Air Force Research Laboratory
Support for Sustainment
A Briefing to the 2011 Corrosion Conference

18 August 2011

Dr. Katherine A. Stevens, SES
Director, Materials & Manufacturing Directorate
Air Force Research Laboratory

Integrity ★ Service ★ Excellence

This briefing is cleared for Distribution A: 88ABW-2011-4487
1. REPORT DATE
 18 AUG 2011

2. REPORT TYPE
 3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
 Air Force Research Laboratory Support for Sustainment

5a. CONTRACT NUMBER
 5b. GRANT NUMBER
 5c. PROGRAM ELEMENT NUMBER
 5d. PROJECT NUMBER
 5e. TASK NUMBER
 5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 Presented at the 2011 Air Force Corrosion Conference held 16-18 Aug 2011 at Robins AFB, GA.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 34

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

• AFRL & its Sustainment Activity Context
• Rapid Response System Support
• Current Fleet Support
• Evolving Corrosion S&T Strategy
• Summary
AFRL Sustainment Portfolio

Embedding robust reliability and predictable readiness into current and future fleets to assure maximum mission capability and maintainability while minimizing costs

- AFRL considers Sustainment an integral part of Life-Cycle Management
 - AFRL’s effort Covers the Entire Product Life Cycle
- AFRL investments aimed at meeting MAJCOM needs/strategies
- Goals of AFRL Sustainment Investments
 - Support Sustainment of Current AF Fleet
 - Improve Fleet Health Management
 - Enable Robust Design of New Systems

Technology to increase readiness and reduce life cycle costs of current and future systems
Extending System Life

USAF Fleet Timeline

<table>
<thead>
<tr>
<th>Decade</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>50’s</td>
<td>B-52, C-130, C-5, U-2, T-38</td>
</tr>
<tr>
<td>60’s</td>
<td>KC-135, F-15, F-16, A-10</td>
</tr>
<tr>
<td>70’s</td>
<td>F-15, B-1B, T-1A, F-117</td>
</tr>
<tr>
<td>80’s</td>
<td>B-1B, C-17, T-6, R/MQ-1</td>
</tr>
<tr>
<td>90’s</td>
<td>F-22, B-2, ABL CV-22</td>
</tr>
<tr>
<td>00’s</td>
<td>RQ-4, CV-22</td>
</tr>
<tr>
<td>10’s</td>
<td>F-35</td>
</tr>
</tbody>
</table>

This briefing is cleared for Distribution A: 88ABW-2011-4487
AFRL Sustainment Investment

- Develop Strategic Collaborations
- Leverage External Resources

Prioritization and Program Development

- Fleet Safety
- Fleet Availability
- Fleet Affordability

- AFRL Expertise
- AFRL Resources Available
- Tech Transition Probability & Partners

AFRL Sustainment Portfolio
Support Sustainment of Current AF Fleet
Improve Fleet Health Management
Enable Robust Design of New Systems
Rapid Response Systems Support
AFRL Sustainment

AFRL / RX SYSTEMS SUPPORT MISSION

Merge systems engineering application expertise with AFRL technology expertise to provide timely, effective solutions to user needs

VISION

Now/Near Term Focus
Event Driven Rapid Response
Customer Connected
Implementation Oriented

Keep AF Systems Safe, Available, and Affordable
Merge systems engineering application expertise with materials and processes (M&P) technology expertise to provide timely, effective solutions to user needs

- MATERIALS INTEGRITY BRANCH (RXSA)
- ACQUISITION SYSTEMS SUPPORT BRANCH (RXSC)
- LOGISTICS SYSTEMS SUPPORT BRANCH (RXSS)
 - Advanced Composites Office (Hill AFB)
 - Coatings Technology Integration Office (WPAFB)
 - Corrosion Prevention & Control Office (Robins AFB)
 - Metals Technology Office (Robins AFB)
 - Nondestructive Inspection Office (Tinker AFB)

Keep AF Systems Safe, Available, and Affordable

This briefing is cleared for Distribution A: 88ABW-2011-4487
Field and O&M Support
Current Fleet Sustainment Issues

