REPORT DOCUMENTATION PAGE OMB NG Bo0a 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
3/1/2012 FINAL REPORT February 1, 2009 — November 30, 2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Anomaly-Based Intrusion Detection Systems Utilizing System Call Data FA9550-09-1-0067
5b. GRANT NUMBER
49527
5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
Skormin, Victor A. 1077358
5e. TASK NUMBER
1
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Binghamton University Watson School of Engineering
(State University of New York) Electrical & Computer Engineering

4400 Vestal Pkwy East
Binghamton, NY 13902

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Office of Scientific Research Suite 325, Room 3112 AFOSR
875 N. Randolph Street
Arlington, VA 22203-1768 11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

AERIL -OSR-VA-TR-2012-0994

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This research aims at the enhancement of computer defenses by making them invulnerable to new, mutating and obfuscated malware. It
offers a semantic approach to system behavior analysis, centered on the concept of functionality. Functionality is the highest level of the
behavior semantics, it is defined by the specific goal of computer operations, not by its software realization. This allows for identifying
some classes of malware achieving the same specific malicious operations. Colored Petri nets are proposed as a basis for behavioral
signatures representing particular functionalities, both legitimate and malicious. Special techniques are proposed to address three
interrelated aspects: signature expressiveness, behavioral obfuscation and run-time signature matching efficiency. A signature based
approach for detecting malicious functionalities in the system call domain is developed. It has been implemented in a prototype software
and tested. It is superior to existing behavior based techniques in addressing behavioral obfuscations and multiple functionality realizations.
The experiments results indicate low rate of false positives and negatives, and low execution overhead. Such results suggest that detecting
malicious functionality presents a sufficiently dependable and efficient method for distinguishing malware from benign software.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Dr. Victor Skormin
a. REPORT b. ABSTRACT c. THIS PAGE uUu 28 19b. TELEPHONE NUMBER (include area
U U U code)
607-777-4013

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

mason
Typewritten Text
AFRL-OSR-VA-TR-2012-0994

mason
Typewritten Text

mason
Typewritten Text

mason
Typewritten Text
Distribution A: Approved for Public Release

List of figures

.. \Y
LIST OF tADIES ... Vv
R [1 (o To U ot i o] o ISP P PP PRTTRPPRPPPRRTON 1
2 Modern Security Challenges to Computer SYSteMScccovvviiiiiiiiiiiiiiineee e 4

2.1 Description and Classification of Modern Malware.............ccccceeeiiiiiiiiieeeeeeeeeeeeeeee, 4
2.1 1 VITUSES ..ttt ettt e et e e e e e e e e e e e e e e s e e s 4
2.1.2 WIS Lottt a e e e e e e 4
2 R T I (0] = 1 1 PSRRI 5

2.2 State of the Art of Anti-Virus Technology: Limitations and Disadvantages............ 5

3 Taxonomy of Malicious FUNCLIONANITIESooiiiiiiiiiiiiiie e 9

3.1 Definition of Software FUNCHONAlItYuuvuiiiiiiiiiiie e 9

3.2 Taxonomy of Malware Replication Functionalitiesccccceeeiviiiiiiiiieeiieiieeeeee, 10
3.2.1 Binary Self-RepliCationccooiiiiiiiiiieeeerrs e 10
3.2.2 Network Based (Server-Side) Self-Replication.............cccoevvviiiiiiiiiiiiiiinneenn. 11
3.2.3 Client Side Self-RepliCationcccoeeiiiieeiiiiiieeeeeeee e 12

3.3 Taxonomy of Malware Payload FunctionalitieSccccccevveeeeeeiiiieiv e 14

3.4 Functionalities of Next Generation MalWare.............ccccceeiiiiiiiiiiiiiiiiieeeeee e 16
3. 4.1 Targeted AMACKcoevieiiiiiieiie et a e 16
3.4.2 Behavioral MetamorphiSmciiiiiiiiie e 17

3.5 CONCIUSIONS ...ttt ettt e et r e et e e e e e e e e e e e e e e nnnrnnee e 17

4 Signature Based Behavioral DeteCtioNccooeeiiiiiiiiiiiiiiiieeiiii e 18

4.1 State of the Art in Signature Based Behavior Detection.............cccccceeviiiiiiiieeeeeennn, 20
4.1.1 State-Transition and CPN SpecifiCationscccccceeeeeeeeiiiiiieeeeeee 20
4.1.2 Declarative and Algebraic Specification Languages...........ccoeuvvvevvvvnnnnninnnnnnn 21
4.1.3 System Call Domain SpecifiCationscovvvviiuuiriiiiiiiiiiiee e eeeeeeeeeeeeeeeannnnns 23

4.2 Functionality Definition and Specification..............c.oovviviiiiiiiiiiicrre e, 24
4.2.1 Formalization of the SPecifiCationuuuuuuiiiiiiiii s 24
4.2.2 Specification ADSractionoooiiiiiiiiiiiiii e 28

TABLE OF CONTENTS

4.3 Behavioral OBfUSCALIONccuveeieee et 29

4.3.1 Behavior Obfuscation TEChNIQUES..........cccoeiiiiiiiieeeeeeeerrr e 29
4.4 Specification Generalization, Anti-Obfuscation.............cccovvvvviiiiiccccccee e, 30
4.5 Functionality RECOGNITION.........uiiiiiiiiiiiieeae et e e e e e e e e e e 39

4.5.1 Justification of the Recognition Model with Respect to Expressive Power.... 39

4.5.2 Justification of the Recognition Model with Respect to Computational

[@0] 1] o111 /5 40
4.5.3 Dynamic Information FIOW TracCing...........uuuuuuerummiiiiiinieeee e 45
4.6 IDS IMPIEMENTALIONuttiiiiiiiiiee et e e e e e e e e e e e e e aeeeeeeeeeesaenee 47
A4.6. 1 AD DESIGNENceeeeeeeeeiiteiieea e e e e e e e e e e e e e ettt et e e e et et e e e e e e e e e aaaaaeeaeeraraarraraa——_ 47
4.6.2 Specification Generalizer and CPN ConStructor...........cccoovvieiieeveviiiiiiieeeeeeens 47
4.6.3 Functionality RECOGNIZETcoiiiiiiieieeee s 48
4.6.4 Taint Propagation ENQINEccccoiiiiiiiiiiieeeeeeeis s e e e e e e e e e e e e e eeaeeeennnnnees 48
A7 CONCIUSIONSeeeiieeiitte ittt ettt e e e e e e e e e s s et e e e e s e e e e e e anrnneeas 49
5 Evaluation of the Developed IDS...... ... 50
5.1 EXperimental SEIUPccooiiiiiiiiiiiers e e e e e e e aaes 50
5.2 DeteCtioN RESUILSuiiiiieiiiiiie et e e 51
5.2.1 FAISE POSITIVEScoeiiiiiiiiie ettt e e e e e e 51
5.2.2 False Negatives (Detection RAte).uuuuuiiiiiiiiiiiieee e 55
5.2.3 Case Study - Password StealiNgcccceeeiiiiieieeiiiieiieeeeeeietres e e e e e e e 56
5.3 Performance Overhead EValuationcccoooiiiiiiiiiiiiiiieeee e 58
5.3.1 Run-time Performance ANAIYSIS.......cccouiiiiiiiiiieiiiieiieeeeeeetiii e 58
9.3.2 SHESS TBST ... 60
5.4 CONCIUSIONSciiieiiittiiee ettt e e e et e e e st e e e e e e e e e e e anrnneeas 61
6 Summary and FULUIE WOTKeeeiiiiiii e e e e e e eeeeeennnees 62
RETEIENCES ...t e e e e e e e e e e e e e e e e e e 65
Appendix A — AD fOrmMaliZatioN............ueiiiiie e e e e e e e e e e e e e e e e eeeeaarraaa—— 68
AppeNdix B - REMOLE IPC AGSo e e s 71
Appendix C - Generalization functioNalitieS AD..........ccooiiiiiiiiieieeeeeeee e 73

Appendix D - Functions utilized in generalization algorithms..............cccciiiiiiicccceennn.

List of Symbols, Abbreviations and ACIrONYMIScooeiiiiiii i e

LIST OF FIGURES

Figure 1. Number of Binary Signatures of Malware (Source: Kaspersky Lab) 6
Figure 2. Detection Rate of Heuristic Analysis (May, 2010)coeiiiiiinnneieeeieieeeeeeeeiiiiiieene 7
Figure 3. Utilization of Malicious Functionalities (Source: Trend Micro INC.)..........cccceeen... 7
Figure 4. Functionality Implementation at the System Level...........cccccceeveiiiiiiiiiiiiieccieeeeee, 9
Figure 5. Architecture of PropoSed IDScccoooiiiiiiiiiiiieeeeesss e e e e e e eeeeaeaneees 18
Figure 6. Activity Diagram of the “Remote Shell” Functionalitycooevviiiiiiiiinnnnnn. 26
1o [LI A 1 L= o] (o T= Lo I I P PUURUR 36
Figure 8. Generalized File Upload ADuuuuiiiiiiiiee e e e e e e e e e e e e e 37
Figure 9. Generalized AD for Remote Shell...........ccooi e 38
Figure 10. High Level (Subsystem Level) CPN for the “Remote Shell” Functionality 43
Figure 11. Low Level (system call level) CPN for the “Remote Shell” Functionality 44
Figure 12. High Level CP-subnet for the “Password Stealer” Functionality. 57
Figure 13. Handle DUPIICAtION TEST......uuuuiiiiiiieie ettt e e e e e e e e eeeeeeees 61
Figure B-1. Remote IPC- Create OpPeration............ccouvviiiieeeeiiiriiiiiiisseeeseeeeeeeeeeseesseeesennnnnn 71
Figure B-2. Remote IPC — ReCeivVe OPEeratioN...........uuuuueiiiiiiieeeeeeeeeeeeeeeeeeeeesesnesnnnnnnnnnnee s 71
Figure B-3. Remote IPC —Wait OPEratioN...........uuuuuuuiiiiaiieeee et 72
Figure B-4. Remote IPC — Send OPEerationuuuuuiiuuiiiiiiiieaeeeeeeeeeeeeeseeeeeeesssnnnnnnn s 72
Figure C-1. Handle Duplication FUNCHONAIILYuuueiiiiiiieiiiee e 73
Figure C-2. Process Generation FUNCHONAIIYoooeiiiiiiiiiiiieeee e 73
Figure C-3. Code Injection FUNCLONAITYcooiiiiiiiiiiiii e 74

LIST OF TABLES

Table 1. Payload CoOllECHONuuieiiiiiii e e e e e e e e e e e e e e e eeaeeeeseannna 15
Table 2. “Remote Shell” RealiZatioNouiiiiiiiii e 25

Table 3. Functional Objects for Data Transfer ... 28
Table 4. Generalization FUNCHONANTIESooiiiiiiiiiiieee e 31
Table 5. Source and SiNK OPEratiONS........ccoiiieieeeiiieee e e e e e e e e e e e e e e e e eeeeererneeananas 34
Table 6. Functionalities Detection Rate and False Positive Ratecccccceeeiiiiiiiiiiinne 52
Table 7. Place Reachability Statistics for Low Level CPNcoovvviiiiiiiiiiiiiiiii e, 54

Table 8. Place Reachability Statistics for High Level CPN........cccoooiiiiiiiiiiiieieeeeeeiiiie 55

Table 9. Password Stealing Functionality..............oooiiiiiiiiiiiiii e 56
Table 10. Place Reachability of CPN for "Password Stealer”cooovviiiiiiiiiiiiieneenn, 57
Table 11. Execution Overhead due to IDSoooiiiiiiiiiii e 59

1 INTRODUCTION

Our ever-growing dependence on computer networkact®mpanied by ever-growing
concerns about the network’s vulnerability to information attacks and the dependability of the
existing network security systems. Major threats primarily stem from increasingly sophisticated
self-replicating malicious software. At present, more than 700 million computers are connected
to the Internet and their numbers are growing rapidly [1]. Every year, thousands new public
vulnerabilities in security systems are revealed, and at any given moment of time millions of
vulnerable computers are connected via the Internet.

Sophisticated adversaries detect and utilize vulnerable computers to carry out various
attacks. Many attacks are performed in a completely automated fashion and spread throughout
the Internet at the speed of light without regard to geographical and national borders.
Technologies utilized by malicious software are becoming more and more complex. In some
cases attacks are completely concealed and cannot be revealed without a thorough analysis
delaying both detection and mitigation efforts. In many instances attackers intend to compromise
computer network security systems, rendering them ineffective. Moreover, poly- and meta-
morphism are commonly utilized by attackers to minimize the efficiency of traditional anti-virus
software tools that are dependent on gigantic, continuously updated databases. Fortunately,
Intrusion Detection Systems (IDSs) utilizing behavioral signatures to match malware activity
rather than its binary structure are immune to this binary morphism.

The research presented in this report is aimed at the development of semantic approaches
to behavior analysis in a scalable dependable IDS system. It resulted in a signature based IDS
approach that was implemented, tested and characterized.

Section 2 discusses the modern malware and associated trends, malware classification, and
a review of the limitations of conventional anti-virus technologies. First, various types of modern
malware, statistics and emerging trends in malware development are presented. Secondly, this
chapter reviews modern anti-virus products and discusses limitations of technologies currently
used to detect malware such as binary signatures, heuristic analysis, and behavioral detection.

Section 3 presents taxonomy of the typical basic malware functionalities that could be
attributed to the “essence” of malicious activity. In particular, self-replication mechanisms as
well as malicious payloads are analyzed. Three types of the self-replication mechanism are
discussed, including: binary self-replication, server-side replication, and client-side replication.
Moreover, malicious payloads are classified and analyzed, including: persistence mechanisms,
delivery and communication mechanisms, data acquire mechanisms, offensive payloads and
others.

Among the known malicious activities, self-replication is an example of a highly
discriminative and indicative malicious functionality. Obviously, there is no reason for legitimate
software to self-replicate, since it can be distributed by legitimate means (e.g. downloads and
install, trial etc.). Hence, computer security researchers are very interested in self-replication
phenomenology.

