INTRODUCTION

Chagas disease or American trypanosomiasis is caused by the hemoflagellate protozoan *Trypanosoma cruzi* which is transmitted by blood-sucking triatomine bugs (Hemiptera: Reduviidae; Triatominae). The disease is endemic to south Texas, but exists almost exclusively as a zoonosis. Chagas disease has proven to be a serious public health threat to military working dogs. In 2007, seroprevalence of Chagas disease in military working dogs in San Antonio, Texas, reached 8%. A faunal survey was conducted at 3 San Antonio area military installations (Camp Bullis, Fort Sam Houston, and Lackland Air Force Base). A total of 140 triatomines representing 4 species (*Triatoma gerstaeckeri*, *T. sanguisuga*, *T. lectularia*, and *T. indictiva*) were collected. *Trypanosoma cruzi* infected bugs were only collected at Lackland Air Force Base, where the overall infection rate was 16%. The wood excavation technique developed during this study collected all life stages. Only 2 life stages (adult and 5th instar) were positive for *T. cruzi*.
Chagas disease, also known as American trypanosomiasis, is caused by the hemoflagellate protozoan Trypanosoma cruzi which is transmitted by blood-sucking triatomine bugs (Hemiptera: Reduviidae; Triatominae). The disease is endemic to south Texas, but exists almost exclusively as a zoonosis. Chagas disease has proven to be a serious public health threat to military working dogs. In 2007, seroprevalence of Chagas disease in military working dogs in San Antonio, Texas, reached 8%. A faunal survey was conducted at 3 San Antonio area military installations (Camp Bullis, Fort Sam Houston, and Lackland Air Force Base). A total of 140 triatomines representing 4 species (Triatoma gerstaeckeri, T. sanguisuga, T. lectularia, and T. indictiva) were collected. Trypanosoma cruzi infected bugs were only collected at Lackland Air Force Base, where the overall infection rate was 16%. The wood excavation technique developed during this study collected all life stages. Only 2 life stages (adult and 5th instar) were positive for T. cruzi.
Air Force Base, San Antonio, TX, began to observe an increase in the number of Chagas disease cases in Texas. The overall infection rate in Texas has been found to be comparable to the number reported for stray dogs in September 2012. This number was demonstrated that a seroprevalence rate of 8% (24 of the dogs were positive for T. cruzi antibodies (S. Baty, written communication, June 30, 2007). This number was comparable to the number reported for stray dogs leaving the units more vulnerable to attacks using improvised explosive devices. These findings have recently brought a new sense of urgency to better understand the Chagas disease vector. The purpose of this field study was to (1) survey Triatoma spp. found on Lackland Air Force Base, Camp Bullis, Medina Annex, and Fort Sam Houston; (2) develop Triatoma collection techniques; (3) characterize Triatoma habitats; and (4) determine relative incidence of T. cruzi in field collected specimens.

MATERIALS AND METHODS

Study Area

Five sites were selected based on proximity to potential host and habitat characteristics as indicated in the literature (Figures 1 and 2).

Site 1. Medina Woods, N29° 23′ 07.97″ W98° 40′ 55.76″ (Figure 1). The Medina Training area consists of woodland habitat (oak, mesquite forest and open range) located at the northeastern edge of the Medina Annex (Figure 2A).

Site 2. The Medina Kennel, N29° 23′ 13.71″ W98° 39′ 57.46″ (Figure 1). The Medina Kennel is a fixed site facility that houses approximately 800 dogs (Figure 3A).

Site 3. Transportation Security Administration (TSA) puppy breeding program kennels (N29° 24′ 06.96″ W98° 37′ 07.02″) are located on the northeastern side of Lackland Air Force Base (Figure 1). It is located south of Wilford Hall Medical Treatment Facility and is proximate to a wooded drainage area. Both kennel sites have several floodlights operating during the night.

Site 4. Western side of Camp Bullis, N29° 40′ 24.45″ W98° 36′ 23.74″ (Figure 1). Camp Bullis is located in the Texas Hill country. Predominate vegetation consists of oak, juniper, mesquite, prickly pear cactus, yucca plants, and open range (Figure 2B).

Site 5. Fort Sam Houston, N29° 27′ 38.28″ W98° 25′ 26.70″ (Figure 1). The site is located on the northeastern side of the installation between the golf course and the horse stables.

Field Collection Techniques

Triatomine bugs were collected from April to August 2011 at the study sites using 2 techniques.

- Excavation of dead wood. The wood excavation technique involved identifying likely triatomine harborage such as a sheltered position near a potential host nesting/resting location. A visual search was conducted at the harborage site. Sites examined included hollow or rotten logs, cactus plants, dead yucca plants, and other debris piles near burrows (Figure 2).

