Explaining the Delay in Theta-Pinch Gas Breakdown

Questions with no clear answers;
• How is the pre-plasma gas evolving at early times?
• What is the most beneficial method of pulsed inductive PI?
• When is a bias magnetic field necessary?
• Why is a delay in gas breakdown seen in biased pulsed inductive devices?

Our numerical approach;
✓ model particle physics at early times in theta-pinch device
✓ show correlation with experiment
✓ elucidate how well the field energy is used during initial breakdown and provide explanation for ionization delay
✓ propose selection criteria when designing a bias and main discharge for pulsed inductive devices
Explaining the Delay in Theta-Pinch Gas Breakdown

Presented at the 2012 AFOSR Space Propulsion and Power Program Review held 10-13 September in Arlington, VA. U.S. Government or Federal Rights License
Pulsed Inductive Test Article

- Missouri Plasmoid Experiment
 - Pulsed inductive test article for studying fundamental plasma processes
 - Electric and magnetic probes diagnostics
 - Internal plasma probe diagnostics: shunted probe, ion saturation probe
 - Future: spectroscopy, fast framing camera diagnostics
Building MPX Internal Probe Diagnostics

Goals for internal probes;
✓ design and fabricate Langmuir probe pair for use in the MPX pulsed power environment
✓ verify removal of noise to acceptable levels
✓ generate rough picture of plasma discharge activity

☐ verify azimuthal symmetry
☐ bias probe to ion saturation levels to quantify additional plasma characteristics
☐ refine picture with fine spatial resolution via the 2-D translation stage and couple with external measurements to proved a full picture of the plasma evolution

Dual probes used for MPX test article consisting of an exposed probe (top) and a dielectrically shielded null probe (bottom).

Time-lapsed exposure of MPX operation at 30 mTorr along side shunted probe voltage data taken at 14 mTorr.
I. Differential probe design
 - Removes common mode (capacitive coupling, electrostatic) noise from probe signal
 - Constructed on Printed Circuit Board (PCB)
 - Ensures consistency between probes
 - Calibrated using pulsed-power Helmholtz coil
 - 1.60×10^5 T/V-s