<table>
<thead>
<tr>
<th>Mission</th>
<th>Impact/Benefit to the User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide technical leadership in pervasive AF structural MX areas to ensure flight safety, reduce cost, improve availability, & reliability</td>
<td>• Improves fleet availability by sharing MX best practices</td>
</tr>
<tr>
<td>Technology/Solution</td>
<td>• Optimized C-130 wash schedules to balance mission & corrosion control</td>
</tr>
<tr>
<td>• 5 Offices Collocated at ALCs</td>
<td>• Command Corrosion & NDI MX Surveys</td>
</tr>
<tr>
<td>• Engr & Tech Assistance for MX & Sustainment</td>
<td>• 1st AF plan to mitigate latrine corrosion on 11 MDS</td>
</tr>
<tr>
<td>• Maintenance of T.O.s & Reference Mat’l</td>
<td>• Speeds technology transfer form R&D to MX Ops</td>
</tr>
<tr>
<td>• Field Surveys/SAVs</td>
<td>• 90% reduction in paint-to-fly time for aircraft</td>
</tr>
<tr>
<td></td>
<td>• 75% reduction in install time on C-17 antennas</td>
</tr>
<tr>
<td></td>
<td>• Develops rapid technical solutions to Ops challenges</td>
</tr>
<tr>
<td></td>
<td>• Solved 3 C-130 SATCOM antenna problems</td>
</tr>
</tbody>
</table>

This briefing is cleared for Distribution A: 88ABW-2011-4487
AFRL Sustainment Offices

Mission Scope: Structural Maintenance Support for Fielded Aircraft Operations
“The Technical Home Office for 5 AF Maintenance Career Fields”

Advanced Composites Office (Hill AFB)
- Technical support / consultation
 - Evaluate, prototype, field test, & transition
- Repair process development
- Facilities and M&P evaluations
- Manage AF Composite Repair, CDDAR TOs
- Composite training support

Nondestructive Inspection Office (Tinker AFB)
- Technical support / consultation
 - Evaluate, prototype, field test, & transition
- Eng. Authority for centrally procured NDI equipment
- Conduct Worldwide NDI Lab Assessments
- Manage AF NDI TOs
- NDI training support

Corrosion Prevention & Control Office (Robins AFB)
- Technical support / consultation
 - Evaluate, prototype, field test, and transition
- Conduct Worldwide AF Corrosion Surveys
- Manage AF Corrosion TOs
- Support Weapon System CPABs

Coating Technology Integration Office (WPAFB)
- Technical support / consultation
 - Evaluate, prototype, field test, & transition
 - Repair process development
- Environmental aging test facility

Metals Technology Office (Robins AFB)
- Technical support/ consultation
- Standardize equipment, training, processes

Mission directed by AF/A4M; Programmed and funded by AFMC/A4M; Executed by AFRL/RXSS
USAF Aircraft Latrine Study
Conducted by the AF Corrosion Prevention & Control Office

- Directed by AFMC/CC
- Visited 11 heavies’ PDM facilities and SPO engineers

RECOMMENDED:
- Creation of Equipment Specialist position in each SPO responsible for lavatory
- Immediate action on issues facing C-5, KC-10 & B-52
 - Replace existing C-5 lav with COTS system
 - Perform engineering study on KC-10 system to fix or replace
 - Select & execute B-52 SPO’s pick for urinal replacement or install B-1 / B-2 improved toilet
- AFMC direct SPOs incorporate all AFCPCO suggestions
 - Most AFCPCO suggested material changes, coating stack-ups and use of damming agents are relatively inexpensive and can be implemented immediately
- Encourage SPOs to actively engage w/ field units & hold annual CPABs
 - CPABs are SPO’s best way to gain field insight/collectively solve action items
- Encourage MAJCOMs to support CPABs by funding MAJCOM Functional/SME TDYs
 - MAJCOM/Wing/SPO Corrosion Mgr involvement paramount for prgm success
- Ensure lavatory refurbishment is mandated in all PDM work packages
- SPOs working implementation plans and reporting status to AFMC/CC/A4
AFRL System Support Process

Customer Needs
Operational
• Mat’ls Failure

Maintenance
• Repair Issues

Acquisition
• Mat’ls Selection
• Component Design

Tech Development
• Transition Issues
• Improve Sustainability

System Support
• Adhesives / Comp / Elast
• Failure Analysis
• Testing/Evaluation
• Non-Destructive Insp.
• Collocates
• RX R&D Exp.
• RB and RZ R&D Exp.
• AF Structural MX O&M
• Other AFRL TDs

Products
Solutions
• Root Cause
• Repair Technology

Information
• Adv Mat’ls Req’ts
• Unbiased Data

Lessons Learned
• Failure Avoidance
• Adv Tech Transition

Prototype Systems
• Field/Depot Processes

Wide Range of Customers
Broad Expertise Base
Credible, Capable – Trusted 3rd Party
Full Spectrum of Products

