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1. Introduction

Localization is a key component in many augmented reality, smart phone, and mobile

robot applications. The standard approach for outdoor localization is the global

positioning system (GPS). Commercial GPS provides accuracy on the order of 10 m, and

when corrections are available, it can be as good as 1 cm. However, GPS requires an open

environment so that the receiver may obtain a line of sight to a sufficient number of

satellites. This is often not possible in dense, urban environments. Global localization in

GPS-denied environments is an open problem and a very active area of research. Alternate

approaches employ a variety of sensors, including dead reckoning, inertial, stereo, light

detection and ranging (LIDAR), cellular radio, and visual. As no sensor or algorithm

provides perfect localization in all environments, a combination of sensors and algorithms

is needed. GPS-denied localization is challenging due to the complex, cluttered nature of

many environments, the changes in illumination that take place at different times, and the

lack of high-fidelity three-dimensional (3D) urban terrain models. As cameras are small

and cheap, and are becoming ubiquitous, our focus in this report is the development of a

new model-based visual localization algorithm for outdoor urban environments.

Vision-based global localization can be accomplished by recognizing landmarks (i.e.,

immobile objects like buildings, bridges, statues, etc.) and retrieving their prerecorded

positions from an existing database or terrain model. Appearance-based approaches

represent the environment as collections of two-dimensional (2D) images. Model-based

approaches represent the environment in terms of higher level structures (e.g., 2D or 3D

geometric models). A substantial effort is required to create the image databases for

appearance-based landmark recognition in large urban environments: the entire

environment must be traversed while omnidirectional geo-tagged imagery is recorded. This

may be impractical due to cost, traffic restrictions, or a requirement to quickly deploy a

localization system. For these reasons, we are interested in using high-altitude aerial

imagery to model urban environments. Aerial images have the advantages that they are

readily available for most of the world and a single aerial image can be used to quickly

generate a 2D map for a very large region of a city. We believe the ability to accurately

localize and navigate an urban environment using 2D maps will provide a significant

increase in capability of future location-aware mobile applications.

Given a high resolution aerial image of an urban environment and an omnidirectional query

image taken on the ground level, our goal is to determine the position on the ground plane

and the orientation, of the camera. Our terrain model is a 2D map generated from an

aerial image that consists of the footprints of all buildings in the area of interest; a building

footprint is the projection of a building’s vertical facades onto a horizontal ground plane.

Using the 2D map, we compute, in an offline process, building footprint orientation (FPO)
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descriptors over a uniform 2D grid of points on the map. In the online localization process,

given an omnidirectional image for an unknown query view, the vanishing points in the

image are used to detect and project the visible vertical building facades onto the ground

plane and from these projections the query image’s FPO descriptor is computed. The

query FPO descriptor is compared to the terrain model FPO descriptors in a search for the

position and orientation that minimizes their distance. The FPO descriptor and distance

function are designed to be tolerant to a high degree of scene clutter and occlusion.

Our main contribution is the introduction of the FPO descriptor that provides a 2D

geometric description of a local environment as observed from a single point in the scene.

Unlike previous approaches that use aerial images for localization, we do not require an

explicit reconstruction of the structure of the local environment, which is often difficult in

complex environments. The FPO descriptor, which is tolerant to significant scene clutter,

combined with our robust distance function, results in accurate pose estimation in complex

urban environments. We evaluate our approach in a challenging urban environment and

show improved accuracy compared to existing 2D model-based approaches.

2. Related Work

Approaches to localization can be roughly categorized as either global or incremental.

Global localization methods assume that the camera’s pose is initially unknown while

incremental methods assume the initial pose is approximately known and then refine that

pose given new sensor data. There is overlap between the two approaches as many global

localization algorithms are only effective when the pose of the camera can be confined to a

relatively small part of the environment. Global localization methods may be further

divided into metric and topological methods. Topological localization (1–4) provides place

recognition rather than metric location in a map; topological localization may be used by

metric localization approaches to confine the region of a map that needs to be searched.

Simultaneous Localization and Mapping (SLAM) (5, 6), using monocular, stereo, or range

cameras, are incremental localization approaches that build 2D or 3D models of the

environment as a sensor moves and simultaneously determine the sensor’s pose in the

environment. In general, incremental algorithms run continuously as a camera moves in

order to determine a camera’s pose at any later time. Conversely, global approaches only

require camera images to be processed when and where the camera’s pose is needed. As

our method is a global approach, we discuss only related global metric localization

approaches in the remainder of this section.

