Solvent Replacement for Super Corr-A
Corrosion Preventive Compound (CPC)

2011 Air Force Corrosion Conference

August 18, 2011

John Stropki
Battelle

Paul Hoth
Hill AFB
1. REPORT DATE
18 AUG 2011

2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Solvent Replacement for Super Corr-A Corrosion Preventive Compound (CPC)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ogden Air Logistics Complex (ALC), Hill AFB, UT, 84056

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 2011 Air Force Corrosion Conference held 16-18 Aug 2011 at Robins AFB, GA.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 39

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
Overview

• Project Team
• Background & Objectives
• Technical Approach
• Test Matrix
• Laboratory and Field Testing – Results
• Conclusions
• Recommendations
Project Team

• Primary Stakeholder – F-16 SPO, 388th Fighter Wing
• COTR – Paul Hoth 501 ACSS/GFLB
• Program Manager – John Stropki
• Task Leader – Jim Tankersley
• Support Staff
 – Bill Abbott (Consultant)
 – Annie Lane (Research Scientist)
 – Jill Gregory (Researcher)
• Subcontractor Support
 – Lektro-Tech, Inc., Tampa, FL (Ron Knight and Robert Kay)
 - Assistance w/ solvent down-selection and formulation
 – SMI, Inc., Miami, FL
 - Perform first article testing on new formulations
Background

• The Super Corr-A corrosion preventative compound (CPC) is qualified as a MIL-L-87177A, Type I, Grade B material for electrical connector applications
 – The Super Corr-A lubricant has had two solvent-related formulation modifications since 1994 (CFC-113 and HCFC-141B)
 – Super Corr-A has met or exceeded performance requirements in extensive evaluations by Hill AFB
• The current Super Corr-A formulation contains an HCFC AK225T solvent
 – Considered Class II Ozone Depleting Substances (ODS)
 – Banned in the European Union (EU) and Canada on 1 January 2009
• All maintenance and manufacturing operations in the EU requiring use of MIL-L-87177A are currently shutdown with no alternative replacement identified
• Unless a replacement solvent can be implemented, use of these ODSs will also be prohibited in the United States beginning in 2015
Objective & Approach

Objective:
Identify a more environmentally friendly and COTS alternative to the HCFC AK225T solvent currently in the Super Corr-A lubricant.

Program Approach:
• Research US and EU compliant solvents with chemistry compatible with Super Corr-A CPC
• Define material and performance requirements based on previous assessments of lubricants
• Conduct laboratory and field testing for comparative evaluation of the lubricant performance containing the alternative solvents
• As required, update MIL-L-87177A specification and associated process order
Test Matrix

• Test plan includes nine CPC formulations and one control
 1. Existing Super Corr-A formulation with AK225T solvent
 2. Previous Super Corr-A formulation with 141B solvent
 3-6. Super Corr-A formulated with 4 solvent candidates
 a. DuPont Vertrel® SDG w/ current concentration of CPCs
 b. DuPont Vertrel® SDG w/ higher concentration of CPCs
 c. Kyzen Cybersolv® 141R w/ higher concentration of CPCs
 d. Kyzen Cybersolv® 141R w/ current concentration of CPCs
 7. ILFC 1006 CON-TAC
 8. Zip-Chem D-5026NS
 9. Zip-Chem D-5026NS with alternative propellant (Noxit-86)
MIL-L-87177A Assessments

• SMI Laboratories conducted first article testing specified in MIL-SPEC to validate performance characteristic requirements of experimental lubricant formulations

• **Results:** New and old formulations of Super Corr-A do not meet first article requirements of MIL-L-87177A

 – Original formulations were never tested

 – Both formulations perform appropriately for intended application

• **Recommendation:** Update first article requirements and revise MIL-SPEC

 – Stakeholders include; Hill AFB, DLA-Richmond, AFRL/CTIO, and AFCPCO
First Article Testing Results