This briefing is cleared for Distribution A: 88ABW-2011-4487
• Rain/Particle Erosion
• Nondestructive Inspection
• Electronic & Structural Failure Analysis
• Electrostatic Discharge Control
• Composite Supportability
• Adhesive Bonding
• Aircraft Wiring
• Elastomers & Seals
• Materials, Structures & Engine Test & Evaluation capabilities
• Coatings (integration/transition/support)
• Manufacturing Processes
• Air vehicle/Engine Integration and Design
Systems Support Time Line
Customer Focused S&T Solutions

Deliver Rapid Response Engineering

Provide Mishap & Tech Consultation
1-30 Days

F-16 Throttle Cable

Technology Solutions
- Fleet Management Options
- NDI Tools & Procedures
- Production Modifications
- Materials Selection/Sub
- Repair Procedures
- New S&T- Processes/Mfg
- Commercial Tech Insertion
- Training and Field TOs

Develop & Apply Tech Solutions

F-15 Arc Fault CB

Days

F-16 341 Bulkhead Bonded Repair

Months

Partner for Long term S&T Solutions

F-16 341 Bulkhead Bonded Repair

Cracked B-2 Aft Deck

Weld Repair Program

ARAMIS Strain Survey

Tech Transition

System Modifications

systems Support Time Line
Customer Focused S&T Solutions

Deliver Rapid Response Engineering

Provide Mishap & Tech Consultation
1-30 Days

F-16 Throttle Cable

Technology Solutions
- Fleet Management Options
- NDI Tools & Procedures
- Production Modifications
- Materials Selection/Sub
- Repair Procedures
- New S&T- Processes/Mfg
- Commercial Tech Insertion
- Training and Field TOs

Develop & Apply Tech Solutions

F-15 Arc Fault CB

Days

F-16 341 Bulkhead Bonded Repair

Cracked B-2 Aft Deck

Weld Repair Program

ARAMIS Strain Survey

Tech Transition

System Modifications

This briefing is cleared for Distribution A: 88ABW-2011-4487
AFRL Customers and Collaborators

Over 170 Projects
More than 70 Customers
2009 Data

AFMC
AMC
ACC
AETC
AFSPC
WR-ALC
OC-ALC
OO-ALC
AF Safety Center
ASC
46th TW
NASIC
AFRL
OSI
MAJCOMs
ALCs

ASC/EN
USAFA (CASstLE)
WR-ALC
ALCs
OC-ALC
OO-ALC
AFIA

AFRL Customers and Collaborators

Time Critical AF Mission Support for Acquisition, Operational, and Sustainment Needs

This briefing is cleared for Distribution A: 88ABW-2011-4487
Current Fleet Support
PROBLEM:
• Fuel leaks a significant maintenance driver

FINDINGS:
• Determining which bladder is leaking is difficult on multi-bladder platforms
• Leak check methods for bladders are primitive, time consuming and inaccurate
• AFRL and ALC team proposed solutions
 • Implement advanced detection techniques
 • Structurally isolate the bladder cavities
 • Develop sensors and tapes to aid in leak path analysis
 • Develop self-healing bladders

STATUS:
• Solutions identified
• Funding being sought for TCTOs and development programs
APPROACH: Collaboration with AFMC/A7 Environmental Program to demonstrate improved processes using high temperature plastics, such as Ultem® and PEEK, or composites, such as epoxy graphite, develop a durable non-metal blade that retains a sharp cutting edge. Combine these blades with heat and power tools for easy removal of materials.

DELIVERABLE:
- Performance data for SPOs to demonstrate worker-friendly handle and durable blade systems and processes for removal of materials on- and off-aircraft.
- Modify power assisted tools that can be adapted to the blades.
- Develop a heated removal process that softens materials prior to removal.

PAYOFF: Rapid removal of materials for corrosion inspection without worker injury resulting in lower maintenance costs and aircraft downtime.

PROBLEM: Environmentally friendly coating and sealant removal for corrosion inspection difficult with current low cost plastic scrapers.

Technology Availability: FY12
POC: AFRL/RXSA DSN 986-9214
PROBLEM:
- Fuel probes for the C-130 are degrading and giving inaccurate fuel level indications in the tanks
- AFRL/RX found corrosion products from fuel residue/build-up on electrical connections are the cause of premature probe failures

DELIVERABLE:
- RX evaluating new probe design with accelerated test methods to validate extended life for probes.
- Test results on redesigned components will provide SPO design data for inserting new probes as preferred spares

IMPACT/PAYOFF:
- Significantly reduced field/depot maintenance costs (increased Mean Time Between Failure - MTBF).
- Increased Aircraft Availability by reducing number of repair actions
- Next generation materials can be transitioned to other platforms/systems.