Appearance-based techniques (7–9, 3, 10–12) represent an environment as a database of

geo-tagged key images and estimate the pose of a camera using the key images that best
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match the query image. Many of these techniques begin with a topological localization

step. Zhang and Kosecka (13, 9) use wide baseline matching of scale invariant feature

transform (SIFT) (14) features to identify a few close key images in the database and then

use triangulation to estimate the metric location of the camera. Se et al. (7) use SIFT

features for both appearance-based global localization and incremental 3D SLAM. Johns

and Dudek (8) match images using 2D skyline contours. Using geo-tagged images on the

world wide Web (12) has recently become popular. Yeh et al. (2) combine image and

textual searches of the Web to perform localization. Although a wide variety of

appearance-based methods have been developed, they have difficulty when many different

buildings have similar appearance due to a common architectural style, or when there are

large changes in illumination between the model and query images. Also, appearance-based

image databases are generated by traversing an entire urban environment in advance of

deploying the localization systems; this is impractical when the localization systems must

be hastily deployed but an image database doesn’t already exist.

Model-based techniques represent an environment with a 2D or 3D model and then register

the query images to the model. Some authors (15–17) estimate 3D camera orientation

using vanishing points and the assumption that most edges in the environment are aligned

with three orthogonal directions corresponding to a local world coordinate system.

Ramalingam et al. (18) match skylines extracted from omnidirectional images to skylines

generated from 3D wireframe city models. Lee et al. (19) estimate camera pose using

vanishing points to constrain the matches of 2D image lines to lines in 3D wireframe

building models. While 3D models exist for some large urban environments, most cities

lack such models, so use of 2D models is more desirable.

A number of existing approaches perform localization by registering ground imagery to 2D

urban models. Two-dimensional models are relatively easy to generate from aerial imagery,

either manually or automatically, and are therefore more attractive than 3D models for

urban environments. McHenry et al. (20) use visual odometry and a particle filter to match

3D rooflines generated from a stereo camera to a 2D terrain model generated from aerial

imagery. Leung et al. (21) use vanishing points to infer the 3D orientation of building

boundaries and apply a particle filter to estimate pose; they require pose filtering of a

moving camera in order to obtain accuracy comparable to commercial GPS. The work most

similar to our approach is that of Cham et al. (22), who analyze the vanishing points in

omnidirectional images to create 3D local structural models from vertical building corners

and neighboring plane normals, and then match these to a 2D urban model. Cham et al.

report that their accuracy was limited due to difficulties in creating a sufficient number of

accurate 3D local structural models. Our approach is similar to these in that it makes use

of 2D terrain models generated from aerial images, but has the advantage that an explicit

reconstruction of the local environment is not necessary. Many of the approaches discussed

above filter a camera’s pose over multiple frames. This undoubtedly improves localization

3



accuracy and could be applied with our approach as well. In the current report, however,

we explore only what is possible when our approach is applied to a single frame.

3. Approach

The location of the camera in the urban terrain is determined by estimating, from a single

omnidirectional query image, the footprints of visible building facades and then registering

this local footprint data to the terrain model. Our approach consists of offline terrain

model building and online camera localization. There are two main steps in offline terrain

modeling: (1) generating a 2D map from an aerial image and (2) computing FPO

descriptors at all grid points in the map. Online camera localization consists of three main

steps: (1) detecting building facades in the omnidirectional image, (2) computing the FPO

descriptor for the omnidirectional image, and (3) searching for the FPO descriptor in the

terrain model that is closest to the query FPO descriptor. These steps are illustrated in

figure 1 and each step is described in detail below.

Figure 1. Overview of our localization approach. A 2D map is manually created from an aerial image
and FPO descriptors are computed at each point in this map. Given an omnidirectional
ground image for an unknown camera location, line segments and vanishing points are
detected in the image. Horizontal line segments are projected onto the ground plane and
from these the query FPO descriptor is computed. The query FPO descriptor is registered
to those of the 2D map to determine the position and orientation of the camera.
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3.1 Map Generation

Building boundaries are good features to use in modeling an urban environment because

they can be detected in both aerial and ground imagery. Our terrain map is created from

publicly available, high-resolution aerial imagery (23). We process this imagery at a

resolution of approximately 5 pixels/m; this allows our localization system to obtain

sub-meter position accuracy. Because the focus of our work is pose estimation, not terrain

mapping, we create our map manually by outlining the boundaries of buildings in aerial

images. For large urban environments, creating a terrain model by hand would be tedious.