It is important to be able to reliably detect self-replication as a specific functionality.
However, before detecting it, it is reasonable that we should model self-propagation in order to
investigate and estimate the possible impact of this functionality on network resources. Such a
model would allow for selecting the most adequate means for both attack detection and
mitigation.

Section 4 presents the developed signature based IDS approach. This approach detects
malicious functionalities in the system call domain using generic and highly semantic signatures.
Such an approach is superior to existing behavior based techniques in addressing behavioral
obfuscations and multiple functionality realizations. Basically, the proposed IDS detects
intrusions at the highest semantic level — the functional level, which is semantically higher than a
simple behavior due to the fact that behavior is merely a manifestation of one of the realizations
of functionality that could be obfuscated. While signature-based, behavior-based IDSs (BBIDS)
have obvious advantages, however they could suffer from three interrelated problems: poor
signature expressiveness, behavioral obfuscation and run-time signature matching inefficiency.
The research presented in this chapter describes the development of novel, system call domain
IDS that addresses both existing and future challenges of BBIDS. In particularly, we propose an
approach to specify the functionalities of interest, specifically malicious ones, by using activity
diagrams (AD) in terms of generic behavioral constructs. The resultant AD would incorporate
multiple realizations of the specified functionality hence increasing the semantics and
expressiveness of the signature. An AD signature would be automatically generalized to address
existing and potential behavioral obfuscation techniques. Finally, a procedure is presented that is
capable of automatic conversion of activity diagrams into colored Petri nets (CPN) defined in the
system call domain, to be used by IDs for run-time recognition of the specified functionalities.

Section 5 presents a comprehensive experimental evaluation of the proposed approaches
that were implemented in a prototype IDS. An experimental evaluation of the described
technology was conducted on the virtual network testbed at Binghamton University [2], [3]. The
testbed was configured as a virtual network comprised of dozens of victim hosts represented by
virtual machines with vulnerable versions of Windows1 OS and our prototype IDS. The IDS was
evaluated on hundreds of legitimate programs and dozens of malware that had various types of
replication engines and payloads. The experimental results indicated extremely low false
negatives and false positives. Finally, we performed a series of experiments to determine the run-
time overhead induced by the IDS. This overhead was estimated based on established
benchmarks. The results indicated that the IDS incurred less than 4% of the CPU utilization
overhead.

The results of this research were presented at the following conferences (proceedings) and
journals:

1. Military Communications Conference (three papers), MILCOM 2011, Baltimore, MD, USA

2011

European Symposium on Research in Computer Security (ESORICS), Athens, Greece 2010.

Military Communications Conference, MILCOM 2010, San Jose, CA, USA 2010.

International Conference on Security and Management, SAM’10, Las Vegas, NV, July 2010

Conference on Future Challenges in Network Security (FCNS), Prague, Check Republic,

June 2010

International Conference on Security and Management, SAM’09, Las Vegas, NV, July 2009

27th IEEE International Performance Computing and Communications Conference,

(IPCCC), Austin, TX, Dec. 2008

8. Problems of Information Security. Computer Systems (Journal), issue 3, Moscow, Russia,
2008 (in Russian)

9. Journal of Information Assurance and Security, vol. 2, issue 2, pp. 107-116, 2007.

abrwn

N

* windows is registered trademarks of Microsoft Corporation in the United States and other countries

2

10. Third International Symposium on
Manchester, England, August 2007

11. International Conference: “Mathematical Methods, Models and Architectures for Computer
Networks Security”, Sept. 20, 2007, St. Petersburg, Russia.

Information Assurance and Security (IAS’07),

2 MODERN SECURITY CHALLENGES TO COMPUTER SYSTEMS

Malicious software presents the most prominent thieanodern computers systems. The
first example of malware was a computer virus developed almost thirty years ago for Apple
computers [4]. At that time, most of the early computer viruses were limited to self-replication
and had no specific payload. Since then malware evolved from academic proof-of concepts in
middle 1980s to script-kiddies attacks in late 1920l finally to underground market and
targeted attacks since 200€.g. Zeus botnet, StuxNet worm). As a result, today malicious
software is used to achieve a wide range of adversary goals. This includes everything from
remote access to local sensitive data to full control of segments of information infrastructure
such as servers, network appliances and even industrial controllers.

This chapter presets general discussion of the modern malware and their associated trends;
malware classification; and review of the limitations of conventional anti-virus technologies.

2.1 Description and Classification of Modern Malware

Malicious software (malware) is software that is designed to secretly access a computer
system without the owner's informed consent [5]. Malware is a general term meaning a variety of
forms of hostile, intrusive, or annoying software or program code.

This section describes various types of modern malware, the associated statistics and some
emerging trends in malware development. Malware is classified according to well-known
notations and terms formalized by the computer security community (e.g. anti-virus vendors) [6],
[7]. Note that this section focuses on malware types only. Further discussion on malicious
functionalities and behavioral taxonomy is given in the next chapter.

Today, the cyber-security community distinguishes between the various types of malware
depending on their main purpose or intentions [8], some of these are defined and described
below.

2.1.1 \Viruses

The first use of the term “computer virus” is attributed to Fred Cohen in 1983. Fred Cohen
originally defined a computer virus as a program that can "infect" other programs by modifying
them to include a possibly evolved copy of itself. Traditionally, viruses only infected the local
host executable files during propagation. However, today viruses can self-replicate by infecting
many file types such as MS Word files (macro virus), Adobe PDF files (script virus), script files
etc. Also virus activity is no longer limited to a local host. A virus can also infect files located on
network shares, cloud drives and removable media.

2.1.2 Worms

A worm is a form of self-propagating malware that spreads inter-host over the local/wide
area network and also via the Internet. The main difference between a worm and a virus is that a
worm transfers its binary image to the victim machine without injecting its code into any host
files. While a virus, by definition, proliferates by injecting itself into a host file on the victim
machine.

Depending on the propagation vector, worms could be classified into the following
categories [7]:

. E-mail worms. This worm sends itself or a link to its image as an e-mail attachment.

. P2P worms. This worm proliferates via public P2P file sharing networks.

. Network worms. This worm propagates to hosts by exploiting vulnerabilities in publically
exposed services. Since such a worm does not require user action, it could spread very fast
causing large scale epidemics.

. Instant messaging and IRC worms. This worm sends a link to its image via instant
messengers or IRC, e.g. ICQ or Skype.

After getting deployed to the remote host, worms often establish various backdoors,
disable security tools, and install bot agents. Once compromised, these systems become part of
what is known as a “zombie” network.

2.1.3 Trojans

A Trojan horse is malware pretending to be benign or useful software. When activated,
Trojans perform unauthorized actions such as collecting, modifying, and forging data. Unlike
viruses and worms, Trojans by themselves do not self-replicate. Hence, Trojans are delivered by
some type of self-replicating malware as a payload or by so-called downloaders. Also, Trojans
can be delivered via a social engineering attack by convincing victims to download and execute
their code.

Depending on the actions performed, Trojans fall into the following classes [8]:
downloaders, spyware, keyloggers, backdoors, dialers, ransom, proxy, clickers, and adware.

Downloaders are small programs that download and install other malware such as adware
and spyware. Some downloaders also configure the OS to run the downloaded malware during
system startup.

Spyware is a type of malware that steals sensitive data such as a user’s credentials, bank
account information, web service passwords etc. Such data is transmitted to adversaries via
various channels including FTP, e-mail and even covert channels (e.g. DNS reverse tunnel).

Keyloggers monitor and record various system events such as mouse clicks and pressed
keys. Usually, keyloggers are used by spyware to gather a user’s credentials.

A backdoors is a specific type of malware that attempts to grant unauthorized external
remote access to a host. It is usually achieved by rather simple techniques such as remote shell,
but there are some sophisticated backdoors that may themselves have system functionality that
enables remote system control. Backdoors are usually used to steal personal information
including login details, e-mail addresses etc. Moreover, covert backdoors are frequently used to
control botnets made up of compromised zombie machines.

Clickers, Adware, Dialers and Ransom represent malware for profit that forces the user to
pay money to adversaries or buy pay-per-use services without a user’s consent.

2.2 State of the Art of Anti-Virus Technology: Limitations and Disadvantages

In 1987, the German hacker Bernd Fix presented the first anti-virus software that was able
to detect and neutralize the Vienna Virus [4]. Since then, the market for anti-virus products has
received much attention, and has led to the development of more than sixty anti-virus products.
In spite of such development, for the most part, anti-virus products still rely on old, binary
signature based technology to detect malware [9]. This technology detects malicious software by
matching file images to binary patterns of all known malware that are stored in gigantic,
continuously updated databases.

In an attempt to avoid signature-based detection most sophisticated attackers currently
utilize polymorphic and metamorphic worms that are able to continuously mutate, i.e. change
their binary composition without changing their malicious payload. As a result, the number of
binary signatures of malicious codes that need to be stored and utilized for successful attack
detection continues to grow exponentially, see Figure 1 below. This trend indicates that in the
near future virus detection will consume a significant percentage of a computer’s finite
resources. At the same time, reliance on the known binary signatures implies that in principle it
cannot detect new, previously unknown malware.

Kaspersky Lab
2 000 000

1 800 000
1 600 000
1 400 000
1 200 000
1 000 000
800 000
600 000
400 000
200 000
1]

Number of signatures

1998
1899

2009
2010

] R

2005
2006

] R

2002
< 2003

2
=
ear

Figure 1. Number of Binary Signatures of Malware (Source: Kaspersky Lab)

To deal with unknown malware, advanced anti-viruses use heuristic analysis that utilizes
generic signatures to match classes of malware. However, such technology generates false
positives and has rather limited efficiency. Figure 2 shows that the detection rate of heuristic
analysis is at most 65% and is only 40% on average [10].

On the other hand, there is an alternative to binary signature-based intrusion detection.
Generally, malicious software and infected legitimate software demonstrate specific behavior
patterns that are atypical for legitimate software. Some advanced anti-virus products such as
Kaspersky, Symantec and ThreatFire perform dynamic analysis of program activity to detect
malicious behavior. However, such products usually take into account only individual OS object
operations and are also limited to a single process. In other words, such anti-virus products do
not correlate the behavior of multiple processes and objects to recognize a complex malicious
pattern. As a result, such systems are only able to detect primitive and obvious misuse such as
access to a system file, starting a particular process or loading a device driver. While such a
behavior could be exhibited by many types of malware, this same behavior is also exhibited by
legitimate software (e.g. system tools).

s0% 'Rl BI Bl 5 = m_

10% Wl B EEEEEEEIEIEBEEE BB I‘_I—l_
ul _a_n_N_N_N_N_R_8_§_§_§_§_§R_§_§_§_ s

0%

il e ({1 Ll LA | 1 e & & o &
o it P ESE T T EESS
<& ‘b" Qh.&é & i i il il
< <&

Figure 2. Detection Rate of Heuristic Analysis (May, 2010)

In our observation, behavior by itself is not malicious; however the goals or functionalities
of the malware are malicious. It is very important to point out, that the total number of malicious
functionalities is fairly stable, and the only thing that changes is how often particular
functionalities are utilized (see Figure 3). Inventing a new malicious functionality requires
significant effort and is typically beyond the means of most attackers. Consequently, when
malicious code mutates, it implements the same malicious functionality in spite of the variations
in its binary code. Moreover, developers of new computer worms are destined to utilize the same
malicious functionalities again and again (for example self-replication engines).

[social engineering
B archived

O recycle bin

O format disk

§ rename files

1 6 O webpage changs
B delete sysiem files
1 2 T 0 webpage connect

B vulnerability
8 e B dropper

0 anti-debugging
4 T O anti-antivirus
m B downloader
0 |_| § hackdoor

Y2001 Y2002 Y2003 B tash fles

of Alerts

B anti-firswall
@ DoS
0 packed

Figure 3. Utilization of Malicious Functionalities (Source: Trend Micro Inc.)

Taking into account the above considerations, it is critical to detect complex
functionalities, rather than merely simple behavior. Such functionalities may involve interrelated
sessions of object operations. For instance, we propose to detect the following sophisticated and
highly semantic functionalities: password theft, multipartite self-replication or self-concealing
using third party rootkits. The complexity and high level semantics of these functionalities

7

allows for confident discrimination of maliciousness in the program activity with minimum false
positives.

In order to detect malicious functionalities, first we must define, classify and analyze
existing and potential malicious functionalities. The next chapter is dedicated to the taxonomy of
malicious functionalities which covers most known and conceivable malicious functionalities
that each has a very distinctive footprint.

3 TAXONOMY OF MALICIOUS FUNCTIONALITIES

3.1 Definition of Software Functionality

Let us describe the software behavior and functionality execution in Microsoft Windows™
operating system (OS). This OS provides system recourses and services to processes through
executive objects that are maintained in the Kernel (Figure 4). In order to access a particular
resource or service a process creates a corresponding object such as a file, process, thread,
memory section, etc [11]. Every object has its own set of operations which are exported to user
mode processes through system services (systenf.chilfie user mode, such system calls can
be invoked directly or more conveniently through subsystem API functions.

‘ Process 1 ‘ ‘ Process 5 ‘ ‘ Process 12 ‘
‘ Process 3 ‘ ‘ Process 4 ‘ ‘ Process 5 ‘
Functlor::\l;gl Functionality 1 Functionality 2 Functionality 3 | e @ @

/ N

DLL nglsyllterr} API1 || API2 || API3 || API4 || API5 || API6 | @ @@ |APIN
s Arlleve User mode
System calls Kernel mode
Yyvy YYYy vvy Yy \ A LA Yyvy
System service executive, object manager
Operations
Y Y y Y Y Y Y Y Y Y Y
. . “Memory section” .
“File” objects ; “Process” objects
) objects | (N X)
handlet [handle2 [e o o handlet [handle2 [e o o handlet [handle2 [e o o

Figure 4. Functionality Implementation at the System Level

Processes invoke API functions or system calls in order to perform object operations
(manipulations) that complete some semantically distinct action(s), such as writing data to a file
or sending data to a specified IP address. Consequently, we define individual functionality as a
combination of those actions that achieve a certain high-level objective.

2 In Unix based systems such services are called system calls, while in Windows they are called executive system services.
Hereafter, we stick to system call term.

% Here, we use terms “Operation” and “Manipulation” interchangeably, because both of the terms are used extensively in the
literature.