- Dog kennels surveillance. Dog kennels were inspected daily by kennel personnel and kissing bugs (Figure 3B) were collected using forceps and placed into 50 ml collection tubes with holes drilled in the tube cap for aeration.

Rearing, Preparation of Fecal Pools, and Species Identification

Specimens were maintained in the insectory by methods described by Durvasula and Taneja. Insects were blood fed in vitro using a glass blood feeder (Figure 4A) and defibrinated rabbit blood (less than 7 days old) (Lampire, Pipersville, PA). The blood was kept at 37°C using Super RMT LAUDA hot water circulator (LAUDA Brinkman, Delran, NJ). Each blood fed insect was
VECTOR SURVEILLANCE TO DETERMINE SPECIES COMPOSITION AND OCCURRENCE OF TRYpanosoma cruZi AT THREE MILITARY INSTALLATIONS IN SAN ANTONIO, TEXAS

Figure 1. Map and aerial imagery of the 3 military installations in and around San Antonio, Texas, where specimens of triatomine bugs were collected, April through August 2011.
isolated individually in a 25 cm² cell culture flask, with canted neck and 0.2 μm vent cap (Corning Flask, Lowell, MA) (Figure 4B). The flasks were kept humid in plastic boxes with wet paper towels. Triatomines were identified using taxonomic keys by Lent and Wygodzinsky9 (Figure 5). A database was maintained for all the specimens brought into the laboratory.

Detection of *T. cruzi* Infection by Traditional Polymerase Chain Reaction

Sample collection. Fecal matter from triatomine bugs was collected by plastic shaft with Dacron tip wetted with M4RT media liquid (Remel, Lexena, KS). Dacron tips were placed in 2.5 mL microtubes with 500 μL aliquoted liquid media and subsequently frozen at -20°C until testing.

Sample processing. Aliquots used were subjected to one freeze/thaw cycle. From each sample, 140 μL was aliquoted for nucleic acid extraction. Specimen extractions were performed using the Qiagen QiaAmp Viral RNA Mini Kit (Qiagen Inc, Valencia, CA) according to manufacturer’s minispin extraction recommendation. Feces from a subsample of the collected bugs (uninfected/infected) were checked for the presence and absence of live *T. cruzi* by magnification (×400) using a compound microscope ((Figure 4C, D) Table 1).

Primers. Primers used for amplification by traditional PCR of *T. cruzi* were:

- primer set TCZ1/TCZ2:
 - forward primer TCZ1, 5’-CGAGCTTGTGCCACACGGTGCT-3’

Figure 2. Collection habitat for triatomine bugs. Panel A, Medina Woods habitat; Panel B, dead Yucca plant (1) near a rodent burrow (2) from where triatomine bugs were collected at Camp Bullis; Panel C, hollow tree trunk with rodent nesting material (1); Panel D, *Triatoma* nymph (1) inside a hollow tree.
reverse primer TCZ2, 5′-CCCTCCAGCAGGGAGTAG TTCAGG-3′).

primer set S36/S36: forward primer S35, 5′-AAATAA TGACAGGGKGAGATGCATGA-3′ reverse primer S36, 5′-GGTTTGATGCGGTTGTTGGT GT-3′).2,21

DNA amplification. The PCR was performed in 25 μl reaction mixtures consisting of 7.45 μl PCR grade water (Roche Diagnostics, Mannheim, Germany), 5 μl 5x Q-Solution (Qiagen, Valencia, CA), 5 μl GoTaq Flexi (Promega, Madison, WI), 1.5 mol MgCl₂, 0.5 μl dNTPs, and 0.15 μl of each primer (Integrated DNA Technologies, Coralville, IA). Reaction conditions (iCycler BioRad, Hercules, CA), for TCZ1/TCZ2 primers: initial denaturation at 94°C for 5 minutes, followed by 35 cycles of amplification at 94°C for 20 seconds, 57°C for 10 seconds, and 72°C for 30 seconds, a final extension at 72°C for 7 minutes, then final hold at 4°C. Conditions for the S35 and S36 primers were processed under the following conditions: initial denaturation at 95°C for 10 minutes, followed by 35 cycles of amplification at 95°C for 30 seconds, 58°C for 30 seconds, and 72°C for one minute, then a final extension at 72°C for 10 minutes, and held at 4°C until analysis.

The completed DNA reactions were analyzed by gel electrophoresis made with 2% agarose (Fischer Scientific, Fair Lawn, NJ) in 1X Tris-Borate-EDTA Buffer (Sigma-Aldrich, St Louis, MO) solution. Each sample set was run with a negative (without DNA) and positive control (with \textit{T. cruzi} strain). Positive controls were acquired from the Department of Defense Food and Animal Diagnostics Laboratories at Fort Sam Houston, TX.

