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Introduction 
 
While begun with great hope and promise, the project “Utilization of Genomic Signatures to 
Direct Use of Primary Chemotherapy in Early Stage Breast Cancer” encountered problems with 
data integrity in the basic science underpinning the clinical trial.  Consequently, the CDMRP 
requested early termination of the protocol..  The issues eventuating in this outcome are detailed 
in a number of sources.1,2  The findings of the Institute of Medicine were reported in a summary 
document on March 23, 2012.3 The clinical trial was permanently closed to accrual, and further 
payments on the award cancelled.   
 
The clinical trial primary aim was to validation genomic predictors of chemosensitivity based on 
work conducted by Anil Potti, MD while in the laboratory of Joe Nevins, PhD in Duke’s Institute 
for Genome Sciences and Policy. The reviewers found the promise of chemotherapy predictors 
to be a strong consideration in funding the grant, particularly in the context of a prospective 
randomized clinical trial.  It is, however, the scientific work underlying these predictors that was 
found to contain corruption of the original datasets used for validation.  While the data 
corruption detected is the subject of an ongoing scientific misconduct investigation at Duke, the 
systematic nature of the data changes in this and other work by Dr. Potti point to data 
manipulation as the only reasonable explanation.  The paper describing those signatures has been 
retracted.4 Given these developments, continuing with a validation trial for these signatures 
prospectively was no longer appropriate. 
 
This final report will summarize the work done to institute the clinical trial, including profiling 
work done on additional samples as part of that work.  A considerable genomic dataset was 
created in this process, and we hope that it will serve some public use and provide some positive 
outcome from this experience.  The project did meet some of the original goals. For example, 
one goal of the original proposal was to demonstrate the conduct of a prospective preoperative 
treatment trial using an integral full-genome expression-based biomarker design with pathologic 
complete response as an objective and accepted primary endpoint.  While we acknowledge the 
weaknesses in the effort highlighted by the IOM , we have demonstrated the feasibility of this 
approach. 
 
Body: 
 
Our original CTRA proposal was motivated by two key concepts:  1) designing a trial with real-
time genomic profiling integral to assigning patient treatment; and 2) implementing this in a 
preoperative trial so that relevant clinical endpoints (pathologic complete response; clinical 
response) could be assessed.  Work in the Duke cancer genomics group had focused on 
characterizing a number of biologic features using gene expression profiling:  1) prognosis5; 2) 
oncogenic pathway activation6,7; and 3) chemosensitivity prediction8.  Our proposal had the 
following objectives: 



Marcom	BC060228		
W81XWH‐07‐1‐0394	

2012	

 

2 
 

1. Develop and evaluate the clinical infrastructure and methodologies that will be central to the 
use of genomic profiling to assign patients to treatment. 
 
2. Develop and conduct a Phase II clinical trial that will evaluate the capacity of genomic 
signatures to improve the efficacy of chemotherapy selection for the individual patient. 
 
3. Make use of the data and results from the Phase II study to develop a follow-up Phase III 
clinical trial that will compare genomic-guided vs. standard treatment strategies, and will 
identify novel therapeutic opportunities for those patients likely to be resistant to standard 
cytotoxic therapies. 
 
Of the “signatures” developed, the chemosensitivity signatures were the most easily integrated 
into a preoperative treatment protocol that would comport with commonly accepted standards of 
clinical care. We designed and initiated a prospective Phase II trial integrating the genomic 
signatures of chemosensitivity to doxorubicin and docetaxel into a preoperative trial.   
 
The following describes the work and accomplishments for each of these objectives: 
 
1. Develop and evaluate the clinical infrastructure and methodologies that will be central to the 
use of genomic profiling to assign patients to treatment. 
 

Figure 1: Schematic 

showing steps for 

processing expression 

data from cell line 

signatures and 

normalizing one‐at‐a‐

time clinical samples 

into standardization 

set for generating 

predictions. 
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We were able to develop the infrastructure 
to generate full genome expression data in 
a CLIA environment (compliant from study 
start, and approved subsequently), and a 
bioinformatics pipeline to analyze that data 
and use it for patient treatment 
assignments.  The chemosensitivity 
signatures were based on cell-line 
expression data, so expression data from a 
comparison set of breast cancers was used 
to standardize the cell-line based signatures 
for making predictions of chemosensitivity.  
This process is outlined in Figure 1 and 
discussed further in “Intratumor 
Heterogeneity and Precision of Microarray-
Based Predictors of Breast Cancer Biology 
and Clinical Outcome”. 9  This paper also 
presents the analytic and precision data 
obtained for the Affymetrix U133A plus 2 
arrays and the RNA extraction process that 
was used in the course of the trial.  The 
chemosensitivity signatures presented in 
that paper were the versions used in the 
trial, and had been provided by Dr. Potti as 
being the signatures used in the prior 
validation work. Some adjustments were 
made to transfer the signatures to 
performance on the U133A plus2 arrays.  The precision of these multigene signatures in the 
replicate dataset is illustrated in Figure 2 from the paper.  
 
2. Develop and conduct a Phase II clinical trial that will evaluate the capacity of genomic 
signatures to improve the efficacy of chemotherapy selection for the individual patient. 
 
We also set up a screening process for patient enrollment, detailed in Figure 3. 
 
The biopsies were reviewed by Dr. Joseph Geradts for quality and cellularity, and the best 
available core used for profiling.   The infrastructure for extracting quality RNA was set up in the 
Clinical Trials Support Facility in collaboration with the IGSP, and was supervised by Dr. Mike 
Datto.  Extracted RNA was then quantitated and then sent to Expression Analysis for 
hybridization to Affymetrix U133A plus 2 microarrays.  The resulting .CEL files were uploaded 
to a secure server in the IGSP and available only to Dr. William Barry and his biostatistical team.  
The array data was analyzed by QC metrics to assure adequate signal, and then chemosensitivity 
predictions using the now discredited signatures were made.  The turnaround times and overall 
success for processing samples are given in Figures 4 and 5. 
 

Figure 2: Demonstration of reproducibility of multigene 

signatures in bioreplicates. 
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Figure 4: Steps and turnaround times for obtaining, processing, and generating data from core biopsies. 

Figure 3: Eligibility criteria, accrual steps, and sample processing in the clinical trial.
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Table 1 shows the final accrual to the trial 
before termination.  The distribution by 
race, tumor size, histology, and receptor 
status is consistent with what was 
anticipated.   
 
The trial design is given in Figure 6.   The 
design is innovative in being an integral 
biomarker validation trial.  In such a 
design, obtaining the biomarker (i.e. high 
quality Affymetrix array data) is required 
before randomization in the trial.  The 
requirement means that for every patient 
enrolled in the trial, the required biomarker 
data will be available.  For other designs, 
where the marker validation is a secondary 
endpoint, this is not the case, and such 
designs often fail to meet their objectives 
because of missing biomarker data. 
 

Figure 5: Metrics for sample processing success/failure and obtaining expression data 

for use in treatment assignments. 

Table 1: Demographic and clinical characteristics 

of patients. 
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The green numbers in the 
trial schema show the 
distribution of patients in 
the trial.  Randomization 
to genomically-guided 
versus non-genomically 
guided arms performed as 
expected.  As well, in the 
genomically-guided arm, 
treatment assignments 
were also uniform among 
the options, suggesting 
that the now discredited 
chemosensitivity 
signatures were skewed in 
favor of one regimen or 
the other. 
 

The primary endpoint for the study was pathologic complete response in the breast, defined as 
resolution of all invasive cancer.  Nodal status was not considered since prechemotherapy 
sentinel node mapping was allowed in the trial.  The treatment assignments were to four cycles 
of standard dose doxorubicin/cyclophosphamide or docetaxel/cyclophosphamide, both standard 

regimens for treatment of early 
stage breast cancer.  Patients 
underwent treatment, and then 
were clinically reassessed.  If 
additional chemotherapy was 
thought necessary by the 
treating physician, that was 
allowed, but patients were 
asked to undergo an optional 
repeat biopsy to established the 
presence/absence of residual 
cancer at that time.  While that 
design feature had the potential 
to undermine the scientific 
conclusions, it was felt 
necessary to avoid 
compromising patient 
management.   
 
Table 2:  Primary analysis of trial 

endpoint for patients enrolled, and 

analysis by treatment regimen and prediction of response use discredited chemosensitivity signatures. 

Figure 5:  Clinical trial schema and patient assignments, with pCR cases at 

bottom. 
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The results by pCR in each of the arms and by regimen are given in Table 2. The analysis by 
regimen was for actual regimen received, not intention to treat, since three of the TC patients did 
not have definitive surgery following completion of protocol directed therapy and one had an 
infusion reaction with cycle one and was treated with AC.  The trial is, of course, underpowered 
to show any difference between arms or regimens.  However, given the controversy regarding 
the chemosensitivity signatures, and the supposition that using the signatures to assign treatment 
might have led to treating them with the wrong drug, we undertook this analysis to see if that 
appeared to be the case.  The results suggest that this is very unlikely.     
 
We will submit the conduct and results of this trial for publication.  This will include data that 
has been presented at several meetings, including ASCO and the ASCO/EORTC/NCI 
Biomarkers Meeting in October, 2010. 10(See Appendix)  Despite the flaws in the underlying 
science, hopefully the data will prove useful in thinking about the conduct of an integral 
biomarker-validation trial design.  As well, the annotated expression data can provide a potential 
pilot validation set for biomarkers attempting to distinguish anthracycline and taxane sensitivity 
in HER2 negative disease. 
 
Table 3:  Samples and analyses conducted. 

3. Make use of the data and results 
from the Phase II study to develop 
a follow-up Phase III clinical trial 
that will compare genomic-guided 
vs. standard treatment strategies, 
and will identify novel therapeutic 
opportunities for those patients 
likely to be resistant to standard 
cytotoxic therapies. 
 
Since the trial was terminated, we 
could not proceed as planned with 
this objective.  Instead, we sought 
to salvage the value of the genomic 
information obtained in this 
limited dataset by extending the 
analysis beyond gene expression 
profiling on the samples in the trial 
only.  The additional samples and 
analyses conducted were proposed 
and accepted in the Annual update 
for Year 4, and are summarized in 
Table 3.  The following analyses 
are either completed or underway 
for the data obtained from these 
samples: 
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1. Post Treatment Profiling 

A total of 37 samples were collected from the post treatment cancers.  This set is again 
unique for examining gene expression changes between doxorubicin and docetaxel 
treated patients.  While this dataset will be small, that is true of most similar datasets; 
they are challenging to develop.  Nevertheless, this sample set can be used for discovery 
purposes and as a potential validation set for predictors 11 
 

2. Peripheral Blood Gene Expression Profiling 
PAX gene tubes for isolation of peripheral circulating RNA were obtained at baseline and 
after protocol directed therapy on all patients.  The RNA has been extracted from these 
samples, and will be profiled using Affymetrix arrays to look and changes in circulating 
RNA.  These changes can be compared to changes in the primary tumor and provide a 
pilot set for development of response and toxicity prediction signatures.   
 

3. Expansion of bioreplicate cohort 
Most of the cases enrolled in the trial had at least one additional pretreatment core taken.  
We have profiled those cores to expand the replicate dataset already published.  This 
work was recently presented at the 2012 San Antonio Breast Cancer Symposium, and 
will be expanded further to look at reproducibility as a function of tumor cellularity and 
to look at reproducibility of published prognostic and predictive signatures, and is 
included in the appendix. 
 

4. Pre/Post Breast MRI Patterns and Gene Expression Profiles 
This dataset can also be analyzed for baseline breast MRI patterns and gene expression 
profiles.  While some work has been done in this area, the tumors are generally larger, 
locally advanced cancers.12  This dataset has smaller tumors represented.  As well, the 
data on focused regimens is unique.  Prior work, including some at Duke, suggests that 
MRI patterns of enhancement can predict response.  We can look at similar imaging 
patterns in this cohort of patients, and also analyze by subtype. 
  

5. Cross-platform Genomic Prognostic Signatures. 
Using the 19 patients in the study with clinical Oncotype Recurrence Scores as a starting 
set, we have assembled a cohort of 104 cases from the SPORE tumor registry with 
concurrent Oncotype scores as a comparison set.  This analysis was presented in poster 
form at the 2012 San Antonio Breast Cancer Symposium and is included in the appendix. 
 