9

It is important to understand the difference between a functionality and behavior. The
behavior of a process is what the process does at a given stage, while the functionality
determines the semantic goals of the process. In other words, behavior simply manifests the
realization of functionality. As a result the major limitation of the existing behavior-based
specifications is that they can fail when dealing with multiple realizations of the same
functionality. This motivated us to develop a novel specification free from this limitation.

3.2 Taxonomy of Malware Replication Functionalities

Today, major threats primarily stem from self-replicating malicious software such as
worms and file viruses. Self-replicating malware has two basic components, a payload and a
replication mechanism. The payload functionalities normally perform some malicious activity on
the victim host, while the replication mechanism ensures its most essential feature, the self-
replication. While any set of functionalities can constitute a payload, most attackers inherently
rely on existing self-replication engines.

Self-replicating malware can be divided into three major classes: network worms, e-mail
worms (trojans) and file viruses [12], [13]. While the replication mechanism is usually
determined by the type of malware, some malware instances utilize multiple replication
mechanisms; however, these malware does not introduce a conceptually new type of self-
replication.

Based on the attack vector, one can distinguish between the following replication
mechanisms:

. Binary self-replication (used by file viruses)

. Network based (server-side) self-replication (used by network worms)

. Client side self-replication (used by trojans and e-mail worms)

. These replication mechanisms are described in details in the following sections.

3.2.1 Binary Self-Replication

File virus replication mechanisms were analyzed in [3]. There are basic types of virus
replication techniques:

. Overwriting existing files (Overwriting viruses)

. Creating new look-alike files (Companion viruses)

. Attaching to existing files (Parasitic viruses)

. Injecting itself to empty spaces in PE (Cavity viruses)

An Overwriting virus replaces existing executable or its code section with the body of the
virus. A Companion virus renames (or moves) an existing executable and replaces the original
with a copy of itself. The virus then runs the victimized binary after executing its own body. A
Parasitic virus infects an existing executable by injecting its code into the executable body and
replacing code entry points. Cavity virus can inject itself to the PE header or unoccupied portions
of PE segments. Such a virus does not change the overall length of the host file.

The authors in [3] proposed tracking semantically primitive functional blocks such as file
search, memory mapping, file copy etc., and to then attribute their combinations to a so-called
Gene of Self Replication (GSR). However, a GSR is only defined for file viruses and it does not
allow for tracing alternative realizations. Moreover, due to the token dynamics, the CP-net [14]
recognition mechanism is more efficient than the one proposed in [3], i.e. state machines.

10

3.2.2 Network Based (Server-Side) Self-Replication

Servers connected to the Internet usually expose services that clients can interact with.
Moreover, most hosts in a local network provide several publically accessible services that
potentially could be compromised. This includes services such as RPC DKOM, Remote Desktop
etc. After the appearance of the first high-profile network worm in 2001 (Code-Red) that
exploited a vulnerability in a server service (MS IIS) server-side vulnerabilities became the most
convenient attack vectors for self-replicating malware such as network worms including Sasser,
Welchia, Blaster etc. [15].

To estimate tendency of network worm generation and propagation engine utilization in
modern worms, we analyzed 25 network worm families including: Sasser, Welchia, Blaster,
Slammer and Mytob. The propagation engine type for each worm was determined based on the
anti-virus databases as well as by reverse engineering and analyzing particular strains of the
worms. It was observed that more than 60% of the worms use the “bind shell” engine. “Reverse
shell” and “executable download and execute propagation” engines were shared by 30% of the
worms. Less than 10% of the worms utilize other types of the engines such as thread injection,
remote command execution, and others.

A typical “Bind shell” engine opens a network socket (port) and listens to the socket until
the intruder is connected to the port. Then the connection is accepted and the shell code starts a
command interpreter, for instance “cmd.exe”, such that inputs and outputs are tied to the socket.
These actions cause the “cmd.exe” process to listen for commands and execute them. The
previous three steps are performed by the exploited process as shell code. The final steps
thencomplete the propagation. It could be seen that the attacking host simply passes commands
to make the victim host download worm executable code and run it.

The “reverse shell” engine is very similar to the bind shell. However, in order to avoid a
firewall, the shell code automatically connects to the intruder, and instead of waiting for a
connection from the intruder. From this point on, the remaining steps are identical.

The “executable download and execute” engine perform the entire propagation in the shell
code without post-activity as is performed in the first two engines. In this case, it simply creates
a socket, establishes a connection to the intruder and retrieves a copy of the worm through the
established channel. The shell code usually uses high level protocols such as http to download
the worm, but sometimes it downloads a worm directly through the channel simply using
transmission control protocol (TCP).

The above considerations indicate that worms from the same family tend to share the same
propagation engine(s). The number and type of propagation engines is limited. In the first stage
of the propagation session, the worm shell code is executed by the compromised process. To
achieve the propagation effect, the shell code has to utilize system resources via various API
functions. As a result, each type of shell code has its own system call execution pattern.

A new trend in shell code development can be attributed to so-called client side (one way)
shell codes that provide access to the victim’s machine with a minimized system footprint. Such
shell codes include: find socket, reuse socket, DNS reverse tunnel, and HTTP reverse tunnel
[16].

Find and reuse socket shell codes do not create a new socket, they simply utilize the socket
of the existing connection through which the victim process was exploited. These shell codes are
implemented similarly to the standard Bind-Shell with the difference being that the socket is not
created, but instead the code enumerates handle values and checks the remote port through the
“GetPeerName” API. At the system call level the GetPeerName API is recognized as a command

11

to the AFD.sys driver with specific control code executed via the NTDevicelOControlFile
system call.

The DNS reverse tunnel shell code implements a hidden channel through which the worm
image is transmitted to the victim machine. In this case no dedicated connection is established,
and no file or object download is performed (e.g. via HTTP). The only activity the victim host
exposes is making DNS requests. These requests are similar to those that are frequently
performed by any host connected to the Internet. After the shell code makes a DNS request to a
malicious DNS server, the server sends a fake DNS response containing a small piece of worm'’s
binary code to the shell code. Then the shell code receives the worm image piece by piece,
decodes it, reconstructs the code and eventually executes it.

3.2.3 Client Side Self-Replication

Historically, the majority of network worms propagate through server-side vulnerabilities,
but over the recent years it has become increasingly difficult to use server-side attack vectors for
the following reasons:

. A move towards secure/hardened implementations of system and production software (less
vulnerabilities on servers)

. More frequent patch cycles for publicly accessible services

. Prevention of remote code execution in critical services using techniques such as DEP4
and ALSR5 [17]. Avoiding these techniques (e.g. return-oriented programming, heap
spray) significantly increases exploit and shell code development time [18]

. Utilization of network-based intrusion detection systems.

. Network fragmentation that builds a defense in depth (firewalls, external vs. internal
network vs. DMZ)

On the other hand, client-side attacks are quite a different story. These attacks exploit
vulnerabilities in client applications, such as web browsers and office application suites, that
process malicious data from servers. Today, client-side vulnerabilities are the most popular entry
points for attacks. This is supported by the fact that, the vast majority of vulnerabilities (more
than 93%) that have been exploited in recent years have been on the client-side [19]. These
vulnerabilities are located in various applications, such as web browsers, file readers, office
suites and ActiveX components. As a result, in recent years majority of the malware has been
propagating via the following web attack vectors [20]:

. Browser vulnerabilities

. Adobe Flash vulnerabilities

. ActiveX vulnerabilities

. Adobe Acrobat Reader vulnerabilities
. Apple QuickTime vulnerabilities

* DEP — Data Execution Prevention is Microsoft implantation of “Write xor Execute” feature that does not allow
for executing injected code (e.g. potentially stops buffer overflow exploit).

® ASLR — Address Space Layout Randomization. Process loader technique (feature) which arbitrary arranges the
positions of key data areas, usually including the base of the executable modules (dll entry points) , heap, and stack,
in a process's address space. ASLR prevents proper execution of an injected shell code. This technique was utilized
by Microsoft for system processes containing critical services. User applications (e.g. MS Internet browser) did not
use such technique due to compatibility reasons.

12

. 3rd-party plugins, widgets/gadgets, banner ads
. RealPlayer vulnerabilities

Since client-side attacks affect individual workstations that are located inside the perimeter
protected by network security appliances such as firewalls and NIDS, such an attack could be
viewed as an insider threat. Some attacks, such as drive-by install, represent normal behavior and
are initiated by an unwary user. After obtaining control over the exploited client application, the
attacking malware (shell-code) has enough system privileges to propagate itself.

A client-side exploitation can be different from the classical server-side exploitation. This
does not necessarily mean that remote code execution (e.g. buffer overflow), will occur, for
instance a JavaScript could “legitimately” use an ActiveX component to overwrite a file that is
scheduled to be executed by the OS itself. However, the functionality of the shell code chould be
identical — namely, the delivery of malware.

Due to the isolation of the workstation from the external network (i.e. firewalls, NIPS),
client-side shell code is destined to use normal connections, protocols and services that are
allowed by the network/host security policies. For instance, in the case of a web-browser attack
vector, the shell code can use the same http session, that is used for normal data exchange, to
transfer the malware binary. The client-side delivery mechanisms could be roughly classified as
follows:

. Drive-by install (social engineering attack)
. Drive-by write
. Drive-by download

Drive-by install is an example of a social-engineering attack requiring cooperation from an
unwary user [21]. Usually, a drive-by install is used for delivering special types of malware such
as spyware and adware. This malware can be distributed using various scenarios including:
convincing a user to download malware (e.g. fake flash player) from the malicious web-site (e.qg.
continual prompting); sending an email with malware attached; as a bundled and chained install
with some other third party software; and finally via peer-to-peer installation.

Generally, a drive-by install delivery is performed through a self-mailing engine that is
used by e-mail worms that may have Trojans in their payloads. In this case, a typical self-mailing
engine constitutes a particular functionality that performs at least two essential tasks:

. Load the malware image into memory
. Send the image as an attachment with the e-mail to the victim address

While image reading (loading) is a trivial task performed by a standard subsystem API,
sending an e-mail requires using a mail protocol such as: SMTP, ESMTP or SMPT-AUTH. The
e-mail consists of a header and a body that may contain an attachment formatted according to the
MIME standard. The message is sent to a mail relay server (or MTA) through SMTP. While
message formatting does not involve any system calls (only simple memory manipulations),
message sending utilizes network resources exported through an API (ws2_32.dll). While the
SMTP functionality performed by any Mail User Agent (e-mail client) or MTA (mail exchange
server) is absolutely legitimate, such software is not supposed to send its image as an attachment
with the message that is being sent.

The drive-by write delivery mechanism may use special vulnerabilities that allow for
saving a file (e.g. picture). For instance, a shell-code may directly overwrite or infect a system
file using JavaScript and vulnerable ActiveX exports. Another technique would be using

13

ActiveX components to modify the windows registry and execute malware. Clearly, such a
technique requires having a malware binary that itself could be partially contained in the exploit
data and then later be reconstructed by the shell code.

Drive-by download propagation implies transferring the malware image using various
available mechanisms. The shell code can use ActiveX (JavaScript) to download malware, or
retrieve an image via an http channel using a high level API suthteasetOpenURLand
InternetReadFile(wininet.dll). However, to physically transmit the file, all such high level
functions eventually utilize standard APl and system calls such as: socket, connect, send, recv,
(ws2_32.dIl).

Another technique for downloading the malware, under the conditions of strict
connectivity policy, is to utilize a so-called covert channel. A covert channel implies transferring
data using system mechanisms that are not blocked or checked by existing network security
appliances (e.g. firewalls, NIDS, web proxies) [16]. Such covert channels could be arranged by
using already existing connections, for instance, finding and reusing an opened socket (i.e.
socket reuse shellcode). Another way could be to use a DNS service to establish a so-called DNS
reverse tunnel that was described previously. Analogously, one could use an ICMP reverse
tunnel that works by sending an echo request packet to a remote malicious host. The remote host
replies with another ICMP packet that contains a small part of malware binary code. This way a
client can receive the entire malware image, piece by piece.

3.3 Taxonomy of Malware Payload Functionalities

Recent attacks on information systems demonstrate a steady increase in the quality and
sophistication of newly deployed malware. To be effective, host defense technologies such as an
intrusion defense/detection systems (IDSs) must cope with continuing advances in intrusive
technologies. The net result is an escalating "arms race" between malware and the IDSs.
Generally, malicious technology develops along two major directions: delivery mechanisms
(new attack vectors, propagation hiding etc.) and persistence mechanisms, such as self-
concealment or self-protection. While the delivery mechanism is a critical part of malware, self-
propagation based delivery can successfully be detected and prevented as described in papers [3],
[2]. A substantial part of today's malware does not self-propagate, instead it is delivered by
downloading and running camouflaged Trojans. These are typically initiated by the legitimate
behavior of an unwary user. Hence, detection of payload functionalities including the persistence
mechanism becomes extremely important.

After getting deployed on the victim host, malware runs its payload functionalities.
Usually its payload corresponds to the malware type, e.g. downloader, dropper or backdoor. In
our view, payload functionalities could be distinguished by their purpose according to the
following categories:

. Persistence mechanism (self-concealment, self-protection, etc.)

. Delivery and communication mechanism (commands, software download, etc.)
. Data collection / acquisition mechanism (key-logger, network sniffer, etc.)

. Offensive payload

. Other

Malware persistence mechanisms have received significant attention since they allow for
concealing and protecting deployed malware. Such technology represents a major challenge for

14

the IDS since it impedes the intrusion response. Table 1 presents the most popular persistence
mechanisms including User level [22] and Kernel level techniques [23].

The delivery and communication mechanism is usually used by network bot agents to relay
and execute control commands to a victim host. They are also used to fetch new updates for
deployed malware. Some standard mechanisms are presented in table 1.

The data acquisition mechanisms are typically used by spyware to mine the user’s sensitive
information (e.g. user credentials) or user/host behavioral statistics (web surfing). This
information is then transferred to the adversary via the communication mechanism.

The offensive payload is the most malicious payload, andcan cause significant damage
such as denial of network/server services, subversion of anti-malware services and windows
blocker (back-mail malware). Table 1 summarizes the most infamous offensive payloads.