Fortunately, automated methods can be employed (21) to convert an aerial image to a 2D

terrain map. The 2D models that we create are not perfect for the following reasons. (1)

small errors are introduced by the manual outlining process; (2) the aerial images that we

used are not true orthographic images, so there are small errors due to perspective; (3) the

aerial images may be out of date; and (4) we do not calibrate the aerial camera, so lens and

sensor distortions may be present in the aerial images. As will be seen in section 4, these

errors don’t appear to have a big impact on our system’s accuracy.

Some buildings consist of wings of different shapes stacked on top of each other or butting

up against each other. An example of such a building is shown in figure 2. From a

ground-level view of the building, any combination of facades from these different wings

may be visible to the camera. When a camera is close to a building, the lower section of a

building is usually the only part that is visible. If the camera is further away, but there is

an occluding object (e.g., car or tree) between the camera and the building, then it’s

possible that only the upper section of the building will be visible. At any given horizontal

viewing direction, multiple building facades with different orientations may be visible. The

situation may also occur when a taller building lies behind a shorter building. This

illustrates the need to model all major facades of a building, not just those on the

outermost boundaries. Thus, when creating a map from an aerial image, the user outlines,

in addition to the outermost facades, internal facades on parts of buildings that rise up

from the building below. Raised regions of a building can usually be identified from aerial

imagery. Shadows will be found adjacent to raised regions when the aerial image was

acquired on a sunny day; this makes identifying raised areas especially easy. The 2D map

consists of a set of N building facades, f1, f2, . . . , fN , where each fi = (p1
i , p

2
i , hi) is a triple

consisting of the 2D endpoints (p1
i , p

2
i ) of the facade’s projection onto the ground plane (the

pixel coordinates in the aerial image), and the facades relative height hi. The hi say

nothing about the true heights of building facades, which cannot be determined from an

aerial image, but represent the “higher than” relationship for pairs of facades: facade fi is

higher than facade fj if and only if hi > hj. The relative height values of building facades

are used to generate the FPO descriptors. In cases where the user is unable to identify

raised regions of buildings, the outermost facades by themselves provide an adequate
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description of the building as the outermost facades are the ones most frequently observed

from the ground level.

Figure 2. A complex building where multiple facades of different orientations may be visible in any
single horizontal viewing direction.

3.2 Orientation Descriptors for the Terrain Map

To perform localization, an offline process computes a FPO descriptors at all grid points in

the 2D map and the online process computes one FPO descriptor for the omnidirectional

query image. The FPO descriptor is a pair F = (R,A), where R and A describe the

relative and absolute orientations, respectively, of surfaces in the scene. As shown in

figure 3, the relative orientations, R, is a set of samples of the angles between rays

emanating from the camera (parallel to the ground plane) and the projection of the facades

onto the ground plane. R is represented as a V ×D matrix, where V is the number of

samples in the view-direction dimension and D is the maximum number of samples in the

depth dimension. These angles are easily computed for any map point using simple

geometry. The relative height values of facades determine which facades contribute to the

samples for a particular viewing direction. In essence, the only facades that are visible are

the ones that are taller than any closer facade: if fi1,fi2, . . . , fiN are N ordered facades that

a ray emanating from a map point p in direction θi (i = 1, . . . , V ) intersects with, then M

of these facades, fij1 ,fij2 , . . . , fijM
(j1 < j2 < . . . < jM ), contribute to the angles measured

along this ray provided the relative height values of these M facades are strictly increasing:

hij1
< hij2

< . . . < hijM
. To make the descriptor less sensitive to small changes in

orientation, we sample a few rays distributed around each θi: for direction θi from point p

we sample facades on T rays uniformly distributed in the 360◦/V sector of the map centered
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at p. This is illustrated in figure 4. These contributing angles are clustered and then the

means of the D clusters with the most number of members are assigned to row i of R. If

there are fewer than D clusters, then the unassigned angles are set to −1. The absolute

orientations, A, of scene surfaces is a vector of the angles, relative to the camera’s optical

axis, of the visible surfaces projected onto the ground plane. Frequently, A consists of only

two angles corresponding to two orthogonal orientations of the nearby visible building

facades. In all experiments reported in this report, we take V = 360, D = 2, and T = 5.

Figure 5 shows the color-coded relative orientations computed for a particular map point.

Figure 3. The FPO descriptor is a V ×D matrix of the angles of projected building facades measured
at equally spaced viewing directions. Multiple facade angles may be measured for each
viewing direction when D > 1. In this figure, V = 32 viewing directions and D = 2 facades,
so every 360◦‘/32 = 11.25◦ up to two different facade angles are measured.