Technology Availability: FY13
POC: AFRL/RXSA DSN 986-9214
PROBLEM:
- Silver plated copper wiring susceptible to corrosion (Red Plague)
- Fluoropolymer wire insulations can off gas corrosive material and damage wiring, connectors and fiber optic systems

OBJECTIVES:
- Characterize corrosion mechanisms
- Develop novel test methods that quantify wire corrosion susceptibility
- Develop improved silver plating systems to mitigate corrosion
- Develop new Fluoropolymer insulation systems that don’t off gas corrosive materials

DELIVERABLES:
- Improved corrosion resistant wiring
- New wiring plating/insulation
- Insulation specification and industry sources

IMPACT/PAYOFF:
- Impacts systems such as the JSF, F-22 and many USAF missiles and satellites
- Significantly reduces field/depot maintenance costs (increased Mean Time Between Failure – MTBF)

Technology Availability: FY15

POC AFRL/RXSA DSN 986-9214
Improving Maintainability
Surgical NDI/E Methods Development

DELIVERABLE:
- Portable, field level multi-axis segmented sensor placement tool to effectively inspect critical areas inside aircraft structure without disassembly

IMPACT/PAYOFF:
- Increase inspection reliability by minimizing awkward inspector access to constrained areas
- Minimize costly and time consuming disassembly of aircraft for inspection
- Enable pre-induction inspections for realizing HVM objectives

PROBLEM:
- Critical NDI inspections are required in limited access locations
- Disassembly is costly and time-consuming
- Disassembly introduces potential for additional damage

Technology Availability: FY14/15

POC: AFRL/RXLP DSN 785-9803
Objective
Reduce or eliminate chromium, cadmium, nickel, hazardous air pollutants (HAPS), and volatile organic compounds (VOCs) from coatings and related processes.

RX Technology Areas
<table>
<thead>
<tr>
<th>Organic & Inorganic Coatings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Treatment</td>
</tr>
<tr>
<td>NDI</td>
</tr>
<tr>
<td>Coating Removal</td>
</tr>
</tbody>
</table>

Benefits
- Increased operations capability
- Less hazardous waste
- Less toxic exposure
- Less hazardous air emissions
- Reduced cost
- Improved performance

Hazardous Cr and Cd Replacements

UV Cured Paint

Laser Paint Stripping

Drivers: EO 13423; CAA, CWA, RCRA, OSHA; Cr6+ minimization/elimination in acquisition policy memorandum from DUSD J.J. Young, Jr; OSD Emerging Contaminants Watch List; foreign environmental regulations.

This briefing is cleared for Distribution A: 88ABW-2011-4487
Air Force UV-Curable Program Approach

Funded by AFMC/A7-Pollution Prevention

Step-wise approach utilized to validate and advance UV-curable coatings

- Eliminates all hazardous materials
- Improves maintainability/reduces process flow time

Phase I
Stencils/markings and repairs
In-Process

Phase II
Off-aircraft small components
In-Process

Phase III
Large area off-aircraft UV-curable coating cure
In-Process

Phase IV
Full Aircraft Painting

Optimization and test phase
 Planned systems delivery – FY 14

In-Flight tests
F-16/C-130
2007-2011

POC: AFRL/RXSC DSN 986-5709

This briefing is cleared for Distribution A: 88ABW-2011-4487
AFRL and HQ AFMC identified laser technology as a viable alternative and initiated the AF Laser Program

Program Goal: Establish and expand the use of laser technology as a viable alternative technology for depot maintenance operations

Phase I
- Handheld laser coatings removal applications
 - COMPLETED

Phase II
- Large area, off-aircraft laser coatings removal applications
 - COMPLETED

Phase III
- Automated full aircraft laser coating removal applications
 - IN-PROCESS

System Delivered
- Tinker – 2007
- Hill - 2009

Scheduled Delivery
- Hill - 2012

POC: AFRL/RXSC
- DSN 986-5709

This briefing is cleared for Distribution A: 88ABW-2011-4487
S&T Corrosion Study
AFRL Corrosion Activities

AF S&T Strategy, Technology Horizons

Product and Logistic Center Needs

AF and MAJCOM Needs

Rapid Reaction Urgent Warfighter Needs

Science & Knowledge ~20%

Technologies ~50%

Capability Concepts ~20%

Service Core Function Capabilities

Transitions to - Laboratories
- Industry
- Ideas

Transitions to - Product Ctrs
- Logistic Ctrs
- Industry
- Experiments

Transitions to - Product Ctrs
- Logistic Ctrs
- MAJCOMs
- Demos
- Prototypes

Transitions to - Warfighter
- Fielded System

Provides Subject Matter Experts

AFI 20-114

Operations and Mx Structural Sustainment Mission

AFCPCO Office Career Field Support & Technology Implementation

Current Program Funding Sources

RDT&E (S&T) 3600

O&M 3400

Customer Funding

This briefing is cleared for Distribution A: 88ABW-2011-4487
Corrosion S&T Study Strategy