Table 1. Payload Collection

Payload
category

Functionality

Description

Persistence

Mimicry
technique

Camouflage malware image:

e renaming its image

< appending its image to victim legitimate image
« external restructure of the image

Injection based

Inject malicious code into victim process:
e Thread injection

« Dllinjection

» Event spoofing

Multipartite
approach

Multipartite approach:
* Watchdog agents
 Inter-process distribution of the activity

Kernel level techniques:

mechanism ; - -
. » System call spoofing (SSDT substitution, malware resources hiding)
Root persistence . .)) .
« Non direct object manipulation (reparse point, shared memory)
« DKOM (process hiding, driver concealment)
Makes changes in the system to render security and administrative
services useless:
OS service » Resets system restore points
subversion « Disable various security services (security, update, error reporting,
firewalls and anti-viruses)
» Spoof DNS service to block security content
Registry setup Makes modifications in registry to arrange autorun of the malware [image
or compromise host security
Creates small binary which contains selected payloads and is not able to
Dropper .
proliferate.
Provides remote unauthorized access to the host. This makes the|host a
Delivery and Backdoor “zombie” machine. To avoid firewalls, such mechanism may use several
communication channels such as direct TCP, covered ICMP, covered DNS etc.
mechanism System call proxy] Executes system calls with attributes received from C&C center
Downloader Periodically downloads update malware
. Forms and massively sends e-mails potentially to contacts from |local
Spam engine
address book.
Credential stealer] Hidden module which monitors user’s activity to steal user credentjals

Data acquire Key-logger Intercepts and logs key strokes

mechanism Traffic sniffer Records packets, acquires network statistics
Web sniffer Records web surfing statistics

Offensive DoS Performs Denial of Service (including OS lock)

15

payload Auto-dialer Dials expensive phone calls causing financial loss for the victimized user

Windows blocker | Denies access to OS and data until a user pays a ransom

Added harmless (commercial) functionality in third party environment,
Adware ;
Other e.g. toolboxes in IE.
Rouge Fake anti-virus activity

3.4 Functionalities of Next Generation Malware

3.4.1 Targeted Attack

A new trend in malware development is highly professional and targeted attacks that
achieve very specific goals. One such example is the StuxNet worm that was the first publically
known computer worm that targeted a specific industrial systems/processes. The ultimate goal of
the worm is to alter/reprogram the control processes of a particular industrial plant. Exactly
which one was targeted still remains unknown, however a majority of the attacks took place in
Iran [24].

Due to the target specific nature of the worm, it employs several functionalities to conceal
its activity and to help it keep a low activity profile. Such functionalities include:

Controlled self-propagation that is achieved by limiting the number of generations of the
worm — this prevents burst-like epidemics, helping it keep a low profile.

The use of multiple attack vectors to self-propagate via USB removable drives and local
network. The range of 0-day vulnerabilities that the StuxNet exploits allowed it to proliferate
over various Windows™ OSs including Windows 2000, XP, Vista and Windows 7 [25].

The use of rootkits to hide the worm binaries. To remain stealthy the rootkits are digitally
signed with valid, but stolen certificates.

The use of centralized command and control (C&C) server and a decentralized peer-to-
peer (P2P) mechanism to allow infected machines to request updates.

The targeting nature of the worm is evident due to the fact that the worm uses various
techniques to precisely identify the system to be attacked. The target consists of specific Siemens
hardware and software, such as certain Programmable Logic Controllers (PLCs) (6ES7-315-2
and 6ES7-417), and the WinCC SCADA (Step7 Sematic Manger compbnent)

Another functionality is the modification of the WinCC SCADA communication library
(s7otbxdx.dll). This allows a targeted PLC to be infected by injecting worm’s blocks of STL
code and also hides the injected code from human operators.

The injected malicious STL code basically changes the PLC behavior. In particularly, the
malicious code checks for incoming data to PLC (could be sensor data) and may modify and
post-process the data [24]. Theoretically, this may alter feedback response of the control system
itself that may drive the plant to unstable phase and eventually physical damage.

It is interesting to note that a particular block of code - block DB8061 is automatically
generated during the infection phase and its contents depends on the data that is in targeted PLC
[24]. Analysis revealed that this particular block of data is not present in the StuxNet and is

® PLC is a stand-alone industrial class digital computer that controls equipment of a plant to maintain industrial
processes along with desired specifics. A Sematic PLC runs assembly like code that controls the plant. SCADA
system is PC software that allows a human operator to monitor, remotely control plant’s equipment as well as to
update the code on PLC.

16

generated when the PLC with a specific code is found. This way the malware authors are able to
hide certain behavioral details of the malicious PLC code.

In summary, a targeted attack such as the StuxNet worm not only has a Windows rootkit
functionality but also PLC rootkit functionality that is concealed from the human operator. This
example clearly indicates that there has been a fundamental shift in the security perimeter such
that it is no longer limited to personal computers and has clearly been expanded to include
industrial computing facilities.

3.4.2 Behavioral Metamorphism

Today binary morphism is a common feature of modern malware. Given the extensive
development of behavioral based IDS, it is expected that adversaries will employ behavioral
metamorphism as the next step in offensive information warfare.

Currently, behavioral metamorphism has not received much attention, and as such has not
been studied or defined in the literature, however, an approach for behavioral obfuscation is
given in [14]. This approach implies the use of several techniques to alter the realization of the
given functionality so that it would have a different footprint in the system call domain. These
techniques obfuscate behavior by using single process or multiple processes, i.e. a multipartite
approach.

From the perspective of the system call domain, this behavioral metamorphism could be
viewed as dynamic functionality obfuscation. The difference here would be that the obfuscation
is performed at moment of functionality implementation (compilation), and that the
metamorphism is performed dynamically during the execution stage.

As with intra-process obfuscation, behavioral metamorphism could be achieved by
randomly switching between alternative system mechanisms (e.g. network pipes, sockets, file
mapping etc.) to perform elementary operations such as data transfer or file data access.

Similar to multipartite obfuscation [14], another approach for behavioral metamorphism
would be dynamic scattering of malicious functionalities among different benign processes so
that none of the processes would have a consistent system call pattern.

3.5 Conclusions

This chapter described the basic functionalities of typical malware that could be attributed
to the essence of malicious activity. In particularly, we reviewed typical self-replication
mechanisms as well as several malicious payloads. Three types of the self-replication mechanism
were discussed including binary self-replication, server-side replication and client-side
replication. Additionally, malicious payloads were classified and analyzed including persistence
mechanisms, delivery and communication mechanisms, data acquisition mechanisms, offensive
payloads and others.

Understanding malicious functionality is critical for the successful detection of malware
activity. The remaining chapters describe novel technologies for malware detection based on
identification of malicious functionalities as anomalies and generic behavioral signatures.

17

4 SIGNATURE BASED BEHAVIORAL DETECTION

Computer networks, being a critical component of theional infrastructure, are
continuously subjected to information attacks. The most devastating attacks are perpetrated by
the deployment of self-replicating malicious software that propagates through different media
and uses multiple attack vectors. Recent information attacks demonstrate a steady increase in the
quality and sophistication of newly deployed malware. To avoid signature-based detection by
most commercial IDSs, modern malicious software employ polymorphism and sometimes even
metamorphism. Fortunately, IDSs that effectively utilize behavioral signatures to match malware
activity, rather than its binary structure are immune to binary morphism.

AD Specification ’

Generalizer Alarm

Expert
Generic AD

High level
CPN

l CPN Constructor

Functionality
Low level Recognizer
CPN W 1

Subsystem level

object manipulations

Object Operation 3
Recognizer Information Flow
g Tracer

I

System calls

Figure 5. Architecture of Proposed IDS

While behavior-based IDSs (BBIDSs) have obvious advantages, they can suffer from three
interrelated problems: poor signature expressiveness, behavioral obfuscation and run-time
signature matching inefficiency. Signature expressiveness determines the success of an IDS in
detecting new realizations of the same malware. Since most malware incidents are derivatives of
some original malware, a successful signature must capture invariant generic features of the
entire malware family. At the same time, the signature should be expressive enough to reflect
most of the possible malware realizations. Behavioral obfuscation is an emerging threat that,
given the extensive development of BBIDSSs, is expected to become a necessary and trivial
feature of future information attacks [26].

The behavior of a program can be viewed as a manifestation of the functionalities
implemented in the program. A particular functionality is malicious if it performs some specific
activities intended for adversarial purposes. Discovering a malicious functionality in any
software qualifies it as a malware. Hence, the detection of malicious functionalities becomes
crucial and sufficient for confident malware detection.

18

We developed a novel system call domain IDS that addresses existing and future
challenges to BBIDSs. In order to achieve higher signature expressiveness, we proposed to
specify the functionalities of interest, specifically malicious ones, by creating activity diagrams
(ADs) in terms of both standard system objects and abstract behavioral constructs named
functional objects. The utilization of functional objects and operations provides the necessary
level of generalization, yet it preserves discriminatory properties of the specification. As a result,
such an AD would incorporate multiple realizations of the specified functionality, hence
increasing the semantics and expressiveness of the signature.

We investigated possible approaches to behavioral obfuscation including inter-process
(multipartite) techniques. To mitigate obfuscation, we proposed an automatic generalization of
the AD specifications. We developed a set of generalization algorithms that automatically
augment signatures, making them resilient to several behavioral obfuscation techniques, such as
object relocation and multipartite activity.

Finally, we developed a procedure capable of automatic conversion of activity diagrams
into the system call domain using Colored Petri nets (CPNs). These are intended for run-time
recognition of the specified functionalities in the IDS. Our experiments showed that a CPN is
highly dependable and efficient for recognizing specified functionalities in the flow of system
calls with data.

The system architecture of the proposed IDS is shown in Figure 5. In the learning phase,
an expert designs ADs representing known malicious functionalities. The Specification
Generalizer module automatically augments the original ADs making them more generic and
resilient to obfuscations. The CPN Constructor generates a low-level and a high-level CPN by
processing the relevant ADs. The low-level CPN recognizes individual subsystem-level object
operations in the system call domain and aggregates the system call information for processing at
the higher level. The high-level CPN recognizes the specified functionalities in the object
operations domain. While simulating the CPN, The Recognizer accesses the information flow
tracer to feed data dependencies for particular transitions in the CPN.

As shown in Figure 5, at the detection phase the Object Operation Recognizer receives
system calls and utilizes the low-level CPN to identify subsystem object manipulations. The
Functionality Recognizer then utilizes the high-level CPN to assemble object operations into
particular functionalities.

The contributions of this research are as follows.

1. Increasing signature expressiveness and simplifying the process of signature specification:

. Formal functionality specifications using ADs are defined at the abstract object level. Each
specification allows for capturing multiple alternative realizations of a given functionality

. Separation of the specification domain (abstract OS objects) from the detection domain
(system calls). The abstract specification domain allows an expert to concentrate on
conceptual realizations of a functionality omitting certain implementation details. The
detection domain allows for efficient functionality detection in the system call flow by
executing the respective CPN that was obtained from the specification.

. Automation of the IDS signature generation process. It includes computer aided AD
specification design, automatic AD generalization, AD visualization and finally automatic
translation of the AD to a CPN that is used as a signature in the intrusion detector
(Functionality Recognizer)

no

Mitigation of possible behavioral obfuscations:

19

Analysis and classification of possible behavioral obfuscation techniques
Automatic generalization of functionality specifications thus making them invulnerable to
behavioral obfuscation

w

Achieving high efficiency of signature matching:

. Automatic translation of an AD specification into a CPN that recognizes the functionality
in the system call domain

. Efficient CPN simulator for recognizing specified functionalities in the flow of system
calls and flow of utilized data/information (available at http://apimon.codeplex.com as an
open source project).

. Prototype of information flow tracing engine (implemented in IDA Debug)

To demonstrate our approach we implemented it in a prototype IDS and tested it by
detecting several malicious functionalities that are employed by network worms and bots,
including self-replication engines and various malicious payloads.

4.1 State of the Art in Signature Based Behavior Detection

Current commercial intrusion detection systems such as antivirus packages primarily use a
signature based approach for efficiency reasons. However, recent information attacks
demonstrate steady increase in the quality and sophistication of newly deployed malware. To
avoid detection by most commercial antiviruses, modern malicious software is at least
polymorphic and sometimes even metamorphic. This results in an exponential increase in the
number of signatures that need to be maintained by modern anti-viruses software (close to 5
million as of today, Kaspersky). Apparently, this reality drives traditional antiviruses to a dead
end. It is interesting, however, to note that the number of distinctive malicious functionalities
(behaviors) has not changed. This is due to the fact that malware continues to use the same
functionalities to achieve the same goals. Hence, it is reasonable to detect functionalities rather
than binary patterns. Moreover, dynamic IDS utilizing behavioral signatures to match malware
activity cannot detect binary morphism.

The success of a dynamic, behavioral based IDS is determined by two aspects: the
expressiveness of the signature specification language and the efficiency of the recognition
mechanism. Moreover, usability of an IDS depends on the clarity and degree of abstractness of
the specification language. Below we survey the existing behavioral specification languages and
discuss the advantages of our approach. Then we show how our system is different and better
than similar, existing system call domain IDSs.

4.1.1 State-Transition and CPN Specifications

Kumar andSpafford developed the IDIOT system thailizes a variant of a CPN, termed
Colored Petri Automation (CPA), to detect UNIX system misug@s Compared to a CPN,
CPA lacks concurrency, local condition variables and arc generative expressions. While
concurrency may be not critical for detection, condition variables and arc generative expressions
are vital for structural simplicity of the CPN recognizing our AD specifications. Moreover, our
ADtoCPN procedure represents AD variables in CPN arc expressions.

Helmer et al. utilized a hierarchical CPN and Software Fault Trees (SFT) as behavioral
specification for a distributed IDS [28]. First, the CPN structure is obtained from SFT
specifications. Next, an expert defines CPN semantics (arc and guard expressions) that are

20

responsible for processing monitored system/network events. The spirit of their approach is close
to ours in that it implies a separation of the specification and execution domains. However, the
authors in [28] did not address generalization and behavioral obfuscation issues, which are our
main contributions.