Figure 4. Sampling the rays emanating from a point p in the direction θi. Segments on the green
facade have relative height 1 and segments on the red facades have relative height 2. The
white points contribute to the angles measured for direction θi of point p, but the black
points do not because their heights do not increase relative to points closer to p; the black
points are not visible because they are on the back side of the building. In this case, the
angles associated with the white points will form two clusters, one cluster corresponding
to the seven points on the two left-side facades and one cluster corresponding to the three
points on the bottom red facade.
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Figure 5. The color-coded relative orientations computed for the map point at the star. At every
viewing direction from 0 to 359◦, up to two facade orientations (between 0 and 180◦) are
identified. Each ring represents a cluster of facade orientations for each of the 360 viewing
directions. The entry for a viewing direction is white when no clusters are identified for
that viewing direction. The inner ring only is white when only one cluster of orientations is
identified.

An important question that arises is: when can the 2D pose of a camera be determined by

sampling the orientations of a set of facades? Measuring in an image the orientation of

exactly one facade in the map determines the orientation of the camera, but does not

constrain its position. Measuring the orientation of a facade at a corner determines the

camera’s orientation and constrains its position to lie along a line emanating from the

corner. When the location of a corner is not observed, but from the presence of other

facades can be inferred to lie in a region of length δ along the facade, then the camera’s

position is constrained to lie in an infinite length linear strip of width δ emanating from the

corner between of the two facades. Observing the locations of two or more corners

determines two or more strips on which the camera must lie, and the position of the

camera must lie at the intersection of these strips. Thus, our approach is unable to

determine the position of a camera when one or fewer facade corners are visible in the

image. This situation may occur when the camera is located in a long corridor with no

visible building corners or in cases of significant occlusion. Long corridors, which are rare

in most urban environments, are better handled by appearance-based methods.

3.3 Facade Detection in Omnidirectional Images

To compute the FPO descriptor for an omnidirectional image, building facades in the image

must be detected and their orientations estimated. Much previous research has explored
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the problem of building facade detection (24, 13, 25). Most approaches designed to work

with a single monocular camera assume that building facades contain edges corresponding

to rooflines, doors, windows, bricks, etc., that are parallel or orthogonal to the ground

plane. This is almost always a valid assumption in urban environments. We make the same

assumption. We do not actually detect building facades, but only the edges that are likely

to lie on facades. These edges do not need to be grouped into higher-level structures, we

need only estimate their 3-space orientations, which is relatively easy to do when there are

a sufficient number of parallel edges in the scene. Any individual facade may have only a

small number of edges on it as long as there are enough edges parallel to it elsewhere in the

scene. Determining the 3-space orientation of individual edges is a much simpler problem

than segmenting or reconstructing planar facades; this enables our approach to achieve a

level of robustness not found in previous 2D map-based visual localization methods.

Although the figures in this report show 360◦ panoramas for the omnidirectional camera

images, our omnidirectional image actually consists of a set of calibrated planar images.

These may be generated by a catadioptric omnidirectional camera (26) or by panning a

normal field of view camera about its focal point. Each of these planar images is processed

as follows. The Canny edge detector (27) is used to generate a binary image of edge points.

Straight line segments are then extracted from this edge image by linking edges into

contours and then splitting the contours into nearly straight segments (28). Short segments

are discarded and then nonlinear line fitting is used to estimate the line parameters that

minimize the sum of squared distances to the contour points.

Due to the effects of perspective projection, parallel edges in a scene will intersect at a

common point when projected into an image (29). This point, called the vanishing point,

may be a finite or infinite point on a planar image, but it is always finite on a spherical

image. Line segment clustering based on common vanishing points is used to detect sets of

parallel edges and determine their 3-space orientations relative to the camera coordinate

system. First, all image line segments are represented by the planes that pass through the

origin of the omnidirectional camera and the 2D line segments. This representation allows

estimation of the vanishing points from all planar images simultaneous; this is more robust

than computing the vanishing points for each image separately. Any two noncoincident

planes that pass through the origin intersect in a line through the origin. This line defines

the vanishing point (and 3-space orientation) of the two original line segments. To compute

the vanishing points, we use a standard technique based on Random Sample Consensus

(RANSAC) (30, 29). Pairs of planes are randomly selected, their intersection is computed,

and support for that vanishing point is tallied. This is repeated a fixed number of times

and then the vanishing point with the most support is selected. Nonlinear least squares is

then used to estimate the optimal vanishing point using all planes of support. These planes

are removed from further consideration and the process is repeated. The process ends when

the best new vanishing point has insufficient support, or five vanishing points have been
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identified. A final step is to disambiguate the orientation of line segments that align with

multiple vanishing points. These ambiguous segments are assigned the orientation of the

most common compatible vanishing point from among its nearest neighbors. Vanishing

points give the orientation of image segments, but not their distance from the camera. We

end up with a set of 3D line segments, each defined up to an unknown scale factor.