6. Proteomic Analysis Somatic Gene Mutations 
We have done proteomic profiling of pre/post AC treatment cores on 17 patients using 
2DLC-MS/MS analysis.  Initial analysis of the data has been performed and indicates that 
this approach is possible, and that changes in protein expression can be detected.  We are 
attempting to integrate this data with gene expression data and complete the primary 
analysis for protein expression changes that might be associated with anthracycline 
sensitivity and resistance. 
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7. Somatic Gene Mutations 
With the processing of replicate cores, we were able to extract tumor DNA from 12 pre-
treatment cores and 6 matched post-treatment cores from the AC treated cohort of 
patients.  In a separate collaboration, these samples are being analyzed with whole exome 
sequencing to look at potential changes is somatic mutations detected.  As well, four of 
these cases had pathologic complete responses, so a preliminary discovery effort can be 
made to look for mutations predicting AC response. 
 

8. Lymph Node Predictor 
Previous work in the Duke Genomics group focused on development of a predictor of 
lymph node involvement.5,13,14  The clinical applicability of the lymph node predictor was 
unclear at the time this work was performed.  However, with new studies suggesting that 
completion axillary dissection is not necessary for patients with limited lymph node 
involvement, the performance characteristics needed for a lymph node predictor have 
changed.  The datasets described here provide a further opportunity to validate and/or 
further develop a lymph node predictor. 
 
 

Key Research Accomplishments 
 

 Demonstration of the performance of the clinical trial infrastructure, including rates of 
successful profiling, quality assurance of genomic data, and time metrics for assay 
performance. 

 Randomization of 39 patients in the prospective trial, with associated biospecimens 
(including frozen tumor, germline DNA, and blood). 

 Generation of a small but valuable dataset for potential validation of published 
chemosensitivity signatures from other groups, particularly for comparing anthracycline- 
and docetaxel-based treatment in isolation. 

 Dataset of expression profiling analysis of 104 estrogen receptor positive early stage 
breast cancers annotated with clinical Oncotype Recurrence Scores. 

 Dataset of expression profiling analysis of 46 cases with between 2 and 5 bioreplicate 
cores of varying cellularity useful for studying reproducibility of gene expression based 
prognostic and predictive signatures. 

 Proteomic data on 17 matched pre/post AC treatment cores. 
 Peripheral/blood gene expression profiles on 34 patients pre/post chemotherapy exposure. 
 To be completed with support from other funds: whole exome sequencing on pre/post AC 

treated cases. 
 

 
Reportable Outcomes 
 
The following work related to this project has been presented at meetings and/or published.  
Please see the documents appended at the end of this report.  
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 Poster 1:  “Development and Implementation of Genomic Predictors of Chemotherapy 
Response for Guiding Preoperative Therapy in a Prospective Breast Cancer Trial”, NCI 
Translational Science Meeting, November 5-7, 2009. 

 Poster 2: “A randomized phase II trial evaluating the performance of genomic expression 
profiles to direct the use of preoperative chemotherapy for early-stage breast cancer” 
ASCO Annual Meeting, 2010. 

 Poster 3: “Utilization of Genomic Signatures for Chemotherapy Response in Prospective 
Clinical Studies”, ASCO Annual Meeting, 2010. (Poster Discussion link on ASCO Virtual 
Meeting is given in Appendix) 

 Article 1: “Intratumor Heterogeneity and Precision of Microarray-Based Predictors of 
Breast Cancer Biology and Clinical Outcome”, Journal of Clinical Oncology, 29 (13): 
2198, May 1, 2010.  

 Poster 4: “Pathologic response analysis for a genomically guided preoperative 
chemotherapy trial”, Era of Hope Meeting, 2011. 

 Poster 5: “Generation of real-time full-genome expression data for treatment assignment 
in a prospective breast cancer trial”, Era of Hope Meeting, 2011. 

 Poster 6: “A Cross-Platform Comparison of Genomic Signatures and OncotypeDx Score: 
Discovery of Potential Prognostic/Predictive Genes and Pathways”, SABCS, 2012. 

 Poster 7:” Retrospective evaluation of precision of gene-expression-based signatures of 
prognosis and tumor biology in replicate surgical biospecimen from patients with breast 
cancer”, SABCS, 2012. 

 

 
 
Conclusion: 
 
Given the collapse of the scientific rationale for the clinical trial, we have attempted to salvage as 
much meaningful data from the project as possible.  We maintain that patients still received 
optimal standard of care treatment, in a study design that allowed individualization of treatment 
while also meeting the scientific goals.  All of the patients were made aware of the scientific 
misconduct issues.  The clinical team undertook this validation trial in good faith, believing that 
the peer-reviewed published science justified the prospective study, and that the trial design 
abided by standard of care treatment.  Importantly, as outlined above, the trial also held promise 
for establishing the process for integrating a complex biomarker into clinical trial design, 
allowing for correlation of the underlying biology with other clinically relevant factors.  
Hopefully, we can still in some way honor the patients who agree to participate in this study by 
the work detailed above. 
 
In retrospect, the data supporting the conduct of the trial was not adequate to justify proceeding. 
This report has not attempted to address all of the issues raised in the IOM report or the 
controversy related to the scientific misconduct.  Unfortunately, it is undoubtedly true that the 
ensuing scandal has damaged the field of translational genomics.  While those issues went well 
beyond this project, we profoundly regret the damage done and any connection to this project.  
Duke University has investigated this matter and developed policies to ensure the integrity of 
data supporting translational clinical research.15,16    While we clearly fell short of the goal, we 
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hope the data generated will provide helpful clinic-genomic datasets to the breast cancer research 
community, and will release the data generated in a manner consistent with the Translational 
Medicine Quality Framework policies. 
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Joe Nevins PhD- Scientific advisor, years 1-5 
Joseph Geradts MD- Study breast pathologist 
Sujata Ghate MD- Study breast radiologist 
Bill Barry PhD- Study biostatistician 
Jeff Marks PhD- Scientific investigator 
Mike Datto MD, PhD- Study molecular pathologist 
Bob Annechiarico- Study Bioinformatics 
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Figure 1:  Patient eligibility and 
tissue acquisition
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Figure 3: General steps in prospective 
classification of microarray samples

Figure 2: A Randomized Phase II Trial Evaluating 
Performance of Genomic Expression Profiles to
Direct the Use of Preoperative Chemotherapy for 

Early Stage Breast Cancer

Table 1: Sample collection and 
microarray profiling success
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Background: Genomic assays have been shown to provide 
the potential for personalized approaches to breast cancer 
therapy. While assays based on fixed tissues offer greater 
convenience, the use of fresh tissue samples provides a 
much broader opportunity to interrogate the critical 
underlying biology. Full-transcriptome assays using 
microarrays are challenging, but have the advantage of 
providing multiple prognostic and predictive signatures in 
one assay. Using an Affymetrix platform, we have 
developed genomic predictive signatures for various 
clinically relevant cancer characteristics. Previous 
credentialing studies have demonstrated the sensitivity 
and specificity of these signatures in retrospective studies.  
We report here on the investigation of the analytic 
performance of these signatures in biologic replicates, and 
their application in a prospective randomized clinical trial 
designed to validate predictors of chemosensitivity. 
Methods: To investigate the impact of intratumoral 
heterogeneity on the genomic signatures, patients with 
multiple frozen cores were identified in the Duke Breast 
SPORE tissue repository. Cores were assessed for percent 
invasive cancer cellularity, primary tumor size, and 
standard biomarker assessments. RNA was hybridized to 
Affymetrix H133 Plus 2.0 microarrays and the data was 
used to evaluate gene expression signatures generated 
according to previously identified predictors of sensitivity 
to adriamycin and docetaxel (Potti et al, Nat Med, 2006). 
Genomic predictors of hormone receptor status were 
applied to post- processed array data, and compared to 
single-patient measures from IHC/FISH.  The resulting 
analyses support the currently enrolling trial, "Performance 
of Genomic Expression Profiles to Direct the Use of 
Preoperative Chemotherapy for Early Stage Breast Cancer" 
a prospective randomized trial designed to validate 
genomic signatures for predicting response to doxorubicin 
or docetaxel treatment in HER2 negative cancers.

Results: Fifty-one individual samples from 18 patients were 
profiled to investigate the contribution of intratumoral 
heterogeneity to signature variation.  The interclass 
correlation for doxorubicin and docetaxel sensitivity 
predictor in the replicate samples was 0.72 and 0.64 
respectively (p < 0.0001).   Expression data was also 
analyzed for a novel predictor of ER pathway activation.  
Predicted ER status among replicates showed perfect 
concordance using this pathway signature.  The 
infrastructure has been established for conducting 
microarray analysis in support of the clinical trial, and 
provides microarray data with an approximately 5 day 
turnaround from biopsy to data availability.  Multi-center 
accrual to the study is underway.  Conclusions: Full 
genome microarray expression profiles are robust and 
reproducible, and can be practically obtained and applied 
in the context of a prospective clinical trial.  This single 
assay can provide data that can be analyzed for a variety of 
clinically useful prognostic and predictive signatures.  

Figure 4:  Signature Concordance on 
Bioreplicate Cancer Samples Figure 5: Microarray quality control 

(QC) plot for sample 1015 identified 
hybridization failure

Figure 6: Timeline for protocol steps

Figure 7: Individual patient timelines and 
impact of profiling on treatment initiation

Eight cases required one (5) or more (3) 
additional days for microarray data for 
making treatment assignment. 
(Mean= 2.75 days)

1. True biologic replicates demonstrate substantial concordance for 
complex multi-gene expression signatures.

2. Real-time, one-at-a-time, full genome microarray expression 
analysis using fresh frozen tumor samples and an Affymetrix 
platform as a clinical assay is feasible.

3. Profiling success rates and turn-around times are acceptable for 
using this approach for making genomically guided treatment 
assignments in a preoperative therapy breast cancer trial.

4. In addition to the chemosensitivity predictions being evaluated in 
the current trial, the same full genome expression data can be 
analyzed for other clinically relevant prognostic and predictive 
factors.

METHODS:

Cohort
2B

RESULTS:

CONCLUSIONS:

In this prospective trial, genomic assessment is performed on 
tumor samples in real-time using Affymetrix U133Plus2.0 
microarrays.  Previously described “signatures” are then used in 
conduct of the clinical trial.  Figures one and two outline the 
procedures for tissue acquisition and the design of the clinical 
protocol, respectively.  The results describe the metrics for 
performing this assay in the context of this trial.
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ICC = 0.72, 95% CI 0.49 to 0.88 

ICC = 0.64, 95% CI 0.38 to 0.83 

Biospecimens: Supporting Tools

ICC=0.98 (95% CI, 0.95 to 0.99)
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Figure 5: Patient eligibility and tissue acquisition

Figure 6: Trial Schema

Background: Genomic assays have been shown to 
provide the potential for personalized approaches to 
breast cancer therapy. Full-transcriptome assays 
using microarrays are challenging, but have the 
advantage of providing multiple prognostic and 
predictive signatures in one assay. We have 
developed genomic predictive signatures for various 
clinically relevant cancer characteristics, including 
sensitivity to cytotoxic chemotherapies. We have 
investigated the analytic performance of these 
signatures in biologic replicates, and begun 
applying them in this prospective randomized 
clinical trial. Methods: Eligible patients have intact 
HER2 negative primary breast cancers with tumor 
size over 1.5 cm and any clinical lymph node status. 
A fresh frozen sample of the primary tumor must be 
obtained. After pathology assessment, RNA is 
analyzed on an Affymetrix H133 Plus 2.0 microarray. 
The expression data is used to predict doxorubicin 
(A) and docetaxel (T) sensitivity using previously 
defined signatures and analytic techniques 
developed to make one-at-a-time predictions from 
microarray data. Patients are then assigned to four 
cycles of standard doxorubicin/cyclophosphamide 
(AC) or docetaxel/cyclophosphamide (TC) 
chemotherapy in a blinded process randomizing in a 
1:2 ratio to a control arm (random assignment to 
either AC or TC) or a genomically guided (GG) 
chemotherapy arm. In the GG arm, patients are 
assigned to AC or TC treatment if the predicted 
sensitivity is over 0.6 for A or T, respectively. If 
predictions for both agents are over 0.6, the higher 
score is used; if both scores are below 0.6, patients 
are randomly assigned to AC or TC. The primary 
endpoint is pathologic complete response (pCR) in 
the breast, with the primary objectives: 1) determine 
whether genomic profiling for drug-sensitivity can 
improve the pCR rate as compared to randomly 
assigned therapy; and 2) determine whether 
genomic profiling can identify drug-sensitive and 
drug-resistant patients including a comparison of 
subgroups for the two individual regimens. The 
accrual goal is 270 patients randomized; currently, 
42 patients have been consented and 32 
randomized. (Current accrual updated in poster)
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Figure 3: Microarray Signature Precision
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CURRENT STATUS

Genomic signatures can provide an array of predictive biomarkers to 
guide selection of therapy.  Using in vitro approaches can potentially  
accelerate this discovery process and expand the array of predictive 
tools.  We have described in vitro cell culture experiments used to 
develop predictive genomic signatures, including commonly used 
cytotoxic chemotherapeutics (Refs 1-3). Figure One outlines the 
approach for docetaxel (T) and adriamycin (A).