Ho et al. proposed a Partial Order Sate Transition Analysis Technique (POSTAT) to
specify both local and distributed attack scenarios that are matched by CPNs [29]. The authors
also give insight for creating a normalcy specification through POSTAT.

Eckmann et al. proposed the STATL language for specifying misuse signatures in the
domain of interest (host or network) [30]. In STATL transitions represent executed activity and
states represent the status of particular system objects. While STATL allows for specifying quite
generic activity, the specifications must also reflect execution semantics making the signature
description cluttered and complex. In contrast, we do not specify execution semantics in our AD
specification, since the AD is ultimately translated into the CPN that possesses the execution
semantics.

The problem of most state transition (ST) techniques is that the signature serves as a
specification and a recognition mechanism at the same time. Hence, ST signatures are specified
in the corresponding execution domain, e.g. system calls, network low level activity, shell
commands, etc. For instance, for host based detection, an expert has to specify how transitions
should process system calls invoked by malicious activity. Consequently, the specification would
be overloaded with implementation details making it hard to create and verify. In contrast, we
specification domain from the execution/detection domain. We specify functionalities at a high
level (object operations) and we detect specified functionality at a low level (system calls). As a
result, our specifications are quite readable and succinct, reflecting only critical malicious
activity at a high/abstract level, while omitting low level implementation details. In particular, in
our system an expert does not have to bother about how a CPN processes monitored system calls
to recognize the specified behavior, because a CPN’s structure and semantics are automatically
built from a rather generic AD specification that could be defined in terms of abstract functional
objects.

In summary, our approach differs from the above methods in the following aspects:

First, the specifications in the above papers do not formalize behavior in the domain of our
interest, i.e. system object manipulations; therefore such specifications are not directly suitable
for automatic processing. In contrast, our AD formalism is defined in the object operation
domain, thus allowing for automatic processing and generalization.

Second, the authors utilize a CPN as a behavioral specification language, however we
utilize a CPN solely as a recognition mechanism. In [2] we discovered that functionality
specification through a CPN in the system call domain is tedious and hardly feasible for complex
cases, hence, we developed a simple and generic AD formalism for a functionality specification.
Afterwards, our ADtoCPN procedure translates the generic AD to the system call domain with a
CPN serving as a recognition model.

Finally, our AD based specification is generic due to the use of functional blocks that
abstract certain system implementation details yet provides enough agility for fine tuning of the
specifications.

4.1.2 Declarative and Algebraic Specification Languages

Examples of declarative languages are LAMBDA [31], ADelLe [32] and Sutekh [33].
Specifications based on such languages define patterns of actions involved in an attack, such as
the system pre and post conditions defined as a set of high level predicates and then mapping

21

between the actions and observable system events manifested by the attack actions. While such
languages can express fairly generic attack scenarios, the complex scenario descriptions would
require specifying many abstract predicates that would have to be identified by the detection
mechanism. Runtime detection of such predicates may impose high overhead, and post alarm
verification of the predicates could be unfeasible due to changes in the system state [31]. In
contrast, we do not specify pre-conditions, because validity of the system patterns is verified by
CPN at runtime by examining system call outputs.

The aforementioned declarative languages allow for relating attacks to one another by
matching the post-condition of an attack with the pre-condition of another one. Our approach
also allows for including one AD as a functional object to the specified AD. At the CPN level
this would be realized as hierarchal CPNs.

The language of the CARDS [34] system introduces an abstract system view that allows
distributed hierarchical attack specifications to be defined in the domain of abstract events. The
detection language SHEDEL [35] takes advantage of both algebraic and state-transition
approaches. As with [34], the SHEDEL specifications are explicitly defined at the abstract event
level.

Declarative languages are advantageous over state-transition specifications in their ability
to describe signatures at the pure abstract level, omitting operational details related to the attack
execution domain. To overcome this inherent limitation of ST languages, we proposed so-called
functional objects that serve as a system abstract level on which AD signatures could be
specified.

Unlike state-transition specifications, most declarative and algebraic specifications do not
posses execution semantics. For the system call domain, IDSs based on declarative specifications
require a recognition mechanism that can explicitly match system calls with signatures. As the
result an IDS’s scalability ultimately depends on the efficiency of the recognition/matching
algorithm. Usually runtime pattern matching is performed through some sort of state machine or
rule based detector as in [33].

However, ST models are more efficient for handling multiple instances of the same
pattern. If a pattern is observed more than once and each instance is yet incomplete, a state
machine has to accommodate extra states for each instance of the pattern to trace them in
parallel. In contrast, a ST model represents an executed event pattern as one token residing in the
corresponding place that allows for processing of multiple pattern instances with low overhead.
Moreover, in the CPN, the necessary attributes propagate as token fields that allow for relating
system calls by process and thread ID. This makes it possible to recognize an inter-process
activity. Consequently, ST signatures are executable in the event domain. With ST the detection
becomes the execution, and it should be faster than signature-event matching. Based on the
above arguments, we believe that state-transition specifications are more preferable to
declarative languages with respect to scalability and efficiency.

Our AD specification can be directly converted to a recognition mechanism configuration,
i.e. high level CPN. As a result, in our case, the recognition mechanism (CPN) incorporates the
signature in its execution semantics ensuring low detection overhead. In other words, the
detection becomes the direct execution of a CPN, hence no cross-matching for signature vs.
event has to be performed

22

4.1.3 System Call Domain Specifications

The system calls present a perfect domain for behavioral based misuse detection because
system calls are executed in a safe Kernel mode and monitoring them is much more resilient
against user mode malware.

Publications [36], [37], [38], and [39] propose tracing sequences of system calls to reveal
misuse in OS object manipulations that are indicative of malicious activity. These methods
discard the semantic relationships between object manipulations. A few attempts to deduce this
semantic information on the level of primitive functional blocks [36], [37] failed to define a
complete picture of the process behavior. PC Tools ThreatFire antivirus [38] allows the user to
specify rules that describe only individual operations on objects such as process, file, etc.,
facilitating the detection of primitive and obvious misuse such as system file access, or starting a
particular executive object. In contrast, our approach allows for the recognition of complex
functionalities (such as self-mailing) that involve interrelated sessions of object operations.

Publications such as [40], [41], [3], and [42] target dynamic behavior analysis. The
methodology presented in [42] describes the detection of virus activity through tracing system
call events with an emphasis on the order of events without functional context. In contrast, our
approach allows for specifying both patterns of interrelated manipulations and primitive
functionalities. The Dynamic Code Analyzer (DCA) approach allows for constructing a so called
“gene of self-replication” from primitive object operations and activity blocks, but it lacks an
efficient recognition mechanism [3].

Authors in [41] utilize behavior graphs that is in fact an extension of the malware
specification graphs presented in [40]. Our work is different/advantageous over [40] and [41].
First, in [40], specification matching is performed through static analysis and implies mapping to
some sort of a call flow graph of the tested executables. Obviously, such behavior graphs do not
address execution semantics, and could not be utilized as a run-time recognition mechanism. In
order to recognize the specified behavior in [41], the authors mention the use of a behavior
matching algorithm, unfortunately they do not formalize the algorithm itself. In particular, it is
unclear how they might handle multiple system call chains. In contrast, as mentioned above, a
CPN effectively handles multiple chains due to the use of token dynamics. Second, the
specification in [41] can define alternative realizations, but their behavior graphs are constrained
to a single process. In contrast, our AD allows for correlating operations invoked by different
processes, thus we can specify malicious inter-process and inter-host activity. Finally, the
authors in [41] did not analyze and address possible behavioral obfuscations. At the same time
they did not propose a solid behavior formalism, hence it not feasible to automatically process a
specification. In [41] an expert is responsible for generalization of the specifications, for
instance, to avoid handle duplication that could significantly complicate the design process. In
contrast, we formalized functionality in the object operation domain. This formalization allows
for the automatic processing of AD specifications to address possible behavioral obfuscations.
We understand that we addressed a rather limited set of obfuscations, but given the flexibility
and fidelity of our functionality formalization, developing new generalization algorithms for
anti-obfuscation should be feasible for an expert.

23

4.2 Functionality Definition and Specification

4.2.1 Formalization of the Specification

Before formalizing functionality specification, let us inspect functionality from the OS
perspective as presented below. The MS Windows OS provides system recourses and services to
processes through executive objects maintained in the Windows Kernel. In order to access a
particular resource or service, a process creates a corresponding object such as a file, process,
thread, memory section, etc [11]. Every object has its own set of operations which are exported
to the user mode processes through system services (system calls). In the user mode, such system
calls are invoked directly or more conveniently through subsystem API functions.

Processes invoke APl functions or system calls to perform object operations
(manipulations) that complete some semantically distinct actions, such as writing data to a file
or sending data to a specified IP address. Consequently, we define individual functionality as a
combination of actions that achieve a certain high-level objective. It is important to understand
the difference between a functionality and behavior. The behavior of a process is what the
process does at the particular stage, while the functionality determines semantic goals of the
process. In other words, behavior simply manifests the realization of functionality. As a result,
the major limitation of the existing behavior-based specifications is that they fail when dealing
with multiple realizations of the same functionality. This motivated us to develop a novel
specification that is free from this shortcoming.

Note that processes may utilize both user level objects exported by the windows
environment subsystem, such as Socket, Memory Mapping etc., and kernel level objects
exported by the object manager, such as File, Named Pipe, Memory Section, etc. For user level
objects, we consider subsystem level operations exported by API functions of subsystem
libraries (such as kernel32.dll, ws2_32.dll). However, each subsystem level object is based on a
kernel level executive object.

Table 2 features a simple functionality, “Remote Shell”. This functionality creates a
backdoor allowing an attacker to remotely execute system commands. Remote Shell has at least
two possible realizations: Bind Shell and Reverse Shell. Both realizations create the “cmd.exe”
process with input and output buffersS¢dInput sStdOutpytbeing set to a connected port. The
difference between these realizations is that the Bind Shell accepts a connection via named pipes
and Reverse Shell connects to the attacker via sockets. Both realizations invoke the
CreateProces#&\PI with specific flags that allow for using socket/pipe handle as an input/output.
Ultimately, this makes the command interpreter listen to incoming commands and execute them.

" Here, we use terms “Operation” and “Manipulation” interchangeably, because both of the terms are used extensively in the
literature.

24

Table 2. “Remote Shell” Realization

Bind Shell realization

Reverse shell realization

1. h_I n=Creat eNamedPi pe(
dwOpenMode PIPE_ACCESS_INBOUND
SecurityAttributes.blnheritHandtdRUE);
2. h_Qut =Cr eat eNanmedPi pe(
dwOpenMode PIPE_ACCESS_OUTBOUND
SecurityAttributes.binheritHandtd RUE);

Connect NanedPi pe(h_I n);

Connect NanedPi pe(h_Qut);

Cr eat ePr ocess(“cmd.exe”,
bInheritHandless TRUE

STARTUPINFQIwFlags= STARTF_USESTDHAND,

aprw

1. s=socket ();
2. connect (s,
sockaddr . s_addr =Attacker_IP

sockaddr. si n_port =Attecker_port);
3. Creat eProcess(“cmd.exe”,
binheritHandless TRUE

STARTUPINFQIwFlags= STARTF_USESTDHAND
STARTUPINFOhStdInput s,
STARTUPINFChStdOutput s);
STARTUPINFOhStdOutput hSock);

STARTUPINFhStdinput h_In,
STARTUPINFhStdOutput h_Out);

Consider requirements for specifying functionality. Based on the above example, [40], and

[41] we formulate the following requirements for the functional specifications:

1. The gpecification must define the control flow for object operations. It must support

simplify

conditional branching and concurrent executid@@onditional branching allows for
specifying alternative realizations that may utilize different objects and operations;
however, they achieve the same goal determining the functionality. For instance, two
realizations in Table 2 utilize two different objects: “Named Pipe” and “Socket”.
Concurrent executioallows for specifying independent object manipulation sessions, that
could be executed in any order. However, the sequence of dependent operations must
remain intact within the session. For instance in the Bind Shell realization (Table 2, left
side), there are two independent operation sessions: create inbound pipe and get it
connected (APIs 1 and 3) and create outbound pipe and get it connected (APIs 2 and 4).
Since these two sessions are independent, the API functions (1, 2 and 3, 4) could be
invoked in any order, as long as API 3 follows API 1 and API 4 follows API 2.

The specification must define data/information flow among object operations. This
requirement allows for specifying how output attributes of operations become the inputs of
consequent manipulations. An attribute data flow determines the discriminatory power of
the specification. For instance, with “Remote Shell” functionality, we have to show that
“Process” object 5 created with STARTUPINFQhStdInput and
STARTUPINFhStdOutPuti.e. attributes set to the socket handle. We should point out that
data may be passed by value (data flow) or by information (information flow) [43].
Information flow between source and destination attributes indicates that the value of the
destination is a transformation of the value of the source. In addition to the above two
requirements, we introduce a third one that overcomes certain limitations in [41] that are
related to multi-processes activity.

The specification shall not be constrained to the context of one process. This allows for
specifying and relating operations of different processes. In fact, this allows for specifying
inter-process functionalities.

The specification must offer enough expressive power and convenient graphical notation to
its design. Many specifications provide graphical notations such as state

25

diagrams/machines, simple flowcharts, and workflow diagrams. However, a state machine is a
uniprocess model that does not meet Requirement 3 and cannot directly express data flows as per
Requirement 2. Flowcharts do not support concurrent execution and do not meet Requirement 1.
However, a workflow diagram such as a UML Activity Diagram (AD) can generally meet the
above requirements. Consider the formalization of an AD in terms of an OS object operation for
the purpose of functionality representation.

A basic UML AD is a semantically weighted directed graph:

G= (Nodes, Arcs, Guards) 1)
where Nodes =State Bseudo

The setState contains state nodes that represent executed activities; it also contains
Initial and Final nodes that represent the beginning and end of the process. TPsegdbd
comprises pseudo state nodes that control the execution flow. Pseudo state nodes include
decision/merge (for conditional flow branching), and fork/join (for concurrent flow execution).
The setGuards contains guard expressions (for conditional branching) that represent the
semantic weight of the corresponding edges.