RESULTS

A total of 140 triatomine-triatomine bugs representing 4 species (\textit{T. gerstaeki}, \textit{T. sanguisuga}, \textit{T. lectularia}, and \textit{T. indicita}) were collected during this study (Table 2). The most prevalent triatomines collected were \textit{T. gerstaeki} (49%) and \textit{T. sanguisuga} (39%). \textit{Triatoma gerstaeki} was collected at all 5 study sites, while \textit{T. sanguisuga} was only collected at 3 study sites. The majority of \textit{T. gerstaeki} were collected at Camp Bullis (37%) and Medina Kennel (35%). All life stages were collected for \textit{T. gerstaeki} and \textit{T. sanguisuga}. Four life stages (adult, 5th, 4th, and 3rd instars) were collected for \textit{T. indicita} and only adult collections resulted for \textit{T. lectularia}. Only adults were collected at both kennel sites. Woodland collections from Camp Bullis and Medina resulted in collections of all life stages for \textit{T. gerstaeki}.

Of 113 specimens tested using PCR for \textit{T. cruzi}, 16% were positive. \textit{Triatoma gerstaeki} (25%) and \textit{T. sanguisuga} (8%) were the only species that tested positive for \textit{T. cruzi}. Infected bugs were only collected at 3 (Medina Woods, Medina Kennel, and TSA) of the 5 collection sites. The TSA kennel site had the highest occurrence (60%) of infection. However, only 5 bugs were collected. Medina kennel was the site with the second highest occurrence (53%) of infection. Only 2 life stages (adult and 5th instar) were positive for \textit{T. cruzi}.

Table 1. Distribution of \textit{Trypanosoma cruzi} infection in different species of triatomine bugs collected at 3 US military installations in San Antonio, Texas, April to August 2011.

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>PCR Results</th>
<th>No. Tested</th>
<th>Percentage Infected</th>
<th>Visual Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp Bullis</td>
<td>\textit{T. gerstaeki}</td>
<td>Not Infected</td>
<td>21</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Camp Bullis</td>
<td>\textit{T. indicita}</td>
<td>Not Infected</td>
<td>11</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Camp Bullis</td>
<td>\textit{T. lectularia}</td>
<td>Not Infected</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Camp Bullis</td>
<td>\textit{T. sanguisuga}</td>
<td>Not Infected</td>
<td>10</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Totals Camp Bullis</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Ft. Sam Houston</td>
<td>\textit{T. gerstaeki}</td>
<td>Not Infected</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lackland Air Force Base</td>
<td>\textit{T. gerstaeki}</td>
<td>Not Infected</td>
<td>11</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Medina Woods</td>
<td>\textit{T. gerstaeki}</td>
<td>Infected</td>
<td>2</td>
<td>15.4</td>
<td>1</td>
</tr>
<tr>
<td>Medina Woods</td>
<td>\textit{T. indicita}</td>
<td>Not Infected</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Medina Woods</td>
<td>\textit{T. sanguisuga}</td>
<td>Not Infected</td>
<td>22</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Medina Woods</td>
<td>\textit{T. sanguisuga}</td>
<td>Infected</td>
<td>3</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>Totals Medina Woods</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Medina Kennel</td>
<td>\textit{T. gerstaeki}</td>
<td>Not Infected</td>
<td>9</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Medina Kennel</td>
<td>\textit{T. gerstaeki}</td>
<td>Infected</td>
<td>10</td>
<td>52.6</td>
<td>10</td>
</tr>
<tr>
<td>Medina Kennel</td>
<td>\textit{T. lectularia}</td>
<td>Not Infected</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Medina Kennel</td>
<td>\textit{T. sanguisuga}</td>
<td>Not Infected</td>
<td>4</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Totals Medina Kennel</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>TSA Puppy Kennel</td>
<td>\textit{T. gerstaeki}</td>
<td>Not Infected</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>TSA Puppy Kennel</td>
<td>\textit{T. gerstaeki}</td>
<td>Infected</td>
<td>3</td>
<td>60.0</td>
<td>3</td>
</tr>
<tr>
<td>Totals TSA Puppy Kennel</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Totals of tested specimens</td>
<td></td>
<td>113</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TSA indicates US Transportation Security Administration.
COMMENT