Adriamycin

Docetaxel

Figure 1: in vitro modeling

Expression data from the NCI-60 cell lines 
having the greatest resistance and 
sensitivity to docetaxel were used to 
generate predictive signatures, which were 
then validated in a set of independent cell 
lines.  The same approach was used for 
adriamycin.

Figure 2:  Retrospective Clinical Validation 
These signatures were then applied to a number of publically 
available clinical datasets with available genomic expression data to 
assess their performance for predicting sensitivity and resistance.
A. B.

In a preoperative breast cancer trial by Chang et al, (Ref. 4) patients treated 
with single agent docetaxel were assessed for clinical response, and genomic 
profiling data obtained on the cancers.  The in vitro signature demonstrated 
good accuracy for predicting sensitive/resistant tumors (A).  In a second 
preoperative trial, Bonnefoi et al genomically profiled cancers treated with 
standard Fluorouracil/Epirubicin/Cyclophosphamide (FEC) or 
Epirubicin/Taxotere followed by Taxotere (TET).  A combination of in vitro
derived signatures predicted clinical response (B).(Ref.5)

TRIAL DESIGN

To develop the use of microarray data as a clinical assay that 
allows simultaneous assessment of multiple predictive signatures, 
including those for A and T, we profiled replicate samples
from the Duke Breast SPORE, performed
hierarchical clustering (A) and principal
component analysis (B) to assess con-
cordance of genomic profiling.  The 
signatures for A and T were also assess-
ed (C) and showed intraclass correlation
coefficients (ICC) of 0.72 and 0.64,
respectively. These data provided 
evidence of reproducible precision for 
these and other genomic signatures.
(Ref. 7) Full gene lists for the signatures
are provided in this reference.
C

Figure 4: Prospective Use of Gene Signatures

A key aspect of employing
in vitro derived gene signatures
prospectively requires normal-
Iization of the cell line training
set data into a standardization
set of tumor expression data.
This allows one-at-a-time 
prediction using the genomic
signature of interest.  The
statistical methods developed
for this approach are described 
further in abstract #10513 from this meeting.
(Ref. 8).  Similar approaches have been shown
to work by others (Ref. 9).  

• 50  patients have been consented at DUMC

• 38 patients have been randomized

• 4 additional clinical sites have recently been

approved for enrollment.

Based on this work, we are conducting a prospective random-ized
preoperative clinical trial assessing the use of the A and T signatures 
to choose between two standard of care regimens.  In this design, the 
biomarker is integral to the trial design.  The eligibility criteria, process 
for obtaining tissue, and clinical schema are shown below.  The 
method of treatment assignment to AC or TC is double blinded. 

Primary Objectives and Statistical Design:
1.  To determine in early stage breast cancer treated with PST whether 
genomic profiling for drug-sensitivity can improve the pCR rate as 
compared to random assignment of patients to therapy.

2. To determine in early stage breast cancer treated with PST whether 
genomic profiling can identify drug-sensitive and drug-resistant 
patients including a comparison of subgroups for the two individual 
regimens (i.e. AC and TC).

Primary objective 1 is to test for a difference between arms in pCR rate using a one-
sided Type 1 error rate of 0.05. The null hypothesis is that the pCR rate in both arms 
is 0.13. Given that the true pCR rates are 0.13 versus 0.26, the chi-square test of 
proportions has 82% power of rejecting the null hypothesis. Given that the true pCR 
rates are 0.13 versus 0.24, the chi-square test has 72% power.  Even if the null 
hypothesis is not rejected, Primary Objective 2 will have reasonable power to 
examine the difference in pCR rates between predicted drug sensitive and predicted 
drug resistant for the individual regimens.  An interim analysis is scheduled at 90 
patients to assess for futility.
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Figure 2: Strategies to Predict 
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Cancer Cell-line Data (e.g. Docetaxel) 

Figure 3: Prospective Approaches to Gene Signatures for Clinical Applications

Figure 4: Validation of the Prospective Approaches for Gene Signatures

Figure 5: Impact of a Reference Set on Predicting Response (e.g. Adriamycin)

Figure 6: Detailed Work-Flow for 
Prospective Use of Gene Signatures
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Figure 8: Schema for a Randomized 
Clinical Trial Design to Evaluate the 
Performance of Multiple Genomic 
Signatures in Directing Treatment

Evaluating the Gene Signatures in 
Prospective Clinical Studies

Background: The development of genomic signatures as predictive
biomarkers of chemotherapeutics provides the potential to guide
therapeutic choice in instances where standard-of-care includes multiple
options. A critical step is their application in clinical studies designed to
evaluate the capacity to improve selection of drugs for the individual
patient. However, the prospective use of microarray technologies and
multi-gene models to a single patient sample in the context of a clinical
trial requires several methodological advancements.

Methods: We describe a strategy that makes use of a trial-specific
reference tumor dataset to provide a source of information for
normalization of microarray data between the pre-clinical training set (cell
lines) and the single patient sample. Validations of chemosensitivity
signatures are repeated under this strategy using historical datasets with
split-sample and bootstrap approaches.

Results: Genomic signatures for adriamycin, docetaxel and cisplatin
are mapped to Affymetrix GeneChip© HG-U133Plus2.0 platform.
Prospective predictions of adriamycin sensitivity were associated with
response to neoadjuvant treatment of 133 breast cancers (AUC=0.76, p
< 0.001). Prospective predictions of docetaxel (n=14, AUC = 0.92, p =
0.007) and cisplatin sensitivity (n=49, AUC = 0.97, p = 0.0001)
discriminated between responders and non-responders under first-line
treatment of advanced ovarian cancer. Bootstrap analyses show the
genomic signatures require that reference sets have similar
characteristics to the investigations sample and be of sufficient size to
capture variation in gene expression in the patient population.

Conclusions: These results demonstrate the accuracy of the genomic
signatures are comparable to retrospective assessments when properly
applied to a single sample in the prospective setting. We further describe
trial designs to test the efficacy of these signatures and an automated
data analysis infrastructure to enable their use in a clinical context.

TYPE 2 SETTING

TYPE 1 SETTING: NORMALIZATION by SVD

TYPE 2 SETTING: SCALE/SHIFT NORMALIZATION

IMPROPER ANALYSIS WITHOUT NORMALIZATION

Adriamycin - Breast Cancer Dataset (N=133)

Docetaxel - Ovarian Cancer Dataset (N=14)

Normalization with GSE2034 dataset

Normalization with DU50 dataset 
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The performance of internal reference sets was evaluated using (A) N = 110
samples from patients that did not receive the investigational agent –
Docetaxel; (B) 5-fold cross validation into reference (N = 106/107) and a test
(N = 27/26) sets – Adriamycin; and (C) repeated splitting of samples into
reference (N=20) and test (N=23) cohorts – Cisplatin. For Cisplatin, the left
panel illustrates one iteration; right panel gives the range of results across
100 resamples per subject (average Sens = 0.87, Spec = 0.91). .

A critical element regarding the use of a reference set is that there are no technical batch 
effects with the test samples that are to be generated. As illustration, PCA demonstrates the 
GSE2034 dataset has similar global expression levels to the neoadjuvant breast cancer 
dataset. A set of 50 breast cancer samples obtained from Duke show a different global 
profile likely due to a difference in the Affymetrix platform (U133 plus 2.0 versus U133A). 
Therefore the results from applying the adriamycin signature  are more discordant with the 
retrospective and 5-fold cross-validated results (Figure 4).

Statistical analysis plans for this trial design can provide preliminary
evidence of the performance of genomic-guided therapy (aka
randomized phase II trial), or definitive evidence of superiority to
random selection (aka phase III trial).

Figure 1: Gene Signatures

CISPLATIN (n=45)

ADRIAMYCIN (n=80)

DOCETAXEL (n=50)

Resistant 257P     A375     C8161     ES2     me43     
SKMel19     SNU182     SNU423     
Sw13

Sensitive FUOV1     BT20     DV90 OAW42     
OVKAR     R103

Resistant EKVX     IGROV1    OVCAR-4
786-0    CAKI-1    SN12C TK-10

Sensitive HL-60(TB)     SF-539     HT29     HOP-
62      SK-MEL-2     SK-MEL-5      
NCI-H522

Resistant EKVX     IGROV1    OVCAR-4
786-0    CAKI-1    SN12C TK-10

Sensitive HL-60(TB)     SF-539     HT29     HOP-
62      SK-MEL-2     SK-MEL-5      
NCI-H522

Figure 7: A Quantitative Approache
to Evaluating a Reference Set

Cisplatin - Ovarian Cancer Dataset (N=43, split)

A critical aspect of evaluating the performance of the gene signatures is
to define the conditions and procedures necessary for implementation in
day-to-day clinical practice. The need for data normalization, as detailed
in Figure 2, presents a significant challenge, considering the fact that in
the context of a trial, one patient sample must be analyzed at a time.

We propose two different strategies illustrated in Figure 3 that involve
three sources of information- 1) the training set data that derives from the
cancer cell lines identified as sensitive and resistant to the drug, 2) a
reference dataset that provides the tumor specific gene expression
context, and 3) the test sample.

As one approach (left panel of Figure 3; Type 1 setting), the training and
reference datasets are merged before performing a SVD. The principal
components from the merged data set are applied to the Bayesian model
without including phenotype information for the reference samples, and
the Bayesian model is then applied to post-processed expression data
from the test sample.

In an alternative approach (right panel of Figure 3; Type 2 setting), the
reference set is used to directly standardize the expression data from
each incoming tumor sample to the training set, while determining the
principal components and developing the model solely within the training
set data.

Predictors are derived from sensitive and resistant cell lines defined in
from Gyorrfy et al and Potti A et al. Genes were selected to be most highly
correlated (Pearson) to the cell-line phenotypes. Expression values of each
signature are displayed as heatmaps images.

Predictive models of chemosensitivity
were derived using an established
method of data decomposition and binary
regression models, as described in West
2001. As the development phase,
training data alone are used to select the
features of the model as the probe sets
having the strongest (Pearson)
correlation to the tabulated phenotype.
Expression values were summarized by
the top two principal components from a
singular value decomposition under the
sets of samples defined by a Type 1 and
Type 2 analysis (see Figures 2 and 3). Summarized expression values (termed
‘metagenes’ in previous publications) are applied to a Bayesian probit regression model
with non-informative priors for the parameters pertaining to the linear model and variance
terms. A Markov Chain Monte Carlo (MCMC) is used to obtain the posterior distribution for
the linear predictor and regularized probabilities from the training dataset, using 1000 burn-
in’s and 5000 iterations to ensure convergence. For the validation phase investigational
samples are normalized by the SVD or scale/shift standardizatrion, the expected predicted
probability is taken as the average value from the posterior distribution of the model.

Step 2: Apply the prospective 
algorithm in Fig 6 to each test 
sample

Step 3: Compute either 

(a) deviation from the true 
phenotype – solid lines, or 

(b) misclassification rate for a 
given threshold – circled points.
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A B S T R A C T

Purpose
Identifying sources of variation in expression microarray data and the effect of variance in gene
expression measurements on complex predictive and diagnostic models is essential when
translating microarray-based experimental approaches into clinical assays. The technical reproduc-
ibility of microarray platforms is well established. Here, we investigate the additional impact of
intratumor heterogeneity, a largely unstudied component of variance, on the performance of
several microarray-based assays in breast cancer.

Patients and Methods
Genome-wide expression profiling was performed on 50 core needle biopsies from 18 breast cancer
patients using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Global profiles of
expression were characterized using unsupervised clustering methods and variance components
models. Array-based measures of estrogen receptor (ER) and progesterone receptor (PR) status were
compared with immunohistochemistry. The precision of genomic predictors of ER pathway status,
recurrence risk, and sensitivity to chemotherapeutics was evaluated by interclass correlation.

Results
Global patterns of gene expression demonstrated that intratumor variation was substantially less than
the total variation observed across the patient population. Nevertheless, a fraction of genes exhibited
significant intratumor heterogeneity in expression. A high degree of reproducibility was observed in
single-gene predictors of ER (intraclass correlation coefficient [ICC] � 0.94) and PR expression (ICC �
0.90), and in a multigene predictor of ER pathway activation (ICC � 0.98) with high concordance with
immunohistochemistry. Substantial agreement was also observed for multigene signatures of cancer
recurrence (ICC � 0.71) and chemotherapeutic sensitivity (ICC � 0.72 and 0.64).

Conclusion
Intratumor heterogeneity, although present at the level of individual gene expression, does not
preclude precise microarray-based predictions of tumor behavior or clinical outcome in breast
cancer patients.