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Test Method Specification</th>
<th>Limit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryness</td>
<td>MIL-SPEC 4.6.1</td>
<td>0.0100 gram (max)</td>
<td>Failed</td>
</tr>
<tr>
<td>Flash Point</td>
<td>ASTM D1310</td>
<td>243°C/470°F (min)</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>Dielectric Breakdown</td>
<td>ASTM D877</td>
<td>24,000 volts (min)</td>
<td>Failed</td>
</tr>
<tr>
<td>Lubricity</td>
<td>ASTM D226</td>
<td>1.20 mm wear scar diameter (max)</td>
<td>Failed</td>
</tr>
<tr>
<td>Residue Solubility</td>
<td>MIL-SPEC 4.6.3</td>
<td>No visible residue</td>
<td>Failed</td>
</tr>
<tr>
<td>Leakage</td>
<td>MIL-SPEC 4.6.4</td>
<td>No leakage or distortion</td>
<td>Passed</td>
</tr>
<tr>
<td>Content</td>
<td>MIL-SPEC 4.6.5</td>
<td>16 ounces (min)</td>
<td>Failed (container content 12 oz.)</td>
</tr>
<tr>
<td>Performance of pressurized containers</td>
<td>MIL-SPEC 4.6.6</td>
<td>Uniform spray, panel adherence, no sagging</td>
<td>Passed</td>
</tr>
<tr>
<td>Oxidation Stability</td>
<td>ASTM D942</td>
<td><5 pounds/100 hours</td>
<td>Failed</td>
</tr>
<tr>
<td>Grade B Corrosion</td>
<td>ASTM B117</td>
<td>No corrosion after 168 hours</td>
<td>Passed</td>
</tr>
<tr>
<td>Sprayability</td>
<td>MIL-SPEC 4.6.9</td>
<td>Sprayable w/ no clogs</td>
<td>Passed</td>
</tr>
</tbody>
</table>
Battelle Laboratory Results

• Grade B Corrosion Testing
 – Alternative Super Corr-A formulations showed improved corrosion resistance in salt fog exposure testing
 – Most extensive pitting damage noted with the control and CON-TAC
 – “Streaked” pitting noted on Noxit-86, D5026NS; may have been caused by formation and collection of water droplets along top edge
Battelle Laboratory Results - Connector Card Testing

Conditions:
- 1000 hours
- 80°C (176°F)

Requirements:
- $\Delta R < 10$ milliohms

Results:
- All passed

Change in Contact Resistance Resulting from Thermal Aging Exposure Testing of Coated Electrical Connectors
Battelle Laboratory Results – Low Temperature Testing

Conditions:
- 15 minutes @ each temperature

Requirements:
- $\Delta R < 10$ milliohms

Results:
- Only CPC No. 1 failed
Battelle Laboratory Results – Disturbance Cycle Testing

Conditions:
- 100 demate/remate cycles

Requirements:
- \(\Delta R < 10 \) milliohms

Results:
- All passed

Change in Contact Resistance Resulting from 100 Disturbance Cycles Completed on Coated Coupons attached to Connector Card
Battelle Laboratory Results – Class II Flowing Mixed Gas Testing

Conditions:
- 10 day exposure

Requirements:
- \(\Delta R < 10 \) milliohms

Results:
- CPCs No. 1 & 3, CON-TAC, and Noxit-86 failed

Change in Contact Resistance After Exposure of Coated Coupons to Class II Flowing Mixed Gas Test

.business sensitive
Battelle Laboratory Results – Grade B Corrosion Testing

Photographs Documenting Placement of Coated Panels in ASTM B117 Salt Fog Cabinet and Corrosion Pitting Noted on Coupons Coated with CON-TAC CPC

<table>
<thead>
<tr>
<th>CPC</th>
<th>Panel 1</th>
<th>Panel 2</th>
<th>Panel 3</th>
<th>Average Score (Max: 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>CPC No. 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>CPC No. 2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>CPC No. 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>CPC No. 4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>Super Corr A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Super Corr B</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>CON-TAC</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4.7</td>
</tr>
<tr>
<td>Noxit-86</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>D-5026NS</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Salt Fog CPC Ratings Calculated from Pit Density Evaluation Referenced in ASTM G46-94 and ASTM D610-08
Battelle Laboratory Results – Polycarbonate Compatibility (canopies)

Consistent with previous testing, crazing noted with CON-TAC, AK225T (slight), 141-B (dramatic)