Figure 6 shows a panoramic image, acquired from the position shown in figure 5, with line

segments color-coded according to their 3D orientation.

Figure 6. An omnidirectional image (acquired from the position shown in figure 5) and detected image
line segments color-coded according to their 3D orientation. Yellow line segments do not
align with any vanishing point. All other colors correspond to a known vanishing point and
3D orientation.

3.4 Orientation Descriptors for Omnidirectional Images

As mentioned previously, we assume that the edges on building facades are either parallel

or orthogonal to the ground plane. This isn’t strictly necessary for our approach; as long as

the edges on a facade are parallel to each other, the orientation of that facade can be

estimated from its vanishing point. However, the original assumption is almost always

satisfied, and it allows us to discard a large amount of clutter due to vegetation, vehicles,

etc. To compute the FPO descriptor for an omnidirectional image, we must project 3D line

segments onto a horizontal ground plane and then measure the angles as described in

section 3.2. We assume that the vertical axis in the scene corresponds to the image

vanishing point that is closest to the camera’s vertical axis. This assumption will be true

provided the angle between the camera’s vertical axis and the ground plane normal is less

than 45◦. Before projecting onto the ground plane, to reduce clutter, we filter the 3D line

segments by discarding those segments that are not close to parallel to the ground plane

and those that lie within a fixed angle (typically 2◦) of the ground plane as seen from the

omnidirectional camera. The later constraint removes surface markings on the ground

plane. The remaining 3D line segments are projected onto a plane orthogonal to the
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vertical vanishing point. The result is a local 2D map similar to the urban terrain map

except the ranges and relative heights of edges in the local map are unknown. Range is

unnecessary for computing the FPO descriptor. Because all segments in the local 2D map

are visible by the camera, the descriptor is computed as described in section 3.2 but

without enforcing the strictly increasing height constraint. Figure 7 shows the descriptor

computed from the omnidirectional image shown in figure 6.

Figure 7. FPO descriptor computed from the omnidirectional image shown in figure 6.

3.5 Registering Map and Omnidirectional Image Orientation Descriptors

The final step in localization is to register the omnidirectional image FPO descriptor,

F i = (Ri,Ai), to 2D terrain map FPO descriptors, Fm = (Rm, mathcalAm). The

registration is performed by finding the map descriptor whose relative surface angles are

closest to those of the image descriptor. In general, this distance must be minimized over

all possible rotations of the image descriptor. For each viewing direction r ∈ {1, 2, . . . , V }

and rotation ω ∈ {0, 1, . . . , V − 1}1, only the minimum distance pair of relative surface

angles (one from the map descriptor and one from the corresponding row of the rotated

image descriptor) contributes to the total distance; the remaining surface angles are due to

complex building shapes or clutter and are ignored. To provide the registration process

with additional robustness to clutter and occlusion, the cases when surfaces are observed in

1Index ω represents a rotation of 360× ω/V ◦.
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a direction of the map descriptor but not in the corresponding direction of the image

descriptor, or vice versa, are handled differently. If a map descriptor records no surface

angles in a particular direction, but the corresponding direction in the image descriptor

does, then there is likely clutter in that direction of the scene if this correspondence is

correct. Conversely, if an image descriptor records no surface angles in a particular

direction, but the corresponding direction in the map descriptor does, then that part of the

facade is either occluded or was not detected because it is too distant. In each of these

“obvious clutter or occlusion” cases, the contribution to the total distance by that viewing

direction is the average distance for viewing directions that do not fall into these special

cases.