J Clin Oncol 28:2198-2206. © 2010 by American Society of Clinical Oncology

INTRODUCTION

Since its inception, microarray technology has pro-
vided a powerful tool to the research community
because of its ability to simultaneously measure the
expression of tens of thousands of genes. In particu-
lar, breast cancer research has seen great benefits
from this technology, with many studies describing
multigene expression patterns associated with di-
agnostic and prognostic subclasses among other-
wise indistinguishable tumors.1-3 These studies have
also established the ability to predict a cancer pa-
tient’s treatment response based on gene expression
patterns.4-7 With the clear potential of microarray-

based assays to guide clinical decisions, translating
these assays to the clinical laboratory is imperative.

Clinical translation requires an understanding
of factors that influence the precision and accuracy
of microarray-based assays. Chief among these fac-
tors is the variability of gene expression measure-
ments, which can be divided into technical (intrinsic
to the platform) and preanalytic (intrinsic to the sam-
ple) sources of variation. The Affymetrix GeneChip
Human Genome U133 Plus 2.0 array platform (Af-
fymetrix, Santa Clara, CA), investigated herein,
has a high degree of reproducibility and thus little
technical variance, as established by several groups
including the MicroArray Quality Control (MAQC)
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project.8-12 Variance intrinsic to a sample is more difficult to control,
particularly for solid tumor specimens where intratumor hetero-
geneity could result in significant sampling bias. Small sampling,
such as needle core biopsies, can yield samples from the same tumor
with different histologic and biologic features. The effect of tumor
heterogeneity on microarray-based assays has been evaluated in
some cancers, although breast cancer is surprisingly understudied
in this regard.13-17

Here, we investigate the impact of tumor heterogeneity on sev-
eral microarray-based predictors of biologic behavior and clinical
outcome in breast cancer patients. Multiple core biopsies from indi-
vidual patients were evaluated by routine histology and tested using
single-gene measurements and multigene signatures that would be
integral to the routine care of the breast cancer patient, including
estrogen receptor (ER) status, progesterone receptor (PR) status, risk
of cancer recurrence, and chemotherapeutic sensitivity. Precision for
each of these predictors was measured and evaluated in the context of
performance expectations for clinical assays.

PATIENTS AND METHODS

Tumor Sample Collection and Histologic Analysis

Following patient consent, samples were obtained from breast cancer
excisions as part of a Duke University Health System (DUHS) institutional
review board–approved tissue banking and research protocol for the Duke
University Medical Center (DUMC) Breast Cancer Specialized Program of
Research Excellence (SPORE). Immediately after surgical excision, lumpec-
tomy specimens were sampled by 14-gauge needle core biopsy using an imag-
ing device, as previously described.18 The core biopsies were embedded in
Tissue-Tek OCT (Qiagen, Valencia, CA) and frozen in liquid nitrogen. One
5-�m frozen section was prepared from each sample, stained with hematoxy-
lin and eosin, and evaluated by an expert breast pathologist (J.G.). Routine
pathologic evaluation of the corresponding clinical specimens by the DUHS
laboratories included determination of ER and PR status by immunohisto-
chemistry (IHC). Samples with an Allred score of 0 or 2 were classified as
negative. Human epidermal growth factor receptor 2 (HER2) status was de-
termined by IHC and fluorescent in situ hybridization. This study included
only HER2-negative patients with at least two frozen core biopsies containing
neoplastic cells.

RNA Purification and Microarray Hybridization

Total RNA was extracted using a kit-based method (RNeasy, Qiagen,
Valencia, CA). RNA quality was assessed using an Agilent bioanalyzer (Agilent
Technologies, Santa Clara, CA). Hybridization targets were prepared from 2
�g of total RNA and hybridized according to standard Affymetrix protocols
using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Arrays
were scanned on the Affymetrix GeneChip scanner and probe set expression
values, percent present, and 3�/5� probe set ratios for actin and glyceraldehyde-
3-phosphate dehydrogenase were calculated using the Affymetrix Microarray
Analysis Suite v5.0.

Microarray Preprocessing and Statistical Analysis

Expression estimates for the 50 DUMC tumor biopsies and for the
publicly available breast cancer microarray data sets (GEO# GSE349419 and
GSE145620) were obtained by robust multiarray average21 and log2 trans-
formed. The ratio of intratumor variance to total variance among the DUMC
biopsy specimens was calculated for all probe sets. The total variance was
calculated as the sum of squared differences from the mean expression for all
samples. Intratumor variance was calculated as the sum of squared differences
from the mean expression within individual tumors.14 Global patterns of
expression were evaluated by principal component analysis (PCA) and hier-
archical clustering using average linkage of the Pearson correlation coefficient.

Predictors of ER pathway activation and breast cancer recurrence
were generated from published breast cancer microarray data sets (GEO#
GSE349419 and GSE1456,20 respectively), using established methodologies.22,23

Briefly, tests of differential expression were used to select gene sets strongly
correlated to phenotype. Expression values were summarized by the top prin-
cipal components and fitted to a Bayesian probit regression model. Predicted
probabilities were generated for these predictors, and for previously identified
signatures of sensitivity to chemotherapeutic agents doxorubicin and do-
cetaxel.23 Binary classifications were made using thresholds defined a priori for
each signature.

The precision of all signatures was evaluated using fixed-effects analysis
of variance (ANOVA) models and the intraclass correlation coefficient (ICC
[1,1]).24 ICC values ranging from 0 to 1 have been characterized by Landis and
Koch25 as indicating moderate (0.41-0.60), substantial (0.61-0.80), and almost
perfect agreement (0.81-1.00). Accuracy of the single-gene ER and PR predic-
tors and the multigene ER pathway predictor are reported with 95% CIs. The
influence of clinical and technical covariates on precision and accuracy are
assessed using analysis of covariance (ANCOVA) models. All microarray pre-
processing and analysis were performed in R/Bioconductor and Matlab (The
Mathworks, Natick, MA) with graphics generated using Graphpad Prism
(GraphPad Software, La Jolla, CA) and Cluster/Treeview software (Eisen
Lab, Berkeley, CA).26

RESULTS

Characterization of Morphologic Heterogeneity in

Discrete Samplings of Individual Breast Tumors

Fifty samples were obtained from 18 patients as part of a tissue
banking and research protocol for the DUMC Breast Cancer SPORE.
One patient had four replicate samples, 12 patients had triplicate
samples, and five patients had duplicate samples (Table 1). Analysis
was performed on frozen sections stained with hematoxylin and eosin
for each of these core biopsies. The sample set contained a mixture of
ER- and PR-positive and ER- and PR-negative cases (11 ER-positive/
PR-positive, two ER-positive/PR-negative, one ER-negative/PR-
positive, four ER-negative/PR-negative) using the diagnostic core
biopsy IHC as the standard. Invasive carcinoma was present in 49
samples, while one biopsy contained ductal carcinoma in situ only.
One set of biopsies (patient B) contained lobular carcinoma; the
remaining cases were ductal-type carcinomas. Invasive tumor cellu-
larity varied from 10% to 90%. RNA and microarray quality control
metrics are provided in Table 1.

Intertumor Variance Exceeds Intratumor Variance at

the Level of Gene Expression

To evaluate the performance of individual features on the Af-
fymetrix array, we calculated the ratio between intratumor variance
and total variance for all probe sets. As shown in Figure 1A to 1C, the
majority of samples had an intratumor/total variance ratio below 0.5.
A distinct inverse relationship exists between expression intensity and
the proportion of intratumor variance. Specifically, within the top
quartile of probe sets of highly expressed genes (Fig 1A) more than
90% had an intratumor variance ratio less than one third of the total
variance. Conversely, only 11% of genes expressed at comparatively
low levels (bottom quartile, Fig 1A) had an intratumor/total variance
ratio less than one third. We also found that probe sets corresponding
to the U133B platform generally had higher intratumor variability
when compared with those on the original U133A array (P � .001; Fig
1B), and a similar pattern was noted for probe sets annotated to
known genes compared with unannotated probe sets (P � .001).
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To evaluate the global patterns of expression, we performed PCA
and hierarchical clustering on robust multiarray average–normalized
data. Hierarchical clustering of all samples using probe sets with log2

expression values � 5 demonstrated that replicate samples from a

single tumor tended to group together in a robust and statistically
significant fashion (Fig 2A and Data Supplement, online only). One
tumor showed imperfect clustering (patient F). There were no histol-
ogy, RNA, or array quality metrics that could account for discordance

Table 1. Histology, RNA, and Microarray Quality Control Measures

Patient
Sample

Histology QC RNA QC Microarray QC

Histology Size Grade ER PR HER2
CA
(%) Other Features

Concentration
(�g/�L) 260/280 260/230 % P Actin GAPDH

A1 Ductal 2.3 3 � � � 90 0.339 2.08 2.03 54.2 1.49 1.44
A2 80 0.097 2.09 2.37 49.7 2.09 2.09
A3 65 0.162 2.09 2.08 53.9 2.04 1.77
B1 Lobular 3.6 2 � � � 50 0.068 2.02 2.24 53.4 1.34 1.26
B2 85 0.08 2.09 2.44 50.6 1.21 1.12
B3 70 0.068 2.11 1.86 53 1.81 1.36
C1 Ductal 2 2 � � � 10 Biopsy site 0.042 1.98 2.39 54.3 1.49 1.14
C2 80 Biopsy site 0.093 2.06 1.63 56 1.37 1.01
C3 40 Biopsy site 0.07 2.04 0.84 57 1.24 1
D1 Ductal 2.8 2 � � � 30 0.158 2.08 2.27 55.3 1.54 1.31
D2 50 0.147 2.08 1.59 50.4 1.35 1.28
D3 70 0.182 2.1 2.22 52 1.21 1.23
E1 Ductal 2.1 3 � � � 25 0.269 2.08 1.82 52.7 1.17 1.03
E2 75 0.324 2.08 2.27 50.9 1.14 1.05
E3 50 0.26 2.08 2.2 53.5 1.08 1.09
F1 Ductal/micropapillary Multi-focal 2 � � � 25 0.06 2.11 1.8 54.1 1.89 1.17
F2 60 0.292 2.06 2.19 54 1.19 1.13
F3 25 0.079 2.04 2.13 54.2 1.18 0.99
G1 Ductal 3.4 3 � � � 70 0.515 2.08 2.19 51.3 3.31 1.31
G2 30 0.076 2.03 2.39 56.1 1.13 0.98
G3 70 0.331 2.07 2.24 54.4 1.21 1.04
H1 Ductal 1.6 3 � � � 30 0.112 2.11 1.59 50.3 2.94 1.12
H2 30 0.096 1.92 0.92 54.1 2.21 1.09
H3 30 0.072 2.12 1.29 49.7 1.49 1.09
H4 20 0.285 2.09 1.98 49.6 6.66 1.95
I1 Ductal/lobular �2 2 � � � 70 0.237 2.11 1.96 52.5 2.35 1.19
I2 70 0.331 2.09 2.03 51 2.17 1.15
I3 70 0.173 2.12 2.07 51.5 1.79 1.1
J1 Ductal 3.5 3 � � � 80 0.682 2.08 1.93 49.8 3.85 1.47
J2 80 0.941 2.08 2.11 51.3 2.91 1.42
J3 80 0.561 2.07 2.17 50.8 3.49 1.57
K1 Ductal 2.4 2 � � � 15 DCIS 0.068 2.12 1.66 51.4 1.88 1.22
K2 75 DCIS 0.044 2.06 1.85 55 1.85 1.04
L1 Ductal 1.3 3 � � � 0 DCIS 0.055 2.1 1.31 51.2 1.55 1.17
L2 15 DCIS 0.083 2.11 1.84 50.7 1.39 0.92
L3 15 DCIS 0.099 2.09 1.21 51 1.69 1.06
M1 Ductal 1.9 2 � � � 50 0.116 2.1 1.74 50.3 2.49 1.75
M2 50 Necrosis 0.09 2.08 1.74 49.1 1.58 1.1
M3 30 0.084 2.12 1.65 45.5 2.06 1.35
N1 Ductal 1.8 2 � � � 20 0.077 2.14 1.8 50.5 1.57 1.19
N2 70 0.068 2.06 1.96 52.9 1.28 1.09
N3 70 0.069 2.13 0.67 51.6 1.74 1.33
O1 Ductal 3 1 � � � 20 Carcinoma � papilloma 0.261 2.11 2.2 53.7 2 0.95
O2 50 Carcinoma � papilloma 0.143 2.13 1.24 55.5 2.06 1.13
P1 Ductal 0.9 3 � � � 60 0.05 2.11 1.89 54.4 1.34 1.06
P2 10 0.044 2.15 1.61 56.6 1.34 1.05
Q1 Ductal 1.8 3 � � � 70 Biopsy site 0.474 2.07 2.03 51.9 2.13 1.08
Q2 30 Biopsy site 0.226 2.11 2.03 55.1 2.02 1.02
R1 Ductal 2.8 3 � � � 70 Biopsy site 0.156 2.07 2.1 52.8 1.66 1.12
R2 20 Biopsy site 0.132 2.1 2.14 52.8 2.33 1.26

NOTE. 260/280 and 260/230 are optical density ratios; CA is the tumor content in percent; % P is the percent of probe sets present; actin and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are the 3� to 5� probe set ratios for the actin and GAPDH probe sets, respectively.

