 CC0 interrupt vector

// Port 1 Interrupt Vector

// Can be used to wake up the processor in the event of a change in port 1

#pragma vector=PORT1_VECTOR

__interrupt void Port1_ISR(void) {

 P1IE = 0;

 P2IE = 0;

 while (P2IFG != 0 || P1IFG != 0) {

 P1IFG = 0;

26

 P2IFG = 0;

 }

 __bic_SR_register_on_exit(LPM3_bits);

} // end port 1 interrupt vector

// Port 2 Interrupt Vector

// Can be used to wake up the processor in the event of a change in port 2

#pragma vector=PORT2_VECTOR

__interrupt void Port2_ISR(void) {

 P1IE = 0;

 P2IE = 0;

 while (P2IFG != 0 || P1IFG != 0) {

 P1IFG = 0;

 P2IFG = 0;

 }

 __bic_SR_register_on_exit(LPM3_bits);

} // end port 2 interrupt vector

// Real-Time Clock Interrupt Vector

#pragma vector=RTC_VECTOR

__interrupt void RTC_ISR(void) {

 switch (__even_in_range(RTCIV, 16)) {

 case 0:

 break; // No interrupts

 case 2: // RTCRDYIFG

 P3OUT ^= BIT6;

 RTCCTL01 &= ~RTCHOLD;

 RTCCTL01 &= ~RTCRDYIFG;

 break;

 case 4:

 break; // RTCEVIFG

 case 6:

 break; // RTCAIFG

 case 8: // RT0PSIFG

 RTCCTL01 &= ~RT0PSIFG;

 __bic_SR_register_on_exit(LPM3_bits);

 break;

 case 10: // RT1PSIFG

 RTCCTL01 &= ~RT1PSIFG;

 __bic_SR_register_on_exit(LPM3_bits);

 break;

 case 12:

 break; // Reserved

 case 14:

 break; // Reserved

 case 16:

 break; // Reserved

 default:

 break;

 } // end case

} // end Real-Time Clock Interrupt Vector

// Real-Time Clock Initialization

void init_RTC() {

 RTCCTL01 = RTCHOLD | RTCMODE; // hex-mode, hold, calendar mode

// Base clock = ACLK = 32kHz

// RT0 clock /256

27

// RT1 clock RT0 /128

 RTCPS1CTL |= RT1PSIE + RT1IP_6;

// Enable RT1 Interrupt, Prescaler set /128

 RTCTIM0 = 0x0000; // 0 sec 0 min

 RTCHOUR = 0x11; // 17 hour

 RTCDOW = 0; // Day of the week - 0

 /*

 RTCDATE = 0x0719; // Date 7/19

 RTCYEAR = 0x2012; // Year 2012

 */

 RTCCTL01 &= ~RTCHOLD; // Activate RTC

} // end RTC

// Clock Initialization

void init_CLK(int n) {

 UCSCTL3 |= SELREF_2; // Set DCO FLL reference = REFO

 UCSCTL4 |= SELA_2; // Set ACLK = REFO

 __bis_SR_register(SCG0);

// Disable the FLL control loop

 UCSCTL0 = 0x0000; // Set lowest possible DCOx, MODx

 if (n == 12) {

 UCSCTL1 = DCORSEL_5; // Select DCO range 24MHz operation

 UCSCTL2 = FLLD_1 + 374; // Set DCO Multiplier for 12MHz

 } else if (n == 1) {

 UCSCTL1 = DCORSEL_1;

 UCSCTL2 = FLLD_1 + 30;

 }

// (N + 1) * FLLRef = Fdco

// (374 + 1) * 32768 = 12MHz

// Set FLL Div = fDCOCLK/2

 __bic_SR_register(SCG0);

// Enable the FLL control loop

// Worst-case settling time for the DCO when the DCO range bits have been

// changed is n x 32 x 32 x f_MCLK / f_FLL_reference. See UCS chapter in 5xx

// UG for optimization.