- A targeted study on the potential of S&T to meaningfully impact corrosion problems facing the AF
- Assess existing and required corrosion expertise to impact AF enterprise
- Identify major cost / mission availability drivers
- Identify AFMC priorities with special attention to AF Fleet Viability Board systems projections
- Set S&T investment options to deliver immediate/sustained technology to AF corrosion enterprise
 - Establish options for rapid response technology demonstration and transition of projects to impact AF fleet
 - The corrosion plan strategy also focuses on longer term investments creating science & technologies to enable future capabilities
AFRL is delivering S&T Expertise & Solutions to the Current AF Fleet

Keeping AF Systems Safe, Available, and Affordable
 • Now/Near Term Focus
 • Event Driven Rapid Response
 • Customer Connected
 • Implementation Oriented

Identifying Opportunities for Longer Term S&T Investment
 » Improve Fleet Health Management
 » Enable Robust Design of New Systems
 • Accelerate insertion of new materials in legacy
Back up slides
AFRL is delivering S&T Expertise & Solutions to the Current AF Fleet

Keeping AF Systems Safe, Available, and Affordable
- Now/Near Term Focus
- Event Driven Rapid Response
- Customer Connected
- Implementation Oriented

Identifying Opportunities for Longer Term S&T Investment
- Improve Fleet Health Management
 - Fleet management tools for safety and Life extension
- Enable Robust Design of New Systems
 - Accelerate insertion of modern materials in legacy AC
Desired AF Corrosion Enterprise Characteristics

- **Head Quarters AF & CCPE** - AF Corrosion governance process stability & leadership visibility
 - Policies refined, AF Corrosion Prevention Advisory Board (CPAB) active and staffed
 - Mechanism in place for Integrated Life Cycle Management (ILCM) reporting of Gaps—expertise and resources
 - AF corporate decision/resources allocated to improve AF corrosion enterprise
 - Active/binding processes for functional Acq program AF SME input/lessons learned
 - Development, implementation, sustainment of strategic plan for corrosion

- **AFMC - Operations & Maintenance** – AFI 20-114
 - AFRL Corrosion Prevention & Control Office resourced to match mission requirements
 - Sufficient Staffing/Resources for SMEs presence in Field, Depot and Acquisition Pgms
 - SME Support and governance/standards for weapon systems (CPABs, TOs and Surveys)

- **AFRL - S&T AFRL Programs** (delivering solutions while rebuilding competencies)
 - Funding Initial S&T targeted to high TRL projects - rapid technology impact
 - Labs available for development of AF corrosion expertise and AF SMEs
 - AF Commitment to align long term S&T resources with AF strategic plan objectives
 - Continue to Leverage DoD & other Services S&T investments

This briefing is cleared for Distribution A: 88ABW-2011-4487
Material and Design Compliance
Environmental Compliance

- Reduction of Hazardous Substance (RoHS) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) requiring change in traditional materials where aging and performance characteristics are largely unknown
- Impact spans production, manufacturing, quality control, design, test, and maintenance processes

<table>
<thead>
<tr>
<th>Substance</th>
<th>Use (non-inclusive)</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Pb)</td>
<td>Aircraft electronics</td>
<td>Significant</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>Circuit breakers, relays, connectors, wire</td>
<td>Significant</td>
</tr>
<tr>
<td>Hexavalent Chrome</td>
<td>Anti-corrosion primer on airframe structures</td>
<td>Significant</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>Stainless and magnetic metal alloys</td>
<td>Significant</td>
</tr>
<tr>
<td>Beryllium (Be)</td>
<td>Airframe structures, aircraft wiring, nuclear applications</td>
<td>Significant</td>
</tr>
</tbody>
</table>

This briefing is cleared for Distribution A: 88ABW-2011-4487
• Some primers have been implemented on some aircraft
 – Majority of aircraft are still using chromated primers
 – Various primers have been field tested but have not been approved
 – Approval must come from the authorizing engineer for individual weapon systems for implementation to occur
• Performance of the primer can depend heavily on pretreatment/conversion coating selection
 – Focus is shifting to the qualification of complete Cr-free systems, rather than qualifying each component individually
• Additional field testing and qualification required to continue Cr-free primer implementation efforts
 – Magnesium-based primer has shown great promise in initial testing