This study provided an updated status on the distribution and infection prevalence of triatomine species on 3 military installations in San Antonio, TX. Pippen12 conducted the last comprehensive Chagas disease survey of this kind in the 1960s. From 1965 to 1966, Pippen conducted an extensive Chagas disease study on Lackland Air Force base. He collected over 386 specimens using 2 collection methods: wood rat dwelling inspection and black light trapping.12 Pippin inspected 142 wood rat dwellings and collected 229 triatomines, of which the majority were \textit{T. sanguisuga} and \textit{T. gerstaeckeri} nymphs. Of the specimens collected from the wood rat dwellings, 30\% were infected with \textit{T. cruzi} like organisms. While \textit{T. sanguisuga} nymphs were the most prevalent specimens collected, \textit{T. gerstaeckeri} nymphs had a higher infection rate for \textit{T. cruzi}.12

The triatomine distribution in our study was similar to Pippins’ results. However, infection rates were different. This difference was most likely due to variance of collection techniques. While Pippin concentrated on wood rat dwellings, the majority of our specimens were collected inside the dog kennels (Figure 3). This collection technique appeared to be biased for adult specimens. Immature kissing bugs were never observed during collection at the kennel sites. Based on observed triatomine activity in the wood line near the kennels, we believe that adult kissing bugs flew to the kennels to feed. Furthermore, environmental conditions (short grass, roads between wood lines, and kennel daily cleaning regimen with high pressure water) at the kennel are not conducive for the establishment of triatomine colonies. Our results are similar to recent studies conducted in other areas of Texas.9,12-15 In a study conducted by Kjos et al,14 higher infection rates were observed in dog kennels in a domestic setting when compared to sylvan settings.

Our results indicate that the area with the highest \textit{T. cruzi} infection rate is in and around the military working dog kennels. This is consistent with clinical observations at the MWD Center. Dogs observed at the MWD Center have exhibited multiple clinical signs. Canines affected with Chagas disease develop either acute or

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Location} & \textbf{Species} & \textbf{Number} & \textbf{Percentage} \\
\hline
Camp Bullis & \textit{T. gerstaeckeri} & 26 & 49.0 \\
& \textit{T. indiciva} & 12 & 22.6 \\
& \textit{T. lecticularia} & 1 & 1.9 \\
& \textit{T. sanguisuga} & 14 & 26.4 \\
& \textbf{Total} & \textbf{53} & \\
\hline
Ft. Sam Houston & \textit{T. gerstaeckeri} & 2 & 100 \\
& \textbf{Total} & \textbf{2} & \\
\hline
Lackland Air Force Base & \\
Medina Woods & \textit{T. gerstaeckeri} & 13 & 27.1 \\
& \textit{T. indiciva} & 1 & 2.1 \\
& \textit{T. sanguisuga} & 34 & 70.8 \\
& \textbf{Total} & \textbf{48} & \\
\hline
Medina Kennel & \textit{T. gerstaeckeri} & 25 & 78.1 \\
& \textit{T. lecticularia} & 1 & 3.1 \\
& \textit{T. sanguisuga} & 6 & 18.8 \\
& \textbf{Total} & \textbf{32} & \\
\hline
TSA Puppy Kennel & \textit{T. gerstaeckeri} & 5 & 100 \\
& \textbf{Total} & \textbf{5} & \\
\hline
\hline
\textbf{Total Collected} & & \textbf{140} & \\
\hline
\end{tabular}
\caption{Distribution of species composition of triatomine bugs collected at 3 US military installations in San Antonio, Texas, April to August 2011.}
\end{table}
chronic disease. Generally, dogs develop signs characterized by right-sided heart failure and cardiac arrhythmias. Acute myocarditis, such as sudden collapse and death of a previously normal dog was observed in one case. Other symptoms associated with acute cardiac issues include lethargy, pale mucous membranes with slow capillary refill time, weak pulse, tachyarrhythmias, and respiratory arrest. Additionally, other clinical symptoms in dogs that do not die suddenly will exhibit a generalized lymphadenopathy, diarrhea, weight loss due to anorexia, fever, hepatosplenomegaly caused by the right-sided heart failure, ascites, and some neurological signs characterized by pelvic limb ataxia. Dogs which overcome the acute symptoms and become chronic survivors will develop further cardiac issues to include arrhythmias which can be exacerbated by exercise or hard work on the battlefield. As the chronic myocarditis progresses, the heart muscle undergoes a progressive cardiac degeneration and dilation. The result is a bilateral enlarged heart with flaccid thin walls that exhibit abnormal electrical impulses and arrhythmias on an electrocardiograph, along with possible respiratory distress. These cases can often be confused with chronic dilative cardiomyopathy observed in other large breeds of dogs.