Consider the “Remote Shell” functionality in Table 2. Figure 6 depicts an AD of the
functionality in the graphical (left side) and analytical (right side) forms. According to UML 2.x
standards, the graphical notation displays decision/merge nodes (a, d) as diamonds, and fork/join
nodes (b, c) as bars. We also assigned a sequential index to each node for explanatory purposes.

!

a

CSLket b

=]

. F=(Nodes,Arcs,Assign,Vars)

.Nodes$ ¥ Stajé] Pseutlo ({initial,final}
. State=Instancés Manipulations

. Arcs=ControlFlow] HandleFlow

Vars{V 1y }?
. Pseudo £ nodea,nodeb, nodec,ndded

Named Pipe Named Pi (Sockeim)
dwOpenMode=PIPE_ACCES | |dwOpenMode=PIPE_ACCE
S_INBOUND SS_OUTBOUND . (Open ModePIPE_ACCESS_INBOUND)
SecurityAttributes.binheritHan | | SecurityAttributes.binheritHan Named Plp (

o 0O~ W N PP

le=TRUE le=TRUE SecurityAttributes.blnheritHandl§RUE)

2
(connect V1 Handle V2 Handle

7. Instances

) OpenModePIPE_ACCESS_OUTBOUN
4 6 NamedPip)))
(Connect Pipe ‘ F Connect Pipe ‘ (SecurityAttributes.binheritHandlERUE)

l] . ..(STARTUPINFO.hStdinput ¥
Process
(STARTUPINFO.hStdOutput Y|

(Connecty),
(ConnectPiped), (ConnectPigﬁ)}
9. HandIeFIow{(L 2(3 B3 W.s)}5
(intitial - a),(a-1),(a- b
10. ContolFlow=< (b ~ 3) (b~ 5 (4~ ¢) (6~ c)
(2-d),(c- d),(d- 9 (9~ final)
V1= Handle a=(3 - 4)
11. Assign{ § =1 \2= Handle &(5-)
V1=V2=Handlg a=(2- 9

Vi=V2=Handle ¢

8. Manipulation;{

7~ Process
pszimageName="cmd.exe”
binheritHandles = TRUE

STARTUPINFO.dwFlags =

STARTF_USESTDHANDLES
STARTUPINFO.hStdinput= V1
STARTUPINFO.hStdOutput=\V2

Figure 6. Activity Diagram of the “Remote Shell” Functionality

26

The AD contains seven state nodes and four pseudo-state nodes. The state node set
includes four created object instances (Nodes 1, 3, 5, 7) and three operations (Nodes 2, 4, 6) on
these objects. The pseudo-state nodes determine control flow of the functionality. The decision
node “a” starts two alternative realizations of the functionality. The left branch (Nodes 1-2)
represents the first step of the Reverse Shell realization, while the right branch (Nodes 3-6)
represents the first step of the Bind Shell realization. Node 7 is the common step for both
realizations. Note that the first step of the Bind Shell realization (Nodes 3-6) has two
independent sessions (Nodes 3-4 and 5-6).

This graphical notation is convenient for an expert designing a specification. However, the
analytical representation is crucial for automatic processing of the specification. The analytical
form of “Remote Shell” functionality shown in Figure 6 (right side) is very consistent with the
UML AD formalism (1). The only modification we made was the inclusion of \flaes
component that represents a set of local variables. Next we provide a generic explanation of all
of the components of our formalism (the detailed formalism of the AD specification is given in
Appendix A).

The functionality specification is defined as an AD tuple:

F=(Nodes,Arcs,Assign,Vay @
where

Nodes is a multi-set defined in line 2 (Figure 2). It consistsStdte andPseudo

nodes. As defined in line 3, there are two types of State ndugsnces and
Manipulations . Eachinstancenode represents an object created and operated on in
the context of the functionality, and its attributes. Line 7 shows the set of Instance nodes
for the “Remote Shell” functionality. The set includes four nodes corresponding to the
following objects: socket (Node 1), two named pipes (Nodes 3 and 5) and the process
(Node 7)® Line 7 indicates that each object is defined with the attributes used in the
corresponding API that is creating the object. Eltanipulation node represents an
object manipulation with its appropriate parameters. Line 8 shows the Manipulations set
for “Remote Shell”. This set includes three manipulations: a connect socket (Node 2),
and two connect named pipes (Nodes 4 and 6).

Ar cs is a set of directed arcs connecting the AD nodes. As defined in line 4, the arcs
could be either of two types: Handle flow and Control flow. Handle flow arcs
correspond to the execution flow with handle inheritance. A handle arc indicates that
the destination operation (node) utilizes the same object handle as a source operation
and is executed right after the source. In other words, the handle arc passes the handle
of the source node to the destination node. For instance in Figure 6, the arc between
Nodes 1 and 2 is a handle arc. It passes the handle of the socket created in Node 1 to the
connect operation in Node 2 (this indicates that the socket from Node 1 is operated on at
Node 2). To distinguish the handle arcs from control arcs, we display the handle arcs
beginning with rectangle.

Control Flow arcs define the control flow without handle inheritance. An arc from this
set indicates the execution order and does not imply any data binding (via handle or
attribute). For instance, the arc between Node “d” and Node 7 is a control arc that does
not transfer any handles, simply showing that Node 7 should be executed right after the

8 In the brackets, we show the node index as presented in the graphical form.

27

two sessions (Nodes 1-2 and Nodes 3-6). In order to transfer data between nodes,
variables are used. For instance, pipes or socket handles are transferred to Node 7
through variables V1, V2.

Assi gn is a function that binds variable assignment expressions to corresponding
arcs. Line 11 shows the definition of such a function. The function indicates that
variable V1 is assigned with a handle that was utilized in Node 2 or Node 3.

Vars is a set of local variables that are used to define data flow. Utilization of local
variables with an assignment expression allows for specifying a data flow between
object operations (the second specification requirement). To specify an information
flow, an expert should use transformation notafiQnas depicted in Appendix A. Note

that it is possible to define informational dependency explicitly as well as implicitly.
Explicit information flow implies specifying a formal mapping between source and
destination. Implicit flow does not specify any mapping and simply states that the
destination value should at least partially depend on the source value.

To address the third specification requirement estabenode is assigned a unique index
of the process that performs the manipulation represented by the node. Note that in Figure 6,
“Remote Shell” is defined as an intra-process functionality, hence, all the operations are invoked
by the same process, and evBtgtenode of the AD has the same process index which is 1 (see
line 2).

From Figure 6, one can see that the graphical representation of an AD is much more
revealing than the analytical representation; however, both representations are formally identical.
In the rest of the paper, the graphical representation will be used for explanatory purposes, while
the analytical representation will be used in specification processing algorithms.

4.2.2 Specification Abstraction

The detection success of our system highly depends on how comprehensive the
specification is. If an expert misses a functionality realization, the system will be prone to false
negatives and miss an attack vector. Each specification must be as generic as possible. It should
abstract certain implementation details enabling experts to concentrate only on conceptual
realizations. This is accomplished by the introduction of so-called functional objects that
represent some complex but rather standard OS functionalities/mechanisms such as Inter-Process
Communication (IPC), File Download, etc. Note: a functional object abstracts several alternative
realizations of the particular OS functionality by encapsulating the necessary Windows objects
utilized in these realizations. Each functional object has a set of operations representing certain
high-level activities. When specifying an AD, experts may create and manipulate functional
objects like ordinary Windows objects. Table 3 shows the set of functional objects facilitating
data transfer. This set is just an example and is far from being complete, however, it
demonstrates the expressiveness of our approach, namely the ability of operating on abstract
objects by other objects. For brevity, we discuss only a few functional objects.

Table 3. Functional Objects for Data Transfer

Functional object name Based on objects | Operations | Attributes (input => output)
GenericFile File, Create FileName
File Mapping Read BufferLength => Buffer
Write FileName, Buffer
RemotelPC Socket, Pipe Create EndPoint (server, client), ID => Type, Handle

28

MailSlot Wait Type, Handle
Recv Type, Handle => Buffer
Send Buffer, Type, Handle => Buffer
LocallPC GereicFile, Create EndPoint (server, client), ID => Type
FileMapping Recv =>Buffer
RemotelPC Send Buffer
o Create FileName, RemoteHost => Type, FileHandle, IPCHandle
FileTransfer GenericFile Send (Type, FieHandle, IPCHandle)
RemotelPC ’ ’
Recv (Type, FileHandle, IPCHandle)

Object “GenericFile” abstracts file access operations; it encapsulates both the “file” object
and “file mapping” object. Object “RemotelPC” represents an IPC resource for inter-host data
transfer. It abstracts three alternative IPC mechanisms: socket, named pipe and mailslot. The
“RemotelPC” object exports the following operatio@seate , Wait , Recv andSend. The
ADs for these operations are shown in Appendix B in figures B-1, B-2, B-3 and B-4. Some
operations have input and output attributes. For instance, the operation “RemotelPC Create”
requires two input attributes: Endpoint class (either server or client), and EndPoint ID (host IP
and Port for the socket and a name for the pipe/mailslot). The operation returns two outputs:
EndPoint type (socket, pipe or mailsot) and a handle value of the corresponding object. The
operationWait(h) waits for an incoming connection to the newly created IPC endpoint with
handle h

Note that from the expert's perspective, the utilization of such functional objects is
transparent. For instance, when using RemoteRPC in a specification, the expert should not make
any assumptions on how a malware will perform IPC, through a socket, pipe or mailslot. Such a
transparency is best exemplified by FileTransfer operations. Table 2 indicates that FileTransfer
operations are based on sheer functional objects such as GenericFile and RemotelPC. This
demonstrates the generalization power of the proposed specification formalism. Armed with such
functional objects, an expert can build quite generic specifications yet preserve discriminatory
properties that would leave little room for detection evasion.

4.3 Behavioral Obfuscation

The discriminatory power of a behavior signature (functionality specification) defined by
an expert could be quite subjective and may exclude some of the realizations of the functionality.
In addition, an attacker may perform some sort of behavioral obfuscation to evade detection. To
address this issue, we developed a set of algorithms that automatically generalize (augment) the
specification of the functionality. In the rest of the section, we will discuss possible behavioral
obfuscations then we introduce the generalization algorithm and show how it addresses various
obfuscation techniques.

4.3.1 Behavior Obfuscation Techniques

By utilizing functional objects, experts may specify most of the realizations of the
functionality. Then it would be difficult for an attacker to discover yet another conceptually
different realization utilizing different Windows objects. However, to evade detection, an
attacker does not have to implement a completely new realization. He may simply obfuscate a
known realization in such a way that it would break the specification. We distinguish inter-

29

process and intra-process approaches to obfuscate a realization without affecting the
functionality. Inter-process obfuscations utilize multiple interrelated processes that, at high level,
jointly perform a particular malicious functionality. Intra-process obfuscation locally alters a
realization of the functionality while preserving its behavioral semantics.

First, consider possible inter-process approaches to behavioral obfuscation.

1. Utilization of legitimate third party utilities to perform a required activity. A malicious
process may run third party utilities to execute some important tasks that may be a part of
the functionality. In this way, the process executes the functionality without performing
some key object manipulations involved in the task. For instance, a file virus usually
searches for executables using the “FindFirstFile” and “FindNextFile” API. Instead, the
virus may utilize the system command interpreter (e.g. “cmd.exe”) to retrieve a list of
executable files in a folder and then access the files one by one.

2. Distribution of the functionality among several processes a.k.a. multipartite approach.
A multipartite malware consist of several agents that perform coordinated activity to achieve
a common goal. Such malware can distribute a malicious functionality among several
processes by injecting its code into active benign processes or by creating new ones. Then
the combined activity of these processes will perform an inter-process malicious
functionality. A real life example of such a malware is a KeyLogger which is described in
the next section. Another example is a File Virus that consists of two processes. The first
process opens an executable file and passes the file handle to the second process. Then the
second process attaches the code from the first process to the opened victim file. Neither
process performs a typical malicious functionality individually: the second process does not
open the victim file and does not inject its code, while the first process is replicated into the
victim file without performing write or self-access operations.

Now let us consider intra-process obfuscation approaches.

1. Object relocation and duplication. Since a functionality may be constrained by a particular
object name (e.g. file name), an attacker may change the name of the object before
manipulating it. For instance, an attacker can copy, rename or move a file before
manipulating it. In addition, a malware may duplicate an object handle in the middle of the
manipulation sequence to break system call binding. Additionally, an attacker may access
objects through symbolic links instead of handles.

2. Non-direct object manipulation. This is achieved by specific, low-level system tricks such
as utilization of non-trivial OS resources that allow for accessing objects either in a non-
trivial way or through a “middleman” object. For instance, an attacker can create reparse
points or can access files by their streams. He may also add an alternative path to a target
file through relinking system calls. Such activities are performed only through Kernel
objects using system calls.

4.4 Specification Generalization, Anti-Obfuscation

In the system architecture presented in Figure 5, the “Specification Generalizer” module
addresses the above obfuscation techniques. Effectively, this module attempts to fill the expert’s
experience/attention gap, thus alleviating limitations related to the human factor. The module
applies a set of generalization algorithms that automatically augment a given AD to make it less
prone to obfuscations. Herein, we propose the following generalization algorithms:

30

TraceFiles — Augments the given AD with functionalities tracing the renaming and
relocation of all files involved in the specification. This algorithm addresses the third obfuscation
technique.

TraceHandles — Augments the given AD with functionalities that trace object handle
propagation among processes, which requires tracking handle duplication and the IPC used for
handle transfer. This addresses the first three obfuscation techniques.

TraceProcesses — Augments the given AD with functionalities that track process
generation, remote code injection and inter-process coordination. This involves detecting several
realizations of code injection including remote thread based and remote hook based injection.
The upgraded AD would be able to relate object manipulations performed by multiple processes.
This algorithm mitigates the first and the second obfuscation techniques.

To address the forth obfuscation approach, one does not need any post-processing of the
AD in the generalization stage. Instead, we can simply extend functional objects with the
necessary semantics that would trace low-level objects involved in the obfuscation. This results
in the obfuscation being resolved at the stage of specification, rather than automatic post-
generalization. In particular, we add reparse points and file streams to the “GenericFile”
functional object.

