September 27, 2012

PI: Jian Zuo, Ph.D.

Organization: St. Jude Children’s Research Hospital

ONR Award Number: N00014-12-1-0191

Award Title: Therapeutics for regeneration of fully functional auditory outer hair cells

Please find enclosed the Annual Technical Report of Dr. Jian Zuo. Should you have any questions or concerns, feel free to contact me at (901)595-2729.

Thanks,

Marquetta Nebo
Grant and Contract Administrator
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

Please do not return your form to the above address.

1. REPORT DATE (DD-MM-YYYY) 09/27/2012
2. REPORT TYPE Annual Technical Report
3. DATES COVERED (From - To) 10/1/2011 - 9/30/2012

4. TITLE AND SUBTITLE
Therapeutics for regeneration of fully functional auditory outer hair cells

5a. CONTRACT NUMBER N00014-12-1-0191
5b. GRANT NUMBER 12.300
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 12PR04732-00
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S) JIAN ZUO

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ST. JUDE CHILDREN'S RESEARCH HOSPITAL
262 DANNY THOMAS PL
MEMPHIS, TN 38105-3678

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
875 North Randolph Street
Arlington, VA 22203-1995

10. SPONSOR/MONITOR'S ACRONYM(S) ONR

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
"Approved for Public Release; distribution is Unlimited".

13. SUPPLEMENTARY NOTES

14. ABSTRACT
To characterize the regenerative capacity of SCs in mice after noise-induced damage and transient or permanent inactivation of p16INK4a, and assess the ability of Atoh1 to transdifferentiate SCs into HCs after noise-induced damage in mice.

15. SUBJECT TERMS
p16INK4a, Atoh1, noise-induced damage

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON Jian Zuo
19b. TELEPHONE NUMBER (Include area code) (901)595-3891

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18
A. Scientific and Technical Objectives

Noise-induced hearing loss (NIHL) affects millions of navy servicemen even when the best protective devices are used. To address the Naval Global War on Noise (Naval Safety Center, 2007), we propose here, as a long-term goal, to develop therapeutics which would provide a framework for hearing restoration in naval servicemen who are suffering from NIHL.

NIHL is primarily caused by damage to sensory outer hair cells (OHCs) of the inner ear. Thanks to the ONR support, we have recently shown that SCs can be transdifferentiated into new HCs via overexpression of the transcription factor Atohl. Although the new HCs appeared normal and survived for more than 3 months in vivo, new HCs formed in this manner were immature and lacked the expression of Prestin, a terminal differentiation marker of functional OHCs. These findings suggest that restoring OHCs requires more than Atohl expression. Determining the unknown factors required to regenerate OHCs is a major obstacle to HC regeneration that must be overcome to restore hearing in service members suffering from NIHL.

We proposed to utilize a new mouse model (Prestin-YFP knockin) we have recently created to screen for candidate factors and small molecules to promote functional maturation of OHCs.

Aim 1. To identify combinations of genes which promote OHC maturation.

Aim 2. To identify small molecules which promote mature OHC formation.

Our new studies should provide candidate drugs as well as a list of previously unknown factors which will promote functional maturation of OHCs. These studies will also shed light on an unexplored area in basic hearing research.

B. Approach

- Develop in vitro assays from Prestin-YFP and Atohl-Cre;tdTomato mouse inner ear stem cells/otospheres
- Develop and screen viral gene libraries that are likely involved in OHC maturation
- Screen libraries of small molecules (>8,835 bioactive compounds among more than 0.5 million compounds available at St. Jude)
- Secondary screens of Atohl+ and Prestin+ OHCs

C. Accomplishments

1. We have successfully isolated otospheres from Prestin-YFP; Atohl-Cre;Rosa-tdTomato mice;
2. We have successfully differentiated these otospheres into tdTomato and/or YFP expressing cells in vitro;
3. We have begun using Rho Kinase antagonists to overcome the cellular senescence inherent in otospheres.

D. Work Plan
Since the start of this award in March 2012, we have been focusing on the development of inner ear stem cell/otosphere assays appropriate for future high throughput screening purposes. We have made significant progress towards optimizing the conditions (i.e., otosphere senescence). We anticipate in the coming year we will fully develop and optimize the screening assays for high throughput screening.

E. Major Problems/Issues
We have encountered the issue of obtaining a large amount of YFP/tdTomato positive cells in vitro. We are exploring various methods (i.e., Rho kinase inhibitors) in culture to increase the yield and differentiation ability of otospheres.

F. Technology Transfer
Not applicable now.

G. Foreign Collaborations and Supported Foreign Nationals
We have hired a foreign national in our group as St. Jude employees using the ONR grant to work on this project.

- Dr. Shiyong Diao, a senior technician and a Chinese national, was hired in May, 2012 and has been working closely together with Dr. Brandon Walters on developing otosphere assays.

No collaboration with foreign institutes/individuals.