Let Rr,c denote row r (modulo V ), column c of R and define n(Rr) to be the number of

nonnegative angles in row r of R. The case of obvious clutter or occlusion for a pair of

viewing directions (r1, r2) is identified by the function c(Rr1
,R

′

r2
) = n(Rr1

) > 0⊕

n(R
′

r2
) > 0 and, for a given rotation ω, the number of viewing directions that are not

obvious clutter or occlusion is q(R,R
′

, ω) =
∑V

r=1(1 − c(Rr,R
′

r+ω)). Then, the distance

between Fm and F i for rotation ω is

d(Fm,Fi,ω)=d1(Rm,Ri,ω)
„

1+ρ

„

V

q(Rm,Ri,ω)
−1

««

(1)

where

d1(R,R′,ω)=
PV

r=1

“

1−c
“

Rr,R
′

r+ω

””

d2

“

Rr,R
′

r+ω

”

(2)

and

d2

“

Rr1 ,R
′

r2

”

=

min

1≤s1≤D

1≤s2≤D

˛

˛

˛Rr1,s1−R
′

r2,s2

˛

˛

˛. (3)

The parameter ρ in equation 1 determines the weight assigned to obvious clutter or

occlusion relative to the nonobvious cases. We take ρ = 1.5 so that each obvious clutter or

occlusion direction is assigned a distance that is 50% larger than the mean distance of the

nonobvious cases.

Equation 1 is minimized over all possible rotations ω of the image descriptor. However, the

absolute angles, Am and Ai, of the visible surfaces in the map and image greatly constrain

the relative rotations that need to be examined. For a typical environment where only two

orthogonal vertical facade directions are visible, only four different orientations must be

examined. In minimizing the distance between Fm and F i, the rotations that are examined

are ω = ω1 + ω2, where ω1 ∈ Am and ω2 ∈ Ai.

Figure 8 shows the logarithm of the distances between the FPO descriptor computed for

the image in figure 6 and the FPO descriptors for the map shown in figure 5. As can be

seen, the global minimum is very well defined and is very close (0.3 m) to the camera’s true

location.
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Figure 8. Logarithm of the distances between the FPO descriptor computed for the image in figure 6
and the FPO descriptors for the map shown in figure 5.

4. Experiments

We use a Point Grey Research Ladybug 2 omnidirectional sensor. This sensor consists of

six 1024 × 768 resolution cameras mounted in a single enclosure. The focal points of the six

cameras are close enough that the six images can be considered to be rendered from a

single point of view. Parallax from the different cameras is very small for objects more

than a meter or two from the sensor. We collected 15 omnidirectional camera images in a

variety of settings on a university campus. To determine the accuracy of our approach, we

placed the camera in locations that are identifiable in the aerial image to an accuracy of

around 0.25 m. These are places such as the corners of parking lot stripes or corners of

sidewalks. The pose of the camera was determined by searching a 100 m × 100 m region of

the map centered at the known true location. The point in this region that minimizes the

distance in equation 1 is the estimated position of the camera. We were unable to

accurately measure the true orientation of the camera when collecting our data, so we

don’t report on the orientation accuracy. However, position and orientation are tightly

coupled in the distance function, so if one is accurate, the other should be as well. The

position errors for these 15 tests are shown in table 1, and some of the camera poses are

shown in figure 9. Our algorithm found a camera pose whenever two or more nonparallel
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building facades were observed (tests 1–12). In these cases, the mean position accuracy was

0.9 m with standard deviation of 0.5 m. Test 10, whose position error was 2.1 m, was very

challenging because the camera was located on the ground in a parking lot, and all visible

buildings, which were far from the camera, were significantly occluded by parked vehicles.

In tests 13–15, due to thick vegetation, only one side of a single building was detected in

the omnidirectional image. For the reasons explained in section 3.2, our approach was

unable to determine the position of the camera in these cases.

Table 1. Camera position errors for localization tests.

Test # Position Error (m)

1 0.607
2 1.335
3 0.301

4 0.43915
5 0.86648

6 0.429
7 1.11902

8 0.6409
9 1.33

10 2.146
11 0.7528

12 1.1722
13 No pose

14 No pose
15 No pose

Figure 9. True and estimated positions of the camera for tests 5–12 (left). Due to occlusions, no poses
were found in tests 13–15 (right).
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5. Conclusions

We have developed the footprint orientation descriptor that provides a 2D geometric

description of urban environments that is tolerant of significant clutter and occlusion. This

descriptor, which is efficiently computed from an omnidirectional image, is matched to 2D

maps to estimate the position and orientation of a camera. The use of 2D maps for

localization in urban environments enables systems using our approach to be quickly

deployed in new environments. Our initial experiments demonstrate an accuracy that, to

our knowledge, is better than any other 2D map-based visual localization algorithm. In the

future, we will conduct additional experiments in a wide variety of urban environments.

We also plan to develop a real-time implementation of our approach and integrate it with

other localization and navigation algorithms and sensors.
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