Abbreviations: QC, quality control; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; DCIS, ductal
carcinoma-in-situ.
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between samples F1, F2, and F3. A PCA of the filtered expression data
(Fig 2B) demonstrates that patient replicates largely cluster together in
the top two principal components (capturing 28% of the total vari-
ance in global expression), indicating that more heterogeneity is seen
across patients than within replicates. In summary, while most genes
exhibit a low degree of intratumor variability and most replicate sam-
ples demonstrate similar global expression patterns, poor performing

probe sets exist and could potentially have an impact on the precision
of array-based predictors of tumor biology or behavior.

Intratumor Variance in Gene Expression Does Not

Preclude Precise Predictions of Tumor Biology

ER and PR status are two critical characteristics of breast cancer
that define biologically distinct subgroups of disease. ER status and PR
status are prognostic of clinical outcome and often determine the
course of treatment. To determine the effect of intratumor variance on
array-based assessments of hormone receptor status, we began by
evaluating single-gene predictors of ER (probe set 205225_at)27 and
PR expression (probe set 208305_at). Expression levels of 205225_at
demonstrated almost perfect agreement among the replicates samples
(ICC, 0.94; 95% CI, 0.86 to 0.97; Fig 3A). Further, using an optimal
binary classification (threshold of log2 � 9.6 to maximize accuracy),
only one patient showed discordance with IHC (sensitivity, 1.0; 95%
CI, 0.90 to 1.0; specificity, 0.88; 95% CI, 0.62 to 0.98). A single probe
set for the PR gene, 208305_at, also showed near perfect agreement
among replicates (ICC, 0.95; 95% CI, 0.89 to 0.98), but with an
optimal binary classifier (threshold of log2 � 5.2 chosen to maximize
accuracy), greater disagreement was noted between PR expression and
IHC results. While all samples from the six PR-negative patients were
classified correctly (specificity, 1.0; 95% CI, 0.80 to 1.0), samples from
five of the 12 PR-positive patients were discordant with IHC (sensitiv-
ity, 0.64; 95% CI, 0.45 to 0.80).

We next created a multigene predictor of ER pathway activation
from a previously published breast cancer Affymetrix U133A microar-
ray data set (GEO# GSE3494). This data set was filtered to retain probe
sets with mean log2 expression values � 5.0 for the 247 ER-annotated
patient samples.19 The ER predictor was based on 1,022 probe sets
identified by a Wilcoxon rank sum test with Bonferroni correction
(adjusted P � .05), with intentional exclusion of probe sets for ER
itself (Data Supplement). The large number of differentially expressed
genes highlights the distinct biologic characteristics of these different
tumor types. A predictor of ER pathway status was generated by
applying the top principal component of expression from the 1,022
probe set list to a Bayesian probit regression model. Under leave-one-
out cross validation and a threshold of 0.5, the model classified 91% of
the ER-negative samples and 85% of the ER-positive samples by IHC
correctly (Fig 3B). Applied prospectively to the breast cancer replicate
data set with an optimal threshold of 0.45 (Fig 3C), the model showed
near perfect precision (ICC, 0.98; 95% CI, 0.95 to 0.99) and 96%
accuracy identical to the single-gene model. Taken together, these data
show that when assaying a robust biologic property of breast cancer
such as ER status, intratumor variance does not preclude precise
predictions from microarray data.

Intratumor Heterogeneity Does Not Preclude Precise

Predictions of Clinical Outcome

A prognostic model for death attributed to breast cancer was
generated from expression data from a previously published data set
(GEO# GSE1456; N � 159).20 Probe sets associated with survival were
identified using a Cox proportional hazard model and the Benjamini-
Hochberg method for controlling false discovery rates.28 A total of 205
probe sets (representing 184 genes) were identified with a false discov-
ery rate � 0.01. These probe sets contain an over-representation of
genes involved in cell cycles (20 genes; P � .001), cytokinesis (seven
genes; P � .004), and cellular metabolism (84 genes; P � .004; Data
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Fig 1. For Affymetrix probe sets, intratumor variance is generally a small
component of total variance. Histograms stratified by (A) expression level
demonstrate that profiles differ sharply between highly and lowly expressed
genes, and (B) source demonstrate that U133A probe sets are generally more
reproducible. (C) Scatter plot demonstrates an inverse relationship between
variance ratios and average expression.
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Supplement). A binary classifier of survival was created using the first
two principal components. The fitted model accurately stratified pa-
tients into high and low risk for death from disease with a threshold of
0.50 (Fig 4A). When this genomic signature was next applied to an
independent validation data set (GSE3494; N � 315),19 it maintained
the ability to identify a high-risk cohort for survival (P � .0069; Fig
4B). The precision of the prognostic genomic signature was found to
be substantial (ICC, 0.71; 95% CI, 0.48 to 0.87), when applied to the
replicate samples (Fig 4C). The patient with the most variance in
recurrence risk predictions (patient F) also showed the poorest inter-
nal concordance by hierarchical clustering and PCA analysis, suggest-
ing that the global variance in expression within this tumor may have
affected the precision of the risk predictor.

Finally, we established the precision of previously published
chemotherapeutic sensitivity predictors for doxorubicin and do-
cetaxel (Fig 5A and Data Supplement), as implemented in a random-
ized phase II trial to direct neoadjuvant therapy.23 A substantial level of
agreement is observed for the doxorubicin sensitivity predictor (ICC,
0.72; 95% CI, 0.49 to 0.88). Further, 12 of 18 patients showed complete
concordance when applying an a priori threshold of 0.6 used in the
clinical trial. The docetaxel sensitivity predictions showed a slightly
lower level of precision (ICC, 0.64; 95% CI, 0.38 to 0.83), with 14 of 18
patients showing complete concordance. Under a multilevel classifi-
cation of higher sensitivity to one agent or of double resistance (Fig

5B), 13 of 18 patients showed complete concordance. By resampling
from a binomial mixture distribution, the observed agreement in the
three-level classification was highly significant (P � .001). Variation in
tumor content and quality control measures for RNA and Affymetrix
arrays was found not to be associated with the discordance in the
multigene predictors of clinical outcome (all ANCOVA P � .05).

DISCUSSION

Here, we demonstrate that intratumor variance at the level of gene
expression does not preclude the development of precise microarray-
based clinical prediction models in breast cancer. We show intertumor
heterogeneity is greater than intratumor heterogeneity at the level of
global gene expression for this breast tumor data set. While a small
group of genes exhibits a significant level of intratumor variation,
many of these genes are expressed at relatively low levels and can be
filtered as background noise when creating predictive algorithms.
Finally, we demonstrate that a high degree of precision was seen
among replicate samples when assayed using single-gene predictors of
ER and PR status and PCA-based predictors of ER pathway activation,
cancer recurrence, and chemotherapeutic sensitivity.

The heterogeneous nature of solid neoplasms has been recog-
nized and studied by pathologists for decades. In the context of breast
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cancer, the varying presence of normal breast tissue, inflammatory
cells, vessels, necrosis, and neoplastic epithelium gives rise to a variably
mixed population of cells with unique or distinct biologic makeup in
any given tumor sampling. Thus, the question has been raised of how
this cellular heterogeneity may affect assays typically performed for
diagnostic and prognostic purposes in breast cancer patients, includ-
ing ER, PR, and HER2.

The largest study of the reproducibility of HER2 testing was
performed on patients enrolled in the North Central Cancer Treat-
ment Group (NCCTG) N9831 adjuvant trial of trastuzumab. In this
study, only 85.8% of the 2,535 patients registered in the trial had
concordant results for HER2 positivity between the local and central
performing laboratories (88.1% concordance by fluorescent in situ
hybridization and 81.6% concordance by IHC).29 A similar study of
ER and PR IHC measurements in 776 patients enrolled on Eastern
Cooperative Oncology Group (ECOG) 2197 showed 90% and 84%
concordance between local and central laboratory studies for ER and
PR status, respectively.30 These studies, however, are strictly a measure
of assay reproducibility; a measure of technical variance rather than
tumor heterogeneity.

Discordance attributable solely to tumor heterogeneity between
breast core biopsy and resection specimens ranges from 1.2% for ER
status on the low end31 to 14% for ER status and 20% for PR status on
the high end.32 Discordance rates attributable to technique and tumor
heterogeneity that develops over time was determined to be even
higher (18.4%, 40.3%, and 13.6% for ER, PR, and HER2, respectively)

when comparing primary tumors and their corresponding metastatic
lesions.33 The low discordance rates (0% in this study) of our array-
based predictors of ER and PR status are at least equivalent to the good
performance of these traditional techniques.

While the effect of tumor heterogeneity and technical variance
on ER, PR, and HER2 testing has been well studied, few studies
have examined the effect of tumor heterogeneity on multigene pre-
dictive algorithms. A study comparable to the one presented here
reached similar conclusions using a 48-gene TaqMan-based assay.34

This study showed high concordance among three replicate samplings
for 12 breast cancer patients. A similar study examining the contribu-
tion of technical variance to the reproducibility of microarray-based
assays in breast cancer, demonstrated that gene expression–based
signatures developed from replicate experiments among 35 patients
resulted in precise predictions of breast cancer chemotherapeu-
tic responsiveness.13

To the best of our knowledge, our work is the first to demonstrate
the impact of intratumor heterogeneity on the precision of multigene
predictive models focused on tumor behavior. Precision is an integral
component of clinical testing that is often overlooked in the early
stages of translational research. Accuracy always seems of primary
interest at that stage. However, our data suggest that a lack of accuracy
in microarray-based assays may in fact be caused by a lack of precision,
particularly for more indirect measures of tumor behavior (eg, che-
mosensitivity or recurrence). For these more abstract measures, a lack
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of precision may be attributable to true differences in tumor microen-
vironment. This is supported by our finding that the genes in these
complex predictors tend to show higher intratumor variance (Data
Supplement). In fact, there is a direct correlation between each predic-
tor’s ICC and the proportion of genes with high intratumor variance.
Our data also highlight the fact that testing of replicate samples, even
early in the development of a microarray-based assay, can clearly
differentiate between inaccurate and imprecise.

The importance of assessing performance of multigene
microarray-based assays, as described here, bears on the future use of
this technology as a single assay for breast cancer patients that can
provide not only measures of prognosis or predicted therapeutic re-
sponse, but can also supplement or replace the standard assays of ER,
PR, and HER2. The feasibility of this approach is, in part, demon-

strated in this study. This full genome expression profile may find
additional uses as assays become algorithms applied to expression data
sets. As we move toward this, understanding the role of tumor heter-
ogeneity in measures of tumor behavior and developing approaches
and data sets (like the one provided here) to test the precision of these
algorithms is essential.
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ABSTRACT 

Figure 2:  Pathologic Complete Responses (pCR) 

in Breast by treatment and arm (All Patients) 

Table 1: Enrollment Demographics  
(Consented and Randomized, July 2008 to July 2010) 

BACKGROUND: 

REFERENCES 
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Conclusions 

• Genomic profiling can provide  improved assessment of breast 

cancer biology, potentially providing improved prognostic and 

predictive biomarkers. 

• Preoperative chemotherapy is a proven approach that provides an 

early surrogate endpoint (pCR) for validating predictive markers. 

• In vitro/cell-line derived predictive markers  were developed for 

doxorubicin and docetaxel and evaluated  retrospectively.  The 

translation of in vitro markers successfully could significantly 

accelerate  biomarker development. 

• A prospective  marker-based  preoperative chemotherapy trial in 

early-stage breast cancer with Affymetrix-based genomic profiling 

integral to patient treatment assignment using standard of care 

chemotherapy regimens was designed to validate these markers. 

• Subsequent review of the foundational work deriving the markers 

and the retrospective validations showed this work to be flawed, 

and it has subsequently been retracted. This validation trial was 

therefore no longer justified and was closed to accrual. 

• An underpowered analysis of the primary endpoint in the enrolled 

patients was undertaken as part of the Data Safety and Monitoring 

Board review and to address concerns that the flawed biomarkers 

might have resulted in inappropriate treatment assignments.  

 

 

Eligibility Criteria: 

• Chemotherapy deemed appropriate by treating oncology team.  