Polycarbonate Stressed Coupons: CON-TAC (left), Control (right)
<table>
<thead>
<tr>
<th>Ranking of EIS Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noxit86</td>
<td>1</td>
</tr>
<tr>
<td>D-5026NS</td>
<td>2</td>
</tr>
<tr>
<td>Super Corr-A</td>
<td>3</td>
</tr>
<tr>
<td>CPC-4</td>
<td>4</td>
</tr>
<tr>
<td>CPC-3</td>
<td>5</td>
</tr>
<tr>
<td>Super Corr-B</td>
<td>6</td>
</tr>
<tr>
<td>CPC-2</td>
<td>7</td>
</tr>
<tr>
<td>CON-TAC</td>
<td>8</td>
</tr>
<tr>
<td>CPC-1</td>
<td>9</td>
</tr>
<tr>
<td>Control (uncoated)</td>
<td>10</td>
</tr>
</tbody>
</table>
Battelle Field Testing

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Tests</th>
<th>Test Reference</th>
<th>Sample Size</th>
<th>Time Periods</th>
<th>Replicates</th>
<th>Sample Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Exposure Testing</td>
<td>Connector Field Testing</td>
<td>Abbott 1996 report</td>
<td>10 CPCs</td>
<td>3 (1 mo, 3 mo, 6 mo)</td>
<td>50 (pin count)</td>
<td>Test connectors with gold-plated bars (2 to a PC board)</td>
</tr>
<tr>
<td></td>
<td>Corrosion Coupons</td>
<td>Abbott 1996 report</td>
<td>10 CPCs</td>
<td>3 (1 mo, 3 mo, 6 mo)</td>
<td>1</td>
<td>Rack with 5 steel coupons</td>
</tr>
<tr>
<td></td>
<td>Lap Splice Testing</td>
<td>Rice 2004 report</td>
<td>10 CPCs</td>
<td>3 (1 mo, 3 mo, 6 mo)</td>
<td>1</td>
<td>Lap splice fixture with steel coupon fastened to 2024 T3 Al coupon</td>
</tr>
<tr>
<td></td>
<td>Steel Sensors</td>
<td>Recent Abbott work</td>
<td>10 CPCs</td>
<td>Measurements in place at 1 mo, 3 mo, 6 mo</td>
<td>1</td>
<td>Steel sensors</td>
</tr>
</tbody>
</table>

Corrosion Coupons

- Test connectors with gold-plated bars (2 to a PC board)
- Rack with 5 steel coupons

Lap Splice Fixtures

- Lap splice fixture with steel coupon fastened to 2024 T3 Al coupon

Steel Sensor

- Steel sensors
Battelle Field Testing Results - Corrosion Testing Summary

<table>
<thead>
<tr>
<th>CPC</th>
<th>Average Weight Loss (g)</th>
<th>Average Corrosion Rate (mpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-5026NS</td>
<td>0.14590</td>
<td>2.22</td>
</tr>
<tr>
<td>CPC 2</td>
<td>0.21215</td>
<td>3.23</td>
</tr>
<tr>
<td>CPC 4</td>
<td>0.21465</td>
<td>3.27</td>
</tr>
<tr>
<td>Noxit 86</td>
<td>0.23494</td>
<td>3.58</td>
</tr>
<tr>
<td>CPC 1</td>
<td>0.32854</td>
<td>5.01</td>
</tr>
<tr>
<td>CPC 3</td>
<td>0.33280</td>
<td>5.07</td>
</tr>
<tr>
<td>Super Corr-A</td>
<td>0.33346</td>
<td>5.08</td>
</tr>
<tr>
<td>Super Corr-B</td>
<td>0.35096</td>
<td>5.35</td>
</tr>
<tr>
<td>CON-TAC</td>
<td>0.43267</td>
<td>6.59</td>
</tr>
<tr>
<td>Control</td>
<td>0.51872</td>
<td>7.91</td>
</tr>
</tbody>
</table>

*Average for each CPC over the 4 month period with the three location sets combined

CPC Lubricant Ranking of Coated Corrosion Coupons Based on Weight Loss
Battelle Field Testing Results - Summary