Effective surveillance for Chagas disease vectors is essential for the development of a control program. Few studies have been published regarding the ecology of North American Triatomines. Most research efforts have been conducted in endemic countries (Mexico, Guatemala, Brazil, and Peru) in Central and South America. Surveillance techniques in these areas yielded large numbers of triatomines. This is mainly due to the difference in abundance, behavior, and biology. The main South American species responsible for Chagas

![Figure 4. Various experimental components of T. cruzi infection procedure. Panel A, an in vitro blood feeding method using a hog intestine membrane (1) stretched on a glass feeder (2) and T. gerstaeckri (3) feeding through a netting (4) on defibrinated rabbit blood. Panel B, isolation of a blood fed nymph (1) in a cell culture flask (2) to obtain infected urine (3) and feces. Panel C, (1) contents of an infected midgut showing epimastigote stage. Panel D, (1) actively motile metacyclic trypomastigote stage from the feces of an infected triatomine bug.](http://www.cs.amedd.army.mil/amedd_journal.aspx)
transmission (*T. infestans* (Klug)) was more urban and cohabitated with humans. North American species are more elusive and mainly sylvatic. The 2 most common techniques cited in the literature are light trapping and wood rat nest excavation. These two collection methods rarely give a reliable indication of population size.

The wood excavation method was the most effective surveillance technique in this study because we collected all life stages for 4 different *Triatoma* species. During the peak of the summer, this method proved to be consistently effective for collecting large numbers of specimens. However, this method is labor intensive and requires skill for habitat acquisition.

Possible oral transmission of Chagas disease poses a challenge for the control of Chagas vectors at the MWD Center. Conventional pesticide applications would not be effective due to the cleaning regimen and could possibly expose the dogs to dead or dying insects. Control of the reservoir hosts (rodents) in the woodland habitat with rodenticides could lead to secondary poisoning of the military working dogs.24,25

A solution to the problem would be the use of a systemic insecticide for the control of the triatomine vectors. Systemic insecticides attack insects directly through their living food sources without harming the host species, and can be impregnated into a grain bait to treat the rodents and any other potential reservoir hosts in the wooded areas around the MWD Center. Pesticides with low mammalian toxicity are available, and should pose no unreasonable threat to the military working dogs.26 Kaput Rodent Flea Control Bait (EPA Reg. No. 72500-17) is an imidicloprid systemic bait well suited for this application. This product can be used in accordance with the Federal Insecticide, Fungicide, and Rodenticide Act,27 Section 2ee, by treating the site specifically as described on the product label.

Field collected specimens were mainly collected in habitats that included hollow logs of different species (live

Acorns, rodent droppings, and nesting material were rarely found in rodent nests. The most common habitat conditions included a hollow log over or near an active rodent burrow. It appeared that the kissing bugs entered the nest to feed, and then retreated to harborage for protection. Various arthropods are often found cohabitating inside the logs with the kissing bugs (scorpions, wood boring beetles, pill bugs, and centipedes). Acorns, rodent droppings, and nesting material were also indicators for positive habitat association. If fire ants were present near or in the log or burrow, no kissing bugs were found.

In summary, Chagas disease continues to pose significant health risks to the military working dog population in San Antonio. In order to develop an effective control method, further research is warranted to understand both biology and ecology of local triatomine species.

REFERENCES

AUTHORS

CPT McPhatter is an Entomologist, Environmental Health Engineering Division, Public Health Command Region South, Fort Sam Houston, TX.

Mr Roachell is an Entomologist, Environmental Health Engineering Division, Public Health Command Region South, Fort Sam Houston, TX.

Dr Mahmood is an Entomologist, Environmental Health Engineering Division, Public Health Command Region South, Fort Sam Houston, TX.

Ms Hoffman is a Medical Laboratory Technician, Diagnostics Division, Public Health Command Region South, Fort Sam Houston, TX.

Dr Lockwood, a retired Army Veterinary Corps officer, is a public health veterinarian consultant in San Antonio, TX.

Mr Osuna is a Biologist, Diagnostics Division, Public Health Command Region South, Fort Sam Houston, TX.

MAJ Lopez is Chief, Environmental Health Engineering Division, Public Health Command Region South, Fort Sam Houston, TX.

COL Debboun is Chief, Department of Preventive Health Services, Academy of Health Sciences, AMEDD Center and School, Fort Sam Houston, TX.

Articles published in the *Army Medical Department Journal* are indexed in MEDLINE, the National Library of Medicine’s (NLM’s) bibliographic database of life sciences and biomedical information. Inclusion in the MEDLINE database ensures that citations to *AMEDD Journal* content will be identified to researchers during searches for relevant information using any of several bibliographic search tools, including the NLM’s PubMed service.