No restriction on using other tests to assess chemotherapy 

indication (i.e. Oncotype allowed). 

• Tumor size over 1.5 cm by clinical assessment. 

• Any ER/PR status allowed; HER2 negative by standard clinical 

assessment. 

• No T4 lesions. 

• No contralateral cancer. 

• Multifocal disease confined to one quadrant allowed; no 

multicentric disease. 

 

Background:  “Performance of Genomic 

Expression Profiles to Direct the Use of 

Preoperative Chemotherapy for Early Stage 

Breast Cancer” was a prospective randomized 

trial designed to assess in vitro derived 

signatures for predicting sensitivity to 

doxorubicin and docetaxel.  Methods: Patients 

with HER2 negative early-stage breast greater 

than 1.5 cm were eligible.  Either banked or fresh 

cores were then profiled using  the Affymetrix 

U133Plus2.0 microarray. Patients with adequate 

microarray data were then randomized in a 2:1 

ratio to a genomically-guided arm using the 

microarray data to assign treatment with either 

doxorubicin (AC) or docetaxel (TC) based 

chemotherapy or a control arm using random 

assignment to AC or TC (standard doses every 3 

weeks for 4 cycles).  Pathologic complete 

response (pCR) was defined as no residual 

invasive cancer.  The primary aims were to 

determine whether genomic profiling could 

improve pCR rates compared to random 

assignment; and to determine whether profiling 

could identify drug-sensitive and drug-resistant 

patients by comparing subgroups for AC and TC. 

Results: The paper describing the 

chemosensitivity signatures has been withdrawn 

for reproducibility and data integrity problems. 

Consequently the scientific justification for the 

trial no longer exists and the trial was 

permanently closed on 11/1/2010.   39 patients 

were randomized.    The overall pCR rate was 13% 

(95% CI, 4%-27%). The pCR rates in the 

genomically guided v. randomized arms were 15% 

(4/26) and 8% (1/13), respectively (p=0.64).   The 

analysis by individual regimens showed: AC 

overall pCR rate 21% (95% CI, 6%-46%), predicted 

sensitive 25% v. predicted resistant 18% (p=1.0); 

TC overall 5% (95% CI, 0-25%), predicted sensitive 

0% v. predicted resistant 9% (p=1.0).  Conclusion:    

This underpowered analysis was conducted on 

the available data to examine the possibility of an 

adverse trend in patient outcomes. No evidence 

of this was seen. The data and experience from 

this trial can inform the design of future integral 

biomarker-driven trials, particularly in the 

preoperative setting. 

PATIENTS and METHODS: 

To determine in early stage breast cancer treated with primary 

systemic therapy whether genomic profiling for drug-sensitivity 

can improve the  pathologic complete response rate as compared 

to random assignment of patients to therapy. 

 (pCR 26% in genomically-guided v. 13% in control, 82% power) 

RESULTS: 

Median tumor size is 3.2 cm  

(range 1.6 cm to 7.5cm) 

1. Potti A. et al: Genomic signatures  to guide the use of chemotherapeutics. Nat Med. 12:1294 1300, 2006 

(This publication has been retracted) 

2. Bonnefoi, H. et.al., Validation of gene signatures that predict the response of breast cancer to neoadjuvant 

chemotherapy:  a substudy of the EORTC 10994/BIG00-01 clinical trial. Lancet Oncology, 8:  1071-1078, 

2007. (This publication has been retracted) 

3. http://news.sciencemag.org/scienceinsider/DukeTrialLetter.pdf 

Table 2:  Response by final pathology 

and/or clinical evaluation 

This underpowered analysis does not suggest any difference in pathologic 
complete response rates between the investigational marker guided arm 
and the control arm, or by prediction of resistance/sensitivity for either 
regimen.  Given the conservative standard of care design of the study, 
there is no evidence that patients were harmed by participation.  The 
genomic data generated is of high-quality and performed on a standard 
Affymetrix array.  It will be made publically available for interested 
investigators pending completion of analyses and review. 

PATIENTS and METHODS (Continued): 

Treatment Regimens: 

 See Figure 1 for protocol schema 

  Standard of Care Regimens 

•  Docetaxel 75mg/m2  and cyclophosphamide 600 mg/ m2 

IV every 3 weeks for 4 cycles (TC) 

    OR 

•  Doxorubicin 60 mg/m2 and cyclophosphamide 600 mg/m2 

IV every 3 weeks for 4 cycles (AC)   

Toxicities:  

 Consistent with those seen with standard dose AC and TC 

 By chemotherapy: 

  AC: 11 of 19 with grade 3 or 4 adverse events (all 

neutropenia except one treatment unrelated PE) 

 TC:  8 of 20 with grade 3 or 4 adverse events (all 

neutropenia except one docetaxel reaction) 

 By arm: 

  Genomically-guided:  14 of 26  with grade 3 or 4 adverse 

events (all hematologic except one docetaxel reaction 

and one treatment unrelated PE) 

 Control: 5 of 13 with grade 3 or 4 adverse events (all  

hematologic) 

 No treatment related deaths 

 

 

 Following completion of assigned treatment, patients 

were clinically re- assessed for response per standard of 

care with team and  patient decision  regarding whether 

to proceed to surgery or  additional chemotherapy. 

  Patients were unblinded for arm assignment and 

doxorubicin/docetaxel prediction scores after completing 

therapy. 

 Nodal assessment was performed pre –chemotherapy per 

institutional standard, although not required per protocol  

(i.e. could also be done at definitive surgery) 

• One patient randomized and assigned to genomically guided AC 

ineligible due to multicentric disease and treated off protocol 

• Four patients have developed metastatic disease 

• Two have died from recurrent disease; both had high-grade “triple-

negative” disease  

Primary Aim: 

Overall pCR 
 

13% (95% CI: 4-27%) 
 

Genomically-guided (n=26) Control (n=13) 

15% (4/26) 8% (1/13) 

P=0.64 

This analysis includes all randomized and treated patients.  

Table 3:  Response by final pathology only 

The analysis below excludes four TC treated patients; 3 did 

not have definitive surgery or biopsy after completing 

protocol defined treatment and one had a docetaxel reaction 

and was treated with AC. 

AC Treated Cases 

pCR 

Genomic 

Prediction 

No Yes Total 

Resistant 9 2 11 

Sensitive 6 2 8 

Total 15 4 19 

Fisher’s exact p>0.99 

TC Treated Cases 

pCR 

Genomic 

Prediction 

No Yes Total 

Resistant 8 1 9 

Sensitive 7 0 7 

Total 15 1 16 

Fisher’s exact p>0.99 
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ABSTRACT 

Figure 3:  Patient eligibility and tissue acquisition 

Table 1: Enrollment Demographics  
(Consented and Randomized, July 2008 to July 2010) 
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Conclusions 

Figure 1: Prospective Use of Gene Signatures 
 Molecular assays hold promise for personalization of 

 cancer treatment. 

    Full-transcriptome assays: 

Advantage: 

 Potentially validate multiple prognostic and predictive signatures using a 

single dataset 

 Dataset also available for discovery analysis 

Disadvantages/Challenges 

 Current platforms require fresh unfixed  tissue sample 

 Technically challenging 

    Previous work has used in vitro derived data to define 

 predictive genomic signatures for: 

 Sensitivity to common cytotoxic  chemotherapy agents. (Ref. 1) 

  (Publication has now been retracted) 

 Molecular pathway deregulation (Ref. 2 and 4) 

   Prospective randomized preoperative trial in breast cancer 

designed  to validate in vitro derived doxorubicin and docetaxel 

chemosensitivity signatures.(Publication now retracted, Ref. 3) 

• Marker-guided design to test feasibility and  utility of genomic 

information for guiding chemotherapy selection. 

 

• Preoperative treatment to provide short-term clinically relevant 

endpoint 

 

• Genomic information integral to trial conduct 

 

• Choose a conservative clinical question, with importance, but 

reasonable clinical equipoise. For this trial, initial preoperative 

treatment with an anthracycline vs. a taxane based regimen. 

 

• Patient Safety:  

• Treatment assignments that are “Standard of Care” 

• Flexibility in patient management 

• Reviewed by Duke IRB, U.S. Army Medical Research and 

Materiel Command (USAMRMC) Office of Research 

Protections (ORP) Human Research Protections Office 

(HRPO), and outside IRB’s. 

Clinical Trial Design: 

Background:  Genomic assays have been shown 

to provide the potential for personalized breast 

cancer therapy. While assays based on fixed 

tissues offer greater convenience, the spectrum 

of biology interrogated is limited.  Full-

transcriptome assays using microarrays are more 

challenging, but have the potential advantage of 

providing multiple prognostic and predictive 

signatures in one assay.  We created a clinical 

infrastructure with the objective of obtaining full 

genome expression data on breast cancer 

samples as a clinical assay for use in a 

prospective trial.  Methods:  “Performance of 

Genomic Expression Profiles to Direct the Use of 

Preoperative Chemotherapy for Early Stage 

Breast Cancer” was a prospective trial analyzing 

genomic signatures for predicting response to 

doxorubicin (A) or docetaxel (T) treatment in 

HER2 negative cancers.  Fresh-frozen cores were 

reviewed by the study pathologist for tumor 

content.  RNA was then extracted and probe 

generated to hybridize to an Affymetrix 

U133Plus2.0 microarray.  Microarray data quality 

was determined using summary metrics for 

U133Plus2.0 arrays and principal component 

analysis (PCA) plots. Results: 57 patients were 

consented and screened; 48 were eligible and had 

tissue profiling attempted.  Microarray analysis 

was successful on 41 tumors (85%), providing 

data of sufficient quality to make treatment 

assignments. Median tumor size was 3.2 cm 

(range, 1.6-7.5). One sample hybridization failed 

QC as detected by PCA plots, two samples had 

insufficient RNA, and four samples had 

inadequate tissue. The median “study consent to 

treatment” and “tissue to treatment” times were 

16 days (range, 10-54) and 13 days (range, 10-29), 

respectively.  Conclusion:  Real-time full-genome 

expression analysis on frozen tumor using an 

Affymetrix platform can be feasibly incorporated 

into an integral biomarker trial design, even in a 

preoperative setting. The data can potentially be 

analyzed for a number of prognostic and 

predictive signatures 

METHODS: 

1. To determine in early stage breast cancer treated with 

primary systemic therapy whether genomic profiling for drug-

sensitivity can improve the  pathologic complete response rate as 

compared to random assignment of patients to therapy. 

 (pCR 26% in genomically-guided v. 13% in control, 82% power) 

2. To determine in early stage breast cancer treated with 

primary systemic therapy whether genomic profiling can identify 

drug-sensitive and drug-resistant patients including comparison 

of subgroups for the two individual regimens (AC and TC). 

Figure 2: Trial Design 

1) Development (completed prior to study):  

a. Process raw gene expression data for training 

set 

b. Select features with strongest (Pearson) 

correlation to phenotype.   

c. Summarize expression by a singular value        

decomposition (SVD) [Factors derived under      

Type 1  or Type 2 model ] 

d. Build a Bayesian probit regression model to      

predict phenotype  

 

2) Prospective Validation:  

a. Process investigational set normalized by SVD 

or scale/shift standardization. 

b. Summarize expression values using SVD 

factors 

c. Apply  model to obtain a predicted probability 

of clinical outcome 

TYPE 1 SETTING TYPE 2 SETTING 

RESULTS: 

Median tumor size is 3.2 cm  

(range 1.6 cm to 7.5cm) 

Figure 4:  Profiling metrics 
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Figure 5:  Profiling timelines 

Incorporation of real-time genomic profiling into a preoperative 
breast cancer treatment trial is possible, practical, and safe. 
 
Full expression data can be generated in an appropriate time frame and 
be analyzed for a variety of phenotypic signatures.  While candidate 
chemosensitivity signatures were examined in this trial, the expression 
data can also be used for discovery of new phenotypic signatures. 
 
Statistical methodologies for applying in vitro derived genomic  
signatures to “one at a time” clinical samples were developed and 
implemented successfully.  
 
HOWEVER, the scientific work describing and validating the in vitro 

derived signatures was flawed and the supporting publications have 

been retracted.  Since this work provided the justification for 

conducting the trial, this study has now been closed. 

(Ref.  5 and 6) 
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 BACKGROUND 
 Microarray assessment of breast cancer demonstrates disease subsets 

among the major breast cancer biologic categories (ER, PR, HER-2). 

 These have likely additional prognostic and treatment (predictive) 

implications. 

 Additional prognostic and predictive biomarkers and optimization of existing 

genomic platforms are needed to improve personalized breast cancer care.  
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 The top 194 Affymetrix probe sets from the Affymetrix platform had a 

FDR <1%. 