- The worst corrosion resistance was measured for the control or uncoated coupon sets,
- The best corrosion resistance was measured for the coupon sets coated with the D-5026N lubricant,
- The corrosion resistance of the CPC-2 lubricant was only slightly lower than the performance measured for the D-5026N material,
Battelle Field Testing Results – Lap Splice Testing

Area of CPC Application Along Upper Edge of Lap Splice Coupons

Lap Splice Coupon Sets Mounted on Chain Link Fence at FMRF
Battelle Field Testing Results – Lap Splice Testing Summary

Ranking Scores for CPC Coated Lap Splice Coupons
(ref. ASTM D610-08)

<table>
<thead>
<tr>
<th>CPC</th>
<th>West Jefferson</th>
<th>FMRF</th>
<th>Total (Max: 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mo.</td>
<td>3 mo.</td>
<td>4 mo.</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CPC No. 1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CPC No. 2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CPC No. 3</td>
<td>2</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>CPC No. 4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Super Corr A</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Super Corr B</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CON-TAC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Noxit-86</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>D-5026NS</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
• Horizontally mounted sensors had increased corrosion

• Visual corrosion on controls, CON-TAC, and D5026NS variants

• CPC No. 2 consistently showed the least change in resistance
Conclusions

• No tested lubricants met all first article testing requirements
• DuPont Vertrel SDG and Kyzen Cybersolv C141R performed well
• Independent testing conducted by SMI Laboratories confirm solvent alternatives are not corrosive or embrittling to high strength aerospace alloys
• Performance of formulations blended with compliant solvents and higher concentrations of proprietary CPC was equal to, or greater than lubricants approved per MIL-L-87177A and MIL-PRF-81309F
• Demonstrated superior performance of the D-5026NS, CPC No. 3 and CPC No. 4 lubricants
• Compliant solvent alternatives can replace the 225T solvent in the current Super Corr-A formulation without compromising the performance of the lubricant
Recommendations

- Work closely with representatives at Hill AFB, DLA, AFRL, and AFCPCO to revise or update the chemical, physical and performance requirements currently referenced in the MIL-L-87177A specification.

- A preliminary set of deletions, modifications or additions include:
 - Update flash point requirement based on lubricant chemistry.
 - Update or delete the dielectric breakdown requirement based on lubricant chemistry and intended use applications.
 - Assess and update oxidation stability requirements.
 - Input compatibility requirement with MIL-PRF-32033 and MIL-PRF-81309F lubricants.
 - Input Electronics Lubricant Effectiveness tests referenced in MIL-PRF-81309F
 - Initial contact resistance (fixed and disturbed).
 - Low temperature exposures.
 - Thermal aging.
 - Durability cycling.
 - Corrosive gas exposures.
 - Compatibility with electrical insulating compounds.
Questions & Discussion

Contacts:

Mr. Paul Hoth
Hill Air Force Base
801_775_4889
paul.hoth@hill.af.mil

Mr. John Stropki
Battelle
614_424_5414
stropki@battelle.org
Back-up Slides
UC Laboratory Testing

- Testing by University of Cincinnati (UC) supplemented Battelle’s CPC performance testing

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Tests</th>
<th>Test Reference</th>
<th>Sample Size</th>
<th>Time Periods</th>
<th>Replicates</th>
<th>Sample Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC Laboratory Testing</td>
<td>Grade B Corrosion</td>
<td>MIL-L-877177A, ASTM B117 - 168 hrs salt fog exposure</td>
<td>9 CPCs</td>
<td>1 (168 hrs)</td>
<td>3</td>
<td>2024 T3 Al coupons</td>
</tr>
<tr>
<td></td>
<td>DC Polarization Resistance</td>
<td>ASTM G59, ASTM G96, ASTM G102</td>
<td>9 CPCs</td>
<td>1 (record resistance for each sample)</td>
<td>2</td>
<td>2024 T3 Al coupons</td>
</tr>
<tr>
<td></td>
<td>Electrochemical Impedance Spectroscopy</td>
<td>Battelle April 2005 study</td>
<td>9 CPCs</td>
<td>7 (at 8, 24, 48, 96, 168, 336, and 504 hrs)</td>
<td>2</td>
<td>2024 T3 Al coupons</td>
</tr>
</tbody>
</table>
UC Laboratory Testing Results