While augmenting an AD, each of the generalization algorithms incorporates special
functionalities, termed generalization functionalities that trace certain activity involved in a
particular obfuscation. Table 4 describes the generalization functionalities, whose ADs are given
in Appendix C. Table 4. lists some functionalities that maintain certain global variables that
qgualify the traced activities, e.g. generated processes, duplicated files or established IPC
channels.

We describe each of the generalization algorithms based on their pseudo-code, where we
utilize severabprimitive functions defined in Appendix D and generalization functionalities as
defined in table 4.

Table 4. Generalization Functionalities

Functionality Updated Description
variable
FileRelocation FList Accepts a file name as input and updates a FList variable which a digtionary

indexed by file names. Each element of FList is a list containing names of
duplicates of the input file indexing the element. Such duplicates could be
derived by copying, moving or renaming of the original input file or any of its

duplicates.
ProcessGeneration PList These two functionalities trace process generation and inter-process code
Codelnjection injection and constantly update the global variable PList. PList is a list containing

the PID of the descendant (created or being injected) processes (up to a given
generation limit) that originated from the initial process that starts an AD.
HandleDuplication| DupP | Traces handle duplication and constantly updates two global variables: DupP and
DupH DupH.
DupP is a dictionary indexed with the value of the initial handle produced at

object creation. Each element of the dictionary is a list containing PIDs of the

processes possessing duplicate handles derived from the handle indexjng the
element.
DupH is a two dimensional dictionary indexed by value of the original ha|ndle

31

and PID. Each element of the dictionary is a list of handles possessed by indexing
PID and derived from the indexing handle. For instance,
DupH[H1][P1]={H2,H3} means that handles H2, and H3 were derived from the
original handle H1 and are possessed by the P1 process.
LocallPC IPC_P | Traces Local IPC establishment and constantly updates two global vatiables
Establishment IPC_H | IPC_P andIPC_H.
IPC_P is a dictionary indexed by ID of the IPC. Each element of IPC_P is @ list

of PIDs of the processes that own endpoint handles (including duplicates) |of the
IPC with ID indexing the element. For instance, IPC_P[id1]={PID1,PID2,PID3}
means that IPC, identified by id1, has endpoints which handles are possessed by
processes PID1, PID2 and PID3. Note that some IPC could serve as data share
points, hence they may have multiple endpoints, for instance a file or a shared
memory.
IPC_H is a two dimensional dictionary indexed by IPC ID and PID. Hach
element of the dictionary is a list of endpoint handles (including duplicates) that
are possessed by indexing PID and shared by IPC with ID indexing the element.
For example, IPC_H[id1][PID1]={h1,h2,h3} means handles h1,h2,h3 represent
endpoints of the IPC with id1 ID and are possessed by a process with PID1|ID.

TraceFiles pseudo-code is given below (see listing 1). The algorithm iterates over
operations and instances presented in an AD (line 1). If an operation has “fle name” as an
argument (line 2), the procedure adds “FileRelocation” functionality to the AD (line 6). Note: the
function AttList(x)returns a list of attribute names for the input operation x

While adding a parallel functionality is trivial, it is not obvious where to insert
“FileRelocation” so that file tracing does not interfere with the rest of the original functionality.
Thus, we insert a parallel flow with “FileRelocation” in the following way: if the target file name
IS a constant string, i.e. it is independent from other operations of the AD, we start the parallel
flow right after thenitial node; if the file name is a variable, we start the parallel flow right after
the node where the variable is assigned for the last time; finally, we join the “FileRelocation”
parallel flow with the original AD right before the node that is performing the operation on the
target file.

Listing 1. Trace Files Algorithm
Algorithm Tr aceFi | es

Input:AD - An activity diagram specification
Output: Generilized AD

1. foreach OperationJ{ AD.Instances] AD.Manipulatiofs

2. if (IpFileNamel AttList (Operatiop) :

3 TargetFileName= GetAttributeValu¢Operation JpFileNamg

4 if (isvariable(TargetFileNamyg : RelocStartNode GetAssignilode TargetFileName

5. else :RelocStartNode AD.initial;

6 AddParaIIeIFunc(t B, FileRelocatiof TargetFileNamg, RelocStartNade Operaﬁion

7 SetAttributeVaIueExpressi@@peration IpFileName |[IpFileName in FL[5t TargetFiIeNamt}");

32

In the algorithm, the parallel flow with “FileRelocation” functionality is added by the function
AddParallelFunct(Origin,New,Start,Mergefsee Appendix D). It adds an AD named Nevan
AD named Originas a parallel flow that starts right after the node Staditjoins it to the AD
Origin just before the node Mergéhe node Staris determined in lines 4 and 5. If the file name
is a variable, the node Stastdefined througlGetAssignNode function (line 4). Function
GetAssignNode(x) returns the node whose output arc has an assignment expression for variable
X. Line 7 modifies the AD to make it consistent with the AD formalism (2) given in Section 3.

TraceHandles pseudo-code is given below (see listing 2). In the code, line 1
introduces the “HandleDuplication” functionality as a parallel flow to the original functionality.
Lines 2-8 constitute a loop that iterates over all object instances of the AD so that for each
instance, a new element DupH dictionary is initialized with the instandelD and Handle
(lines 3, 4). This would allow “HandleDuplication” functionality to trace handle duplicates of the
current object instance. Line 6 iterates over object operations performed on the current object
instance. For each object operation, the algorithm redefineBlEhandHandle expressions so
the operation may utilize any duplicated handle belonging to the original object instance.

Listing 2. Trace Handles Algorithm

Algorithm Tr aceHandl| es

Input: AD - An activity diagram specification

Output: GenerilizedD

1. AddParallelFundt AD, HandleDuplication, AD.initial, AD.final ;

2. foreach Objectd AD.Instances

3. SetAssignExpressi(én OutputA@bject) ,"DupHpndle HID={ Handﬂe) "

SetAssignExpressi(én OutputA@bject) ,"Dupfandle={ PII}) "

HandleVarName CreateNewVa(' OutputA(©bject) ,Handlé);

foreach Operation] GetObjectOperatiofis ADpject) :
SetNodePIDExpressi()@peration ,"PID in DupP[MandleVarName"]");
SetAttributeVaIueExpressi@@peration Handle ,Mandle in DupH{HandleVarName "] PID)

© N o g A~

TraceProcesses addresses the first and the second obfuscation methods. In the first
obfuscation, a malware runs an external utility to perform some tasks. As a result, the external
utility has to utilize the OS resources the same way as the malware. In other words, malware
simply outsources its operations or functionalities to the utility. We can recognize the outsourced
functionality in the utility’s behavior using our specifications. Consequently, in the specification
some object manipulation sessions must have a PID tag assigned to the PID of the utility. If the
utility has started, we must record the PID of the utility process and assign the PID in the object
operation sessions that it outsources.

From the above perspective, starting a utility to perform a part of the malicious
functionality represents a multipartite approach. Hence, the first and the second obfuscation
techniques should be addressed similarly: by tracing the functionality distribution among several
processes. This requires tracking processes generated by the malware as well as processes to
which malware injected its code (infected). Then we attribute object operations to the generated
processes and infected processes.

TraceProcesses algorithm introduces “ProcessGeneration”, “Codelnjection” and
“LocallPCEstablishment” to the input AD. It also introduces the IPC required for coordinating

33

multipartite agents and/or communicating with the utility. To reduce the false positive rate we
additionally trace data transmission between processes that represent technical yet vital activity.
For instance, a process retrieves (reads) data through an object that represents data source, and
then this data or its informational dependency is transferred (written) through another object,
called a data sink (see Table 5). Distributing this activity in such a way that one process would
access a source object and another process would access a sink object requires using the IPC
responsible for data transmission from the source process to the sink process. Such distributed
functionality in fact implements an inter-process information link between source and sink
objects (recourses).

For the sake of clarity, in table 5 we present OS/functional objects and their corresponding
operations that could be used for data source and sink. Note that some objects share the same
source/sink operations.

Table 5. Source and Sink Operations

Objects Source Sink Based on API
operation | Operation | Source operation Sink Operation
File, Pipe, MailSlot Read Write ReadFile.kernel32, WriteFile.kernel32
Socket Recv Send recv.ws2_32 send.ws2_32
Registry ReadValue | WriteValue| RegGetValue.Advapi32/dll RegSetValueEx.Advapi32.dll
RemotelPC, LocallPG Recv Send

Below we give pseudo-code foraceProcesses algorithm (see listing 3). Initially the
algorithm introduces three functionalities (lines 2-4), LocallPCEstablishement,
ProcessGeneration and Codelnjection (see Table 4). The functionalities are incorporated through
AddParallelFunct function that adds a functionality to the AD as a parallel flow to the entire
original activity. In line 5, the algorithm iterates over all objects of the input AD and changes
their PID assign label to “PID in PList”. This means that a PID must belong to the global list
PList that contains PIDs of the children processes derived from the original malicious process or
its children (see Table 4).

Lines 6-20 constitute the main loop that locates source-sink operations (Table 5) and
introduces the data transmission functionality between source and sink processes. Line 6 iterates
the overall operations of the AD. If an operation is a sink (line 7), then the algorithm obtains a
writable buffer/pBuffer attribute value. If thébBuffer attribute value is a variable (checked in
line 9), the algorithm obtains the node that assigns the variable (line 10). Such an assigning node
is viewed as a data source and data is transferred to the sink operation throButkBlodfer
variable. Next, the algorithm introduces IPC between a source process and a sink process. To
achieve this, the algorithm adds sexmdl recvoperations as a parallel flow (lines 10-14) between
the node assigning the variable (source node) and the current operation writing the assigned
variable (sink node). Lines 15-20 set PID and attribute expressions of the newly introsivced
node and the current sink operation node, so that the two operations belong to the same process.

34

Listing 3. Trace Processes Algorithm
Algorithm Tr acePr ocesses

Input:AD - An activity diagram specification
Output: GenerilizedD

[E=N

. Sinks={ Write, Send, WriteValjie

2. AddParallelFundt AD, LocallPEstablishment, AD.initial, AD.fingl ;

3. AddParallelFundt AD, ProcessGeneratidmgPID), AD.initial, AD.fjnal ;

4. AddParallelFundt AD, CodelnjecticFifisPID), AD.initial, AD.final ;

5. foreach Object] AD.Objects SetNoePIDExpressio(Object ,PID in PLis}" ;

6. foreach Operd AD.Operations

7. if Oper(d Sinks:

8. SinkBuffer=_ GetAttributeValfe Oper bBuffer

9. if isVariablg SinkBuffe) :

10. BuffAssingNode GetAssignNodéSinkBuffe));

11. AssignPIDVarName= CreateNewVaf OutputA{BuffAssingNodg" PID);

12. NewSendNode AddParaIIeINodé AD, Ser{dPID AssignPIDVarName{ pBuffer SiBuffe}), BuffAssingNode Op)al
13. IPCIDVarName= CreateNewVaf OutputAidNewSendNode" ID);

14. NewRecvNode AddNextNodé AD,Rev (NewSendNoge

15. SetNodePIDExpressic(lmewRechodé Plin IPC_P[+ IPCIDVarNamef"]");

16. SetAttributeVaIueExpressi(erewRechode Handle HandtelPC_H["+ IPCIDVarNamet"][PII:}");
17. RecvBuffervarName CreateNewVdr OutputAfdlewRecvNode" pBuffe

18. RecvPIDVarName CreateNewVa(r OutputAfdNewRecvNode" PI'[);

19. SetNodePIDExpressi¢@per PID= :+'RecvPIDVarNanje

20. SetAttributeValueExpasionOper , pBuffer," pBuffe= % RecvBufferVarNajne

To demonstrate our generalization algorithms, we tested them with a simple functionality
that uploads a file through the IPC. We utilized Visual Paradigm for UML software [44] to
design the “File Upload” functionality, see Figure 7. Then we ran the prototype of a
Specification Generalizer module (Figure 5) that automatically generalized the functionality AD
using all three algorithms. Figure 8 shows the AD of the augmented (generalized) functionality.
Note that Visual Paradigm designer, with minor manual alignments, automatically produced both
AD layouts of Figures 7 and 8. It can be seen that in our prototype, the entire process of AD
generalization is completely automated including computer aided AD design, automatic
generalization, and finally visualization of the resultant AD.

35

{S = "FileName'}

1 b

<=GenericFile>>
GenericFile
FileName = "S"}

<<RemolelPC>>
RemotelPC
{EndPoint = "Client"}
ID = "[Host_Addr, PortlD:

<=<RemoielPC>>
RemotelPC

{Endpoint = "Server"}

{ID ="PortiD"

{F = "Handle"}

{H = "Handle"} 5

Read L
{Handle = "F"} \<>

{B = "Buffer"}

Send

{Handle = "H"}
{Buffer = "B"}

Figure 7. File Upload AD

As per the example in Figure 7, one can see the “File Upload” AD that has two
independent sessions such as IPC establishment (Nodes 3-5) and reading a file (Nodes 1, 2).
After establishing an IPC, a buffer is received through the IPC and written to the opened file.
Node 6 represents some additional activity not related to data variables of the functionality. Node
7 sends the buffer with the file content via the established IPC. Note that in this AD, we utilized
only functional objects and manipulations, hence covering most of the realizations of the “File
Upload” functionality.

In the generalized AD (Figure 8), it could be seen that HandleDuplication,
ProcessGeneration and IPCEstablishment functionalities are introduced in the original
functionality as independent sessions. Since the name of the uploaded file is the input parameter,
the Specification Generalization has introduced “FileRelocation” functionality right before the
file open operation (Node 2). In Nodes 4 and 6, global handle dictionaries (DupH, DupP) are
initiated with IPC object handle. HandleDuplication (Node 13) traces handle duplication and
updates the dictionaries. Node 6 accepts a connection to the IPC server endpoint. One can see
that in the process of generalization, TraceHandles algorithm has modified attributes of
several operations: in Nodes 3 and 6, PID the assignment was set tan“BIDpP[H1]”

36

expression which means that the PID of the operation must belong to the set of PID’s that posses
the original handle H1.