 Shown are (a) all genes with adjusted p < 0.001, (b) genes from 

OncotypeDX that reached statistical significance, and (c) other relevant 

genes linked to breast cancer that were statistically significant.  

 Several known cancer-associated genes are highly correlated with 

prognosis: 

 some are on the DX platform, e.g.: SCUBE2 (ranked 2
nd

, adj-

p=0.002), MYBL2 (ranked 10
th
, adj-p=0.001) and PGR (ranked 14

th
, 

adj-p=0.002);  

 and some are not part of the DX platform, e.g.: BRCA2 (ranked 57
th
, 

adj-p=0.005), and CDCA5 (ranked 90
th
, adj-p=0.006).  

 Figure 2: General association between the microarray oncotype genes 

and true OncotypeDX score was highly significant by SAFE (Barry et al). 

In the SAFE plot, the direction of the microarray differential expression of 

oncotype probe sets largely agrees with the model reported for the 

Oncotype DX assay - with exceptions likely attributable to our cohort 

being predominantly ER+/HER2-. 

 Table 2: For association with prognostic score, two oncogenic pathways 

pass a FDR of 5% (light blue), and three additional pathways pass a less 

stringent FDR threshold of 10% (darker blue).  

 

 Figure 3: In unsupervised hierarchical clustering, pathway signatures 

group patients into three major genomic clusters (A, B, C). 

 The potential clinical significance of these pathway-derived groups and 

connections to luminal-type biology will be further explored.  

 Figure 6: The following “scatter plot matrix” displays the relatedness of 

the various microarray models of breast cancer prognosis.  

 Microarray models show good correlation among each other for ER+ 

patients, with the exception of the GENIUS model.  

 Figure 7: A shrinkage-based regression approach was used to build a 

new microarray model for the true OncotypeDX recurrence score, based 

on a 2:1 random split of the overall patient cohort into a training set 

(n=68) and a test set (n=36).  

 By 10-fold cross validation in the training set, a shrinkage factor to the 

LASSO model identified a 14-gene microarray prediction model for the 

continuous OncotypeDX score.  

 Our microarray-oncotype model was independently applied to the test 

set, resulting in a positive level of association with the true OncotypeDX 

score (Pearson r=0.37, p=0.025), but without sufficient accuracy yet for 

Oncotype prediction for clinical use.  

 Figure 4: Two existing Affymetrix-based microarray models for Oncotype 

score from Fan/Perou and Haibe-Kains differ in how they pick the 

Affymetrix probe sets to represent each oncotype gene, and also differ in 

their respective algorithms.  

 Nevertheless, output from these two microarray-oncotype signatures are 

highly correlated with each other (left panel, rho=0.93).  

 Despite the highly significant correlation of the microarray gene sets and 

Oncotype scores, agreement of both microarray-oncotype signatures 

with true Oncotype score is relatively poor with a prominent upward-shift 

in both microarray models (middle and right panels).  

 

 

 Figure 5: The relationship of Affymetrix-based models for other breast 

cancer-specific prognostic models to true Oncotype DX score is lower 

than the microarray-oncotype model, although statistically significant 

correlation is still seen with all except the GENIUS prognostic model 

(right panel, rho=0.07, p=0.5).  

 The objective of our study in ER+ breast cancer patients is: 

 To perform a cross-platform comparison of existing prognostic genomic 

signatures and the true OncotypeDx recurrence score  

 To perform discovery of additional prognostic / predictive genes or 

pathways in ER+ breast cancer patients   

 METHODS 
Sample Selection and Patient Characteristics  

 Selection of early-stage ER+ patients with adequate RNA from fresh frozen 

tumor specimens and a concurrent 21-gene OncotypeDX recurrence score (RS) 

were identified across independent Duke studies linked to routine prospective 

breast biospecimen collection.  

 After quality control of the microarray data, and normalization for technical 

batches in the laboratory procedures, data are available for a total of 104 ER+ 

patient samples annotated with Oncotype RS and other patient and tumor 

characteristics. 

 Originally 73 patient samples were eligible. Since abstract submission an 

additional 31 ER+ breast cancer patients were found eligible and are included in 

this expanded analysis. 

 Patient Characteristics:  

 104 ER-positive early-stage breast cancer patients  

 Median age 55 (range 35 – 86)  

 Postmenopausal 63%  

 Caucasian 87%, African American 11%  

Data Analysis  

 Expression estimates for Affymetrix H133 Plus 2.0 microarrays were reviewed for 

quality control (Owzar et al.) and normalized across batches with ComBat 

(Johnson et al).  

 The association between mRNA expression by Affymetrix to OncotpeDX test was 

investigated at the feature-level using linear models for microarrays (LIMMA, 

Smyth et al.) and the Benjamini-Hochberg method was employed to account for 

multiple testing.  

 Affymetrix-based models of prognostic breast cancer signatures, including 21-

gene model in Oncotype, the 70-gene model in MammaPrint, the 50-gene model 

in PAM50, and the GENIUS model were computed using algorithms from Fan et 

al and Haibe-Kains et al. Association of microarray model scores to true 

Oncotype recurrence score was assessed using Spearman rank correlation, and 

gene sets to the models were tested using SAFE (Barry et al). 

 22 key pathway-signatures are built into the ScoreSignature module (Chang et 

al) hosted on the Duke Institute for Genome Sciences and Policy (IGSP) 

instance of GenePattern. The association of predicted probabilities from each 

pathway signature with true Oncotype recurrence score is assessed by 

Spearman rank correlation with corrections for multiple testing using the 

Benjamini-Hochberg method. Agglomerative hierarchical clustering of patient 

samples and pathways is provided by the ScoreSignature module, and results 

are displayed as a heat map of predicted probabilities. 

 A shrinkage-based regression approach (Hastie) was used to build a new 

microarray model of Oncotype score from the Affymetrix microarray data. Using 

a 2:1 random split into training and test patient cohorts, a 14-gene signature was 

derived for the linear OncotypeDX score in the training set. After locking the 

Oncotype signature, it was independently assessed in the test cohort.  

Table 2 Association of key oncogenic Pathway-

Signatures to Oncotype Score 

Rank Path Corr P.val Adj.p

1 P53 -0.45 1.34E-06 2.94E-05

2 PR -0.31 0.0012 0.0129

3 BCAT 0.25 0.0112 0.0766

4 RAS 0.23 0.0172 0.0766

5 SRC 0.23 0.0174 0.0766

Figure 3 Patient Clustering by Pathway Signa-

tures  

B CA

Figure 4 Association of Microarray-Oncotype Sig-

natures with true OncotypeDX Score:  

Microarray-Oncotype specific models using the 21 Oncotype genes:  

via Haibe-Kains et al and via Fan/Perou et al 

Figure 5 Association of Other Breast Cancer-

Specific Prognostic Microarray Signatures and 

true Oncotype Score: 
PAM50 w/ risk-of-relapse and proliferation scores (Parker/Perou et al) 

70-gene signature for MammaPrint (Van’t Veer, via Haibe-Kains et al) 

GENIUS (Haibe-Kains/Quackenbush et al) 

Figure 6 “Scatter Plot Matrix” for Relatedness of 

the different Microarray-based Breast Prognostic 

Models 

Figure 7 New Oncotype-Microarray Model Devel-

opment and Model Testing for true OncotypeDX 

recurrence score (RS)  

 DISCUSSION 

 Previously reported microarray-based 

surrogate Oncotype signatures are limited 

by sample size and the availability of the 

actual OncotypeDX recurrence scores, 

which are necessary for a precise 

microarray-based Oncotype signature 

development. 

 In ER+ breast cancer, we have identified 

additional key cancer-associated genes, 

pathways, and genomic signatures 

associated with breast cancer prognosis, 

potentially providing insights into treatment 

opportunities for ER+ breast cancer. 

 Further validation of these additional 

prognostic genes and pathways hold the 

promise to improve personalized breast 

cancer care in ER+ breast cancer patients, 

especially in intermediate risk OncotypeDX 

patients.  

 Cohort(s) with concurrent OncotypeDX 

score and recurrence-free survival data are 

required to prove the clinical validity and 

utility of new prognostic biomarkers in ER+ 

early stage breast cancer patients.  

NCI: RC2CA14041-01; W81XWH-07-1-0394; NCI: K-Award (NK);  

ASCO Young Investigator Award (NK); Supported by the CJL Foundation (WB)  
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Table 1 Discovery of Prognostic Genes associat-

ed with Oncotype Recurrence Score (RS) 

Rank Affymetrix ID
Fold change
(10 units RS)

Adjusted 
p-value Gene Full Gene Name Gene Functions

1 206632_s_at 1.54 4.21E-05 APOBEC3B
Apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide-like 3B

Proteins may be RNA editing enzymes and have 
roles in cell growth or cell cycle control and 
immune response.

2 219197_s_at 0.53 0.00025 SCUBE2
Signal peptide, CUB and EGF-like 
domain-containing protein 2

Suspected breast cancer suppressor protein in 
part by suppression of β-catenin pathway 

3 1552368_at 1.20 0.00033 CTCFL
CCCTC-binding factor (zinc finger 
protein)-like

Involved in gene regulation, utilizes different zinc 
fingers to bind varying DNA target sites.

4 204002_s_at 0.86 0.00041 ICA1 Diabetes mellitus type I autoantigen
Role in regulating the early transport of insulin 
secretory granule proteins

5 211211_x_at 1.16 0.00041 SH2D1A
T cell signal transduction molecule
SAP

Protein that plays a major role in the bidirectional 
stimulation of T and B cells

6 242326_at 1.13 0.00082 COL22A1 Collagen, type XXII, alpha 1
Cell adhesion ligand for skin epithelial cells and 
fibroblasts 

7 225728_at 0.66 0.00096 SORBS2 Arg binding protein 2
Family of adaptor proteins believed to play roles in 
cell adhesion, cytoskeletal organization, and 
signaling

8 207746_at 1.28 0.00096 POLQ Polymerase (DNA directed), theta
Potential role in base excision repair (BER) and 
chemotherapy resistance

9 219836_at 1.27 0.00096 ZBED2
Zinc finger BED domain-containing 
protein 

Unknown function

10 201710_at 1.20 0.00100 MYBL2
V-myb myeloblastosis viral oncogene 
homolog (avian)-like 2

Possesses both activator and repressor cell cycle 
activities. Activates the cell division cycle 2, cyclin
D1, and insulin-like growth factor-binding protein 
5 genes.

14 228554_at 0.53 0.00172 PGR Progesterone receptor Mediates the physiological effects of progesterone

32 208079_s_at 1.34 0.00303 AURKA Aurora kinase A
Cell cycle kinase involved in microtubule 
formation and/or stabilization. Likely role in tumor 
development and progression.

57 208368_s_at 1.14 0.00459 BRCA2 Breast cancer 2, early onset
Homologous recombination pathway for double-
strand DNA repair

87 212021_s_at 1.25 0.00611 MKI67
Antigen identified by monoclonal 
antibody Ki-67

Cell proliferation

90 224753_at 1.22 0.00633 CDCA5
Cell division cycle associated 5

Cell cycle and ERK pathway

142 202095_s_at 1.34 0.00799 BIRC5
Apoptosis inhibitor 4 / baculoviral
IAP repeat containing 5 Proteins prevent apoptotic cell death

Figure 2 Association of Microarray Oncotype 

Genes to true Oncotype Score 

 Even in ER+ breast cancer patients, OncotypeDX provides limited 

treatment guidance for intermediate risk patients. Large proportions of 

breast cancer patients are currently classified at intermediate risk per 

OncotypeDX recurrence score. Additional prognostic / predictive 

biomarkers could be informative for improved personalized chemotherapy 

and treatment decisions. 

 Previously reported microarray-based surrogate Oncotype signatures are 

generally concordant. However, they have suboptimal correlation with the 

true Oncotype score. They are limited by sample size and the availability of 

true OncotypeDX scores. 

 Our findings are from largely ER+/HER- patients with available 

OncotypeDX score, but are still limited by the cohort size. Further 

assessment, validation, and reproducibility of our findings are needed prior 

to clinical use.  

Figure 1 Distribution of OncotypeDx Recurrence 

Scores (RS) 

OncotypeDX Score
(Paik, and TAILORx Risk Categories)

L=Low;  I=Intermediate;  H=High

 Figure 1: Distribution of OncotypeDX scores for our ER+ breast cancer 

patients by low (L), intermediate (I), and high (H) risk OncotypeDX 

categories per Paik et al (intermediate scores 18-30) and per TAILORx 

trial (intermediate scores 11-25).  
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As reported in Barry 2010, very strong agreement is seen with IHC, and few  
discordant  calls (labeled ‘-/+’) are observed among replicates when using 
either a pre-specified threshold (Gong et al), or cut-points to continuous  
scores which maximize concordance among replicates. 