// 32 x 32 x 12 MHz / 32,768 Hz = 375000 = MCLK cycles for DCO to settle

 if (n == 1)

 __delay_cycles(31250);

 else if (n == 12)

 __delay_cycles(375000);

// Loop until XT1,XT2 & DCO fault flag is cleared

 do {

 UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + XT1HFOFFG + DCOFFG);

 // Clear XT2,XT1,DCO fault flags

 SFRIFG1 &= ~OFIFG; // Clear fault flags

 } while (SFRIFG1 & OFIFG); // Test oscillator fault flag

}

// LED Initialization

void init_LED() {

// Port 1.0 Green LED, Port 3.6 Red LED

// Port 1.1-1.7 inputs for levels 1-7

// Port 2.1-2.6 inputs for level 8, Z, Y, X, NEG, POS

28

// Port 2.7 OUTPUT GND

// 0 is Input, 1 is Output

 P1DIR = BIT0;

 P2DIR = ~(BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6);

 P3DIR |= BIT6;

 P2OUT |= (BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6);

 P2OUT &= ~BIT7;

// Enable Interrupts from low to high

 P1IES &= BIT0;

 P2IES &= ~(BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6);

 P1IE |= ~BIT0;

 P2IE |= (BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6);

// Clear IFG

 P1IFG = 0;

 P2IFG = 0;

// LEDs

 P3DIR |= BIT6;

 P3OUT &= ~BIT6;

 P1OUT &= ~BIT0; // Green LED

//TESTING PURPOSES FOR THIRD VERSION

 P3DIR |= BIT1;

 P3OUT |= BIT1;

 P3OUT &= ~BIT1;

} // end LED Initialization

// init_Flash_sec goes through the bank to initialize the bank and data pointer

// If the segment is marked as in use, then iterate through to retrieve the

// next available data pointer

// If the segment is marked as full, go to the next segment

// If the segment is marked as blank, erase the bank

int init_Flash_sec() {

 unsigned char i = 0, j = 0;

 // Iterate through at most 10 banks

 while (i < 10) {

 // If the ith segment's last entry is 0xFFFF, then it is an

 // empty segment

 // Erase the segment so it can be written to, set the pointers

 // to 0

 // Return a 1 indicating space is available

 // If the ith segment's last entry is 0xFEFE, then the segment

 // has been erased

 // It may be partially full, so iterate through until a default

 // byte is found

 if (bank[i][255] == INUSE) {

 curBankPtr = i;

 for (j = 0; j < 255; j += 3)

 if (bank[i][j] == DEFAULT) {

 curDataPtr = j;

 return 1;

 }

 // If no data points are found, then the data is corrupt

 // Ignore this segment and increment to the next

 i++;

 }

29

 // If the ith segment's last entry is 0xEEEE, then the segment

 // is full

 // Increment the index to the next segment, as no more room is

 // available in this seg

 else if (bank[i][255] == FULL)

 i++;

 else

 // If the last entry is none of the above, then the flash memory

 // is corrupt or blank

 // Treat as if it were a DEFAULT

 {

 erase_Seg(bank[i]);

 curBankPtr = i;

 curDataPtr = 0;

 return 1;

 }

 }

 // If none of the segments are in use or reset, then there is no flash

 // available

 return 0;

} // end init_Flash_sec

30

 1 DEFENSE TECHNICAL

 (PDF INFORMATION CTR

 only) DTIC OCA

 8725 JOHN J KINGMAN RD

 STE 0944

 FORT BELVOIR VA 22060-6218

 1 DIRECTOR

 US ARMY RESEARCH LAB

 IMAL HRA

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 DIRECTOR

 US ARMY RESEARCH LAB

 RDRL CIO LL

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 DIRECTOR

 US ARMY RESEARCH LAB

 RDRL CIO LT

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 4 DR. LUKE CURRANO

 U.S. ARMY RESEARCH LAB

 RDRL SER L

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 JOHN PAUL KRUSZEWSKI

 NSRDEC

 14 KANSAS ST

 NATICK, MA 01760

 1 DON LEE

 NSRDEC

 14 KANSAS ST

 NATICK, MA 01760

 1 KARL MASTERS

 PM SEQ

 10170 BEACH ROAD

 FORT BELVOIR, VA 22060

 1 CHRIS PERRITT

 PM SEQ

 10170 BEACH ROAD

 FORT BELVOIR, VA 22060