- **ASTM B117 Neutral Salt Spray Corrosion Testing Results**
 - 168 hour exposure period
 - Extensive corrosion pitting observed on control coupons
 - Good corrosion resistance for all CPCs tested
 - Visual scoring ranked CPCs:
 - CON-TAC (best)
 - D-5026NS, CPCs No. 2, 3, 4
 - Noxit-86, SC-A, SC-B, and CPC No. 1 (worst)
UC Laboratory Testing Results

- **Polarization Resistance**
 - Electrochemical technique that assesses corrosion rates using direct applied current

<table>
<thead>
<tr>
<th>Sample</th>
<th>OCP (mV)</th>
<th>Polarization Resistance, R_p (kOhm)</th>
<th>Ranked by Highest Corrosion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC-4</td>
<td>-476.3</td>
<td>22530</td>
<td>1</td>
</tr>
<tr>
<td>CPC-3</td>
<td>-404.7</td>
<td>4487</td>
<td>2</td>
</tr>
<tr>
<td>Super Corr-A</td>
<td>-414.8</td>
<td>2465</td>
<td>3</td>
</tr>
<tr>
<td>D-5026NS</td>
<td>-381</td>
<td>782.2</td>
<td>4</td>
</tr>
<tr>
<td>Super Corr-B</td>
<td>-394.9</td>
<td>388.8</td>
<td>5</td>
</tr>
<tr>
<td>CPC-1</td>
<td>-385.8</td>
<td>337.5</td>
<td>6</td>
</tr>
<tr>
<td>NOXIT86</td>
<td>-385.9</td>
<td>295.3</td>
<td>7</td>
</tr>
<tr>
<td>CON-TAC</td>
<td>-374.5</td>
<td>145.7</td>
<td>8</td>
</tr>
<tr>
<td>Control - uncoated</td>
<td>-383.2</td>
<td>7.7</td>
<td>9</td>
</tr>
<tr>
<td>CPC-2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 = highest corrosion resistance
UC Laboratory Testing Results

- Electrochemical Impedance Spectroscopy (EIS)
 - Estimates corrosion rate
 - Rapid evaluation of thin coatings
 - Results plotted in a **Bode** plot (Impedance vs. Frequency)
Battelle Field Testing Results

• Connector field testing – West Jefferson, OH
 – All CPC lubricants passed the five month exposure with a change in the initial contact resistance of $<10 \text{ m}\Omega$

Change in Contact Resistance After 5 Months Field Exposure at West Jefferson Test Location
Battelle Field Testing Results

- Connector field testing – FMRF Daytona Beach, FL
 - All passed the five month exposure with a change in the initial contact resistance of <10 mΩ
Battelle Field Testing Results – Corrosion Coupons – West Jefferson, OH

– All lubricants showed improved corrosion resistance over the control
– CON-TAC showed the least corrosion resistance
– CPCs No. 3 and 4 performance comparable to SC-A and SC-B
Corrosion Rates Calculated for Corrosion Coupons Exposed Vertically at West Jefferson Test Location
Battelle Field Testing Results - Corrosion Coupons @ FMRF Location

• Similar CPC performance was observed at FMRF with increased overall corrosion on all coupons due to the harsher environmental conditions.

• CON-TAC showed the greatest overall corrosion following the control.

CPC Coated Corrosion Coupon Sets Mounted at FMRF Test Location:

Horizontal Mount (left) Vertical Mount (right)
Battelle Field Testing Results – Corrosion Coupons @ FMRF Location

Corrosion Rates Calculated for Corrosion Coupons Exposed Horizontally at FMRF Test Location
Battelle Field Testing Results – Corrosion Coupons @ FMRF Location

Corrosion Rates Calculated for Corrosion Coupons Exposed Vertically at FMRF Test Location
Battelle Field Testing Results – Steel Sensors at FMRF and West Jefferson

Steel Sensors Exposed Vertically at West Jefferson Test Location
Battelle Field Testing Results – Steel Sensors at FMRF and West Jefferson

Steel Sensors Exposed Vertically at FMRF Test Location