FIGURE 1:  AGREEMENT OF GENE-SIGNATURES FOR TUMOR BIOLOGY WITH IHC (COHORT 1) 

For the progesterone receptor, the gene signature 
from archived specimen (Gatza) outperforms any 
single-gene measurement on the Affymetrix array 
that is optimized for precision/accuracy. 

Single gene 
(>4.0, opt.) 

OncPath 
(>0.19, opt.) 

- -/+ + - -/+ + 

IHC - 6 1 4 1 5 1 0 

IHC+ 12 0 3 9 1 1 10 

Retrospective evaluation of precision of gene-expression-based signatures of prognosis and  

tumor biology in replicate surgical biospecimen from patients with breast cancer 
William T. Barry1, P. Kelly Marcom2, Joseph Geradts2, Michael B. Datto2 

1Dana-Farber Cancer Institute, Boston MA 2Duke University Medical Center, Durham, NC 

Background: Numerous gene-expression signatures have been developed for breast 
cancer.  However, assessments of their validity continue to largely ignore the impact of 
intratumor heterogeneity and technical variation on clinical utility.  Here, the collection of 
replicate specimen in Barry et al (2010) is used to evaluate a broad collection of gene-
expression signatures of prognosis and tumor biology.  

Methods: 18 patients with multiple frozen cores (one patient with quadruplicate, twelve 
with triplicate, and five with doublet samples) were previously identified in the Duke 
Breast SPORE tissue repository.  Cores were assessed for percent invasive cancer 
cellularity, and tumor size, grade, and ER/PR status.  RNA was extracted and hybridized 
to AffymetrixH133Plus2.0 microarrays.  Expression signatures of prognosis and tumor 
biology were developed or translated to the Affymetrix platform using routines by Prat et 
al. (2012) and Haibe-Kains et al. (2012). Association between signatures, and precision 
among replicates are evaluated using Pearson and intraclass correlation. Coefficients are 
reported with 95% confidence intervals. 

Results:  Among prognostic signatures, an imputed 70-gene signature of MammaPrint 
had the highest level of precision (ICC=0.96, 0.91-0.98); strong concordance is seen with 
Affymetrix-based PAM50 risk-of-relapse (ICC=0.82, 0.65-0.92); 16 of 18 patients had 
constant subtype calls. Substantially lower concordance was seen in the GENIUS 
prognostic model (ICC=0.62, 0.35-0.82).  In ER+ patients (n=13), two algorithms to 
impute the 21-gene model of OncotypeDX recurrence score were concordant (r =0.98, 
ICC= 0.90 and 0.83) and distinct from the GENIUS ER+ score (average r=0.74, 
ICC=0.78). Imputed models for the Rotterdam 76-gene model (+ER status), GGI 
(+grade), and ROR-T (+tumor size) showed lower levels of correlation (0.47<rho<0.64), 
suggesting independent prognostic information is conveyed by the unique combinations 
of clinical and genomic factors.  High correlation is seen between models of ER status 
ranging from single-gene data (ICC=0.90) to signatures from archived specimen 
(ICC=0.96) and cell lines (ICC=0.85), with almost complete agreement to IHC results.  
Two signatures of PI3K from specimen with mutation data were partially correlated and 
concordant (r=0.52, ICC= 0.96 and 0.91), while two signatures from overexpression 
systems were uncorrelated, and one with poor precision (r=0.12, ICC= 0.92 and 0.46).  

Conclusions: The number of genomic signatures in breast cancer from archived 
specimen and cell-line experiments continues to grow, but there are limited resources for 
validating their prognostic/predictive value in patient populations. Reproducibility across 
biological replicates is a critical component in establishing clinical utility of a signature that 
is distinct from using technical replicates for the repeatability of analytes on the array 
platform. We demonstrate how archived specimen can confirm reproducibility in the ‘Test 
Validation Phase’ of biomarker development, as advocated by the Institute of Medicine, 
and inform trial designs to prospectively test clinical utility. 

ABSTRACT 

Printed by 

TABLE 1: AGREEMENT WITHIN COHORT 1 ICC (95% CI) 

PROGNOSTIC 

     70-gene (Mammoprint) 0.96 (0.91, 0.98) 

     PAM50 ROR 0.82 (0.65, 0.92) 

     GENIUS 0.57 (0.29, 0.79) 

     21-gene and 16-gene (Oncotype DX) 
         in ER+ patients. 

0.90 (0.77, 0.97) 
0.83 (0.64, 0.94) 

     GGI, 76-gene (Rottingham); ROR-T -NA- 

PREDICTIVE OF TUMOR BIOLOGY 

  ER: IHC in archived spec. (Barry, GSE3494) 0.97 (0.93, 0.99) 

  ER: single-probeset (Gong) 0.93 (0.86, 0.97) 

  ER: in vitro cell-lines (Gatza) 0.85 (0.70, 0.94) 

  PR: single-probeset (new) 0.90 (0.79, 0.96) 

  PR: mut in archived spec. (Gatza, GSE3494) 0.90 (0.80, 0.96) 

  p53: mut in archived spec. (Miller, GSE3494) 18 of 18 concordant 

  p53: mut in archived spec. (Gatza, GSE3494) 0.92 (0.84, 0.97) 

  PI3K: PIK3CA mut. in archived spec. (Loi) 0.95 (0.89, 0.98) 

  PI3K: in vitro overexpression of mut. (Hutti) 0.91 (0.82, 0.96) 

  PI3K: in vitro overexpression of wt. (Hutti) 0.90 (0.80, 0.96) 

  PI3K: in vitro overexpression (Gatza) 0.46 (0.16, 0.73) 

  EGFR: single-probeset (new) 0.88 (0.79, 0.95) 

  EGFR: in vitro overexpression (Gatza) 0.44 (0.14, 0.71) 

     RESULTS 
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SUMMARY 
Signature/algorithm sources: 

• R/Bioconducor package, genefu,  by Haibe-Kains et al.: 
70-gene (cf. Mammoprint); 16-gene (cf. Oncotype); 76-gene (cf. 
Rotterdam); GGI; PIK3CA; GENIUS 

• R source code from the Perou laboratory (http://peroulab.med.unc.edu/): 
21-gene (cf. Oncotype); 50-gene PAM50 intrinsic subtype and risk-of-
relapse (ROR); PI3Kwt and PI3Kmut (Hutti). 

• GenePattern module, ScoreSignature, by Gatza/Chang for genomic 
signature of oncogenic pathways (OncPath) from a variety of sources: 

AKT, Beta-catenin, E2F1, EGFR, ER, HER2, IFNa, IFNg, MYC, p53, 
PI3K, PgR, SRC, STAT3, TGFb, p63, RAS, TNFa 

• R source code from Barry et al. (2010, in prep.): ER, p53 (Miller, 2005) 
• Single-probesets identified by Gong et al. (2006). 

 

 

 
 
In Cohort 1 (n = 18 patients), the genomic prognostic signatures (a) 70-gene, (b) PAM50-
ROR, and (c) GENIUS show varying levels of agreement among replicates (Table 1). In 
each case, the five patients that were ER- by IHC were classified as having worse 
 prognosis on average 
 in the replicate 
samples.   Shown as horizontal 
 lines are pre-defined 
 thresholds to the 70-
 gene (-0.3) and 
 PAM50-ROR (22, low 
versus  versus intermediate or 
 high). Thresholds are 
 observed to also 
 differentiate the ER+ 
 patients with minimal 
 discordance (2 and 3 
 of 13 ER+ cases,
 respectively). For the
 GENIUS model, no 
 threshold is provided 
 in the algorithm.
 Regardless, a higher 
 discordance  rate is 
 seen for any threshold 
 between -1 and 1 that 
 differentiates the ER+  
 subjects. 
 
 
 

FIGURE 2:  SCATTERPLOTS OF AGREEMENT WITHIN PROGNOSTIC SIGNATURES 

70-gene (Mammoprint) 

PAM50-ROR 

GENIUS 

ER+ PATIENTS ER-  PATIENTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is of minimal overlap in genes and clinical factors among the 4 signatures (9 genes 
in 3 or more). In spite of this, strong positive correlation is seen in Cohort 1. 

FIGURE 4:  CORRELATION AMONG PROGNOSTIC CLINICAL+GENOMIC SIGNATURES 

RRM2  BIRC5 CDC20 

UBE2C EXO1  KIF2C 

CCNB1 

GTSE1  

MLF1IP  

Single gene 
(>9.6, pre-spec.) 

Archived spec. 
(>0.63, opt.) 

OncPath 
(>0.14, opt.) 

- -/+ + - -/+ + - -/+ + 

IHC - 5 5 0 0 5 0 0 4 1 0 

IHC+ 13 1 0 12 1 0 12 0 1 12 

Single gene 
(>8.5, opt.) 

OncPath  
(>0.5) 

- -/+ + - -/+ + 

IHC - 12 9 3 0 3 4 5 

IHC+ 6 0 0 6 1 5 0 

 
 
 
 
 
 
 
 
 
 
Two multi-gene signatures of p53 mutation status were separately developed using the 
same set of archived specimen. Despite minimal overlap of gene-sets and different set 
sizes in each model, strong agreement and precision is seen in predictions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Among four PI3K genomic signatures: (a) Strong agreement is seen in predictions based 
on the two signatures from Hutti, despite distinct forms of PI3K being transfected. 
Moderate agreement is seen with the PIK3CA signature derived from archived specimen 
despite only 4+2 overlapping genes. The OncPath signature by Gatza et al. has no 
agreement with the other signatures, and poor precision among replicates (Table 1.) 

FIGURE 3:  CORRELATION AMONG SIGNATURES OF TUMOR BIOLOGY 
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Combining Cohorts 1 and 2, tumor cellularity assessed by histopathology ranges from 0 – 
90%. Impact of cellularity on precision of signatures was measured by standard deviation 
(SD).  The panels below for two ER signatures are consistent with other signatures. Also, 
cellularity is also shown decrease accuracy relative to ER status by IHC pretreatment. 
 
 
 
 
 
 
 
 
 
 
 
For  70-gene, 50-gene and 21-gene prognostic signatures, all lose precision when (a) 
average cellularity is low, and (b) variability in cellularity is high.  Further, for the PAM50 
assay, several patient samples with low cellularity are flagged as ‘Normal-like’ (red sq.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

FIGURE 5:  IMPACT OF TUMOR CELLULARITY ON PRECISION AND ACCURACY 

Conversely, for EGFR, a single-gene measure closely 
correlates with IHC and has good concordance (15 
out of 18); while the OncPath signature from an 
overexpression system performs poorly.  

Update: Additional pathway signatures of PR, 
p53 and EGFR are reported. Some of the findings 
are expanded to a second cohort of 70 replicate 
samples from 24 HER2- patients. Replicate pre- 
and post- treatment cores available from the 
clinical trial “Utilization of Genomic Signatures to 
Direct Use of Primary Chemotherapy in Early 
Stage Breast Cancer” (NCT00636441) were 
analyzed using the same procedures employed 
for Cohort 1 samples. The impact of tumor 
cellularity on the precision and accuracy of 
signatures is calculated using standard deviation . 

Number 

of repl. 

Cohort 

1 

Cohort 

2 

2 5 8 

3 12 10 

4 1 16 

Total 

samples 
50 70 

ER PR EGFR 

70-gene (Mammoprint) PAM50-ROR 21-gene (Oncotype) 

The clinical utility of any genomic signature requires a strong degree of 

precision across biological replicates of tissue/blood sample. However, 

this remains underexplored in most retrospective and prospective 

validation studies.  Here we use replicates from an initial cohort of 18, 

and expanded cohort of 24 patients to evaluate a series of genomic 

signatures for breast cancer that have been made publically available. 
 

  Affymetrix-versions of the 70-gene (Mammoprint) and 50-gene (PAM50) 
show substantial agreement by intraclass correlation, and consistently 
segregate ER+ tumors into low vs. intermediate risk.  

  Less precision is seen with the GENIUS model.  

  Prognostic models that combine genomic and clinical information are highly 
positively correlated with one another, despite largely non-overlapping factors 
to the models. 

  Less correlation is seen among independently derived signatures of PI3K 

  In general, tumor biology signatures derived from candidate genes or 
profiling archived tumors show greater precision than signatures derived from 
in vitro over-expression experiment. 

  Cellularity is shown to impact precision of signatures of tumor biology, with 
notable increases in variance in some samples with <45% cellularity. This is 
further shown to increase deviation from the pre-treatment ER status by IHC.   

  Cellularity impacts precision of prognostic signatures to a similar degree. A 
larger cohorts with outcome information and varying cellularity would be 
needed to evaluate the extent to which prognostic value is lost. 

ER: single-gene (Gong) ER: multi-gene model (Barry) 
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