{5 ="FileName"}

ProcessGeneration
{PList = "ThisPID"}
{I = "GenLimit"}

FileRelocation
{FileName = "S"}

RemotelPC
{EndPoint = "Client"}
{PID ="PID in PList"}

{ID = "[Host_Addr, PortiD]"}

{H = "Handle"}
{DupH = "DupH[Handle][PID}{Handle}'} 5

{DupP = "DupH[Handle]{PID}"} RemaotelPC
2 {EndPoint = "Server"}
= - {PID ="PID in PList"}
: enericFile {ID = "PortiD"}

FlleName = "FileName in FLISES]"}

{PID = "PID in PList"} {H = "Harjdle"}
{DupH = "DupH[HandIp][PID]={Handle}"}
{F=Handle"} {DupP = "DupH[Handle]=(PID}"} 12
{DupH = "DupH[HandIel[PID}={Handle}"} 5 e R

{DupP = "DugfH[Handle]={P1D}"}

Wait
{Handle = "DupH[H][PID]'}
{PID ="PID in DupP[H]"}

3

Read
{Handle = "DupH[F][PID]"}
{PID ="PID in DupP[F]"}

B = "Buffer?}

e

13
HandleDuplication

Send
{PID ="PID_0"}
{Buffer = "B}

{ID_0 ="ID"}
9

UnKnown

Recv
{PID ="PID in
IPC_P[ID_0]"}

{Buffer_0= "Buffer"}
{PID_1="PID"}

Send
{Handle = "DupH[H][PID]"}
{PID = "PID=PID_17}
{Buffer = "Buffer=Buffer_0"}

Figure 8. Generalized File Upload AD

The TraceProcesses algorithm introduced an IPC in Nodes 12, 7 and 8 that transfers
a buffer from the source process (reading the content of the file to be uploaded) to the sink
process (sending the buffer to a remote host). One can see that IPC nodes are introduced as an
independent session from the other activity (Node 9).

Figure 8 indicates that the generalized AD is structurally more complex than the original
AD (Figure 7). However, with respect to the number of state nodes it is comparable to the
original. At the same time, the generalized AD addresses all three obfuscations presented above.

37

This shows that the proposed anti-obfuscation generalization results in an acceptable complexity

penalty.
a *

c
1 l 2 l
. RemotelPC . RemotelPC
PID in EndPoint=Client PID m EndPoint=Server
PList\ jp={Host_Addr,portin]/ | L5t ID=[PortiD]
H1:=Handle H1:=Handle
¥
PID in Wiait 5
DupP[HI1] Handle in
DupH[H1][PID] Handle
Duplication
d
e) Flist[“cmd.exe”] =
“%SYSTEMPATH%\cmd.exe”
4 Y 7
FileRelocation Process
Generation
PList=ThisPID
L=GenLimit

c Y
Process
pszimageName in Flist[“cmd.exe”]
binheritHandles = TRUE
STARTUPINFO.dwFlags =
STARTF_USESTDHANDLES
STARTUPINFO.hStdInput in bupH[H1][PID][0]
STARTUPINFO.hStdOutput in bupH[H1][PID][1]

PID in
DupP[HI]

®

Figure 9. Generalized AD for Remote Shell

Furthermore, we applied the above algorithms to generalize the AD presented in Figure 6.
The generalized AD is shown in Figure 9. One can see that fork node “b” starts two sessions.
The left session (nodes 1-3) corresponds to the first steps of “Reverse Shell” and “Bind Shell”
realizations. The right session is represented by one operation (Node 4), “FileRelocation” that
traces “%osystempath%)\cmd.exe” file and outputs a list of files that descended from it.

The “Remote Shell” realization is started in Node 1. It creates a RemotelPC object as a
client that connects to the attacker host. The “BindShell” realization creates a RemotelPC server
in Node 2. The RemotelPC object handle is traced by “HandleDuplication” functionality (Node
6). Node 3 corresponds to accepting a connection with the IPC endpoint. Nodes 1, 2 and 3 have a
PID index. Note that the PID index is a part of the AD formalism presented in Section 3. The
expression “PID in PList” means that the PID of the process performing the operation must
belong to the PList. Nodes 1, 2 and 3 represent the inter-process part of the “Remote Shell”
functionality. Such an inter-process part, along with Node 7, address obfuscation techniques 2
and 3. Indeed, nodes 1, 2 and 3 outsource the IPC creation to other processes.

38

The final step of the “Remote Shell” is to run “cmd.exe”. Node 5 creates a process whose
image belongs to the list of files that originated from “cmd.exe”. Note that this FList was
produced by the “FileRelocation” operation (Node 4). Moreover, the process is created with
standard input set to the duplicate/original handle of the IPC endpoint, server or client.

Let us compare the generalized AD of the “Remote Shell” functionality (Figure 5) with the
original AD (Figure 2). The generic specification defines six different realizations from the two
original ADs. All generic realizations are effective against the obfuscation techniques presented
above. In spite of generalization, the structural complexity of the generalized AD is
commensurable with the complexity of the original AD. In fact, the overhead imposed by
generalization is managed via algorithm parameters. For instance, generation of the threshold
parameter inTraceProcesses, to some degree, determines the overhead of the tracing
functionality. This demonstrates the effectiveness and flexibility of our approach.

Understandably, the more obfuscation techniques we address, the more complex the
generalized specification is expected to be, however, the specification is not yet a complete
recognition mechanism since it merely represents how the functionality is implemented in terms
of object manipulations. Hence, the efficiency of the recognition mechanism ultimately
determines how many obfuscations we can address. We proposed a highly efficient way to detect
the specified functionalities. The proposed recognition model is scalable enough to detect
specifications with all currently known obfuscations.

4.5 Functionality Recognition

As indicated in the system architecture (Figure 1), the functionality recognition process
consists of two stages. In the first stage, we recognize individual object manipulations by
identifying their dedicated APIs in the system call domain. However, a manipulation may be
performed through several alternative APIs operating on the same Kernel objects. Additionally,
an API function may invoke several additional minor system calls that are not critical to the
manipulation implementation. Hence, only the essential, semantically critical part of an API
function should be recognized and attributed to the corresponding manipulation. This recognition
approach is resistant to certain evasion techniques when the malware does not invoke the entire
API but only its critical system calls, thus only partially realizing the API yet achieving the
required manipulation.

In the second stage, we recognize functionalities through the identified object
manipulations, i.e., APIs. Note that system calls represent APIs, and APIs represent
functionalities in that are consistent with the AD (2). Hence, the same type of models can be
employed to recognize subsystem object manipulations and malicious functionalities. The
selection of a particular recognition model must be justified with respect to both expressive
power and implementation efficiency (computational and memory complexity).

4.5.1 Justification of the Recognition Model with Respect to Expressive Power.

Consider the following simple functionality that could be a part of a virus: “open all
executables in a folder; do not access files until some predetermined point in time; then check to
see if all of them are ready for code injection; then if all the files are ready, inject the code,
otherwise close all of the opened files”. One realization of this functionality could utilize the
CreateFile, ReadFile (to read the PE header) and WriteFile API (to inject code). Since this
functionality requires the synchronization of file reading and file writing, then the sequence of
the APIs invoked by the functionality would represent the following pattern:

39

CreateFile, CreateFile, ... CreateFile, ReadFile, ReadFile, ... ReadFile, \&rit&fteFile, ... WriteFile

n times n times n times (3)

This pattern constitutes a formal language:

L={CreateFiIé ,ReadFile , WriteFilei [*}Z @)

According to Pumping lemma, this language is not context-free [45], but it can be
generated by a context-sensitive grammar. We believe that a context-sensitive grammar can
express all functionalities presented in AD formalism (2). Object parameters and handle values
could be represented by a large non-terminal alphabet covering the entire parameter space (i.e.
all possible values of the parameter’s type). Hence, a functionality can be at least recognized by
Linear Bounded Automata (LBA) that is an accepter for a context-sensitive language [45].

4.5.2 Justification of the Recognition Model with Respect to Computational
Complexity.

According to [46], a LBA of size n can be simulated by a Place Transition Net (PT-net) of
size o(nz). The LBA and equivalent PT-net would have identical time complexity for an

acceptance problem. A PT-net can be translated into an equivalent CPN in such a way that the
structural complexity of the PT-net (number of places) would be converted into the inscriptional
complexity of the CPN (arc expressions). Since a CPN would have far fewer places, we prefer
using the CPN rather than a PT-net. Moreover, a CPN has an advantage over a LBA when
processing multiple instances of the operation chains (words): should a chain be executed more
than once, an LBA model accommodates extra states for each instance of the chain. In contrast, a
CPN represents an executed operation chain as one token residing in the corresponding place that
allows for processing of multiple chain instances with low overhead. Consequently, a CPN was
chosen as a recognition model.

A CPN could formally be defined as a tuple [47]:

CPN=(S,P,T,AN,C,G,E, 4)

where: S — color set,P — set of placesT — set of transitionsA — set of arcs , N —
node function, C — color function, G — guard function, E — arc expression function, | —
initialization function.

Next, we formulate a CPN configuration that provides execution semantics for the AD
specification defined in (2). To recognize the functionalities specified in an AD, a CPN
configuration must reflect the objects and manipulations. Additionally, we need to recognize
several distinct functionalities that may or may not have common implementation patterns.
Hence, CPN places must represent the following states: created objects, object manipulations,
pseudo states routing the control flow of ADs, and individual functionalities.

The above considerations indicate thatsbeof place®f the CPN should consist of four
disjoint sets:

P=p, 0 P,

manip

0 I:?unlz| ngeudw (5)

These disjoint sets determine the following four types of places:

40

Object place (PR,) is associated with a unique OS object. In this place, a token represents

an instance of the object associated with the place. Such a token is defined as a tuple: a
descriptor (handle) of the object instance, and a set of necessary object parameters. Hence, the
color set of Object-places typically constitutes a pair of two types: the system handle (unsigned
int32), and the set of attribute types utilized in system calls for creating objects such as strings,
int32 (for access flags), pointer, and others.

Manipulation place (P,,,,) represents a particular operation (manipulation) on an object.

Such a place contains tokens representing the successful execution of a corresponding operation.
A token comprises a handle of the manipulated object and critical parameters of the operation
represented by the place. Thus, the color set of a Manipulation place consists of the space of
system handles and a set of selected operation parameters associated with the place.

Functional place (P,,,) corresponds to a unique functionality. These places contain tokens

that represent the successful recognition of a given functionality. Note that functionalities
represent not a particular object, but a pattern of manipulations on several objects. The color set
of Functional places includes only selected attributes of the necessary objects involved in the
respective functionality as well as the objects’ operation parameters that individualize the
functionality.

Pseudo place (P,..) Iis associated with the pseudo states of the AD. A

manipulation/object place represents an executed object operation. An input transition of an
object place must be attributed to the execution of one of the functionally equivalent APIs or
system calls implementing the respective manipulation. An input transition of a functional place
should be enabled when the corresponding functionality is executed. Hence, the set of transitions
consists of three disjoint sets:

T=Tan O T eI T 10)

where T,__, - manipulation transitions representing system calls or a subsystem level
operation (exported by API)T ..., - pseudo transitions that are utilized to reflect AD
pseudo states; and,,, - functional transitions such that their input and output places
constitute functionalities or functional object operations.

pseudo

We should point out that technically, a functional transition would coincide with the
appropriate system call in a discrete event scale. However, the occurrence of such a transition is
a semantically important event, thus we deliberately do not associate it with a system call.

Each manipulation transitionT(_,) is enabled upon execution of any of the equivalent
APIs performing the manipulation. Consequently, the guard expressions of such transitions must
be defined over the object descriptor space (handle and buffer address) as well as over the
manipulation parameter space. Guard expressions ensure that only manipulations with
parameters determined in the corresponding AD would enable the transitions. The expressions of
the output arcs may include variables of any type from the color set which covers the necessary
attributes of the system calls and API functions. This provides enough flexibility to distinguish
similar, yet semantically different functionalities.

We developed procedure “ADtoCPN” that produces a CPN from the given functionality
AD (see listing 4). Such a CPN possesses the necessary execution semantics to recognize the
functionality. Here we only outline the high-level steps of such a procedure.

41

Listing 4. ADToCPN procedure

Procedure ADtoCPN
Input: F — an AD of the functionality defined by the formalism (1).
Output: CPN — a CP-net that recognizes the given functionality F.

1. Compose the CPN structure (P, T, A) corresponding to the constructs of
the AD of the functionality. Replace the AD arcs with transitions and
replace the nodes with places.

1.1 Form a set of places P and set of transitions T that correspond to the
state and pseudo state nodes of the functionality F.

1.2 Form a set of the CPN arcs (A) connecting the places and transitions
created in the previous step (1.1)

1.3 Form a set of functional places, transitions and corresponding arcs.

2. Define place colors (C), guard expressions (G) and arc expressions (E)
that define execution semantics of the functionality F in the given domain.

2.1 Define guard expressions of the manipulation transitions that check
the executed manipulation parameters against parameters specified in the
functionality’s AD.

2.2 Define guard expressions at the transitions that represent branching
arcs of the AD decision nodes.

2.3 Define a color function (C) that would reflect variables of the
functionality.

2.4 Define arc expressions representing variable assignment in the
functionality’s AD.

2.5 Induce Color set (S) and the rest of the arc expressions from the
color function (C) and the CP-net structure (P,T,A)

3. Compile a CP-net (CPN=(S,P,T,A,N,C,G,E,) from the component sets obtained
in steps 1 and 2.

Consider low-level CPNs recognizing subsystem object manipulations in the system call
domain. These CPNs are obtained from the system call level ADs specifying object
manipulation. Here, manipulation transitions are enabled by system call execution and therefore
it is an open network driven by external events (OS calls). Moreover, manipulation transitions do
not have input arcs representinget transitions. We also distinguish outlet transitions that
represent handle/object elimination. For instance, NI€lose system call enables an outlet
transition that destroys a token from the corresponding place.

Using procedure ADtoCPN, we obtained both high and low level CPNs for “Remote
Shell” functionality (Figure 10).

42

h=FileHandle, s=ObjectAttributes.ObjectName

NtOpenFile NtCreateFile
NtOpenFileEx NtCreateFileEx

(h, s) (h, s)

Create Socket

NtCreateSection
[h==FileHandle]

h
SectionHandle

Section

Socket
A
If c==0x1200B h,
else empty

h h
A 4 y

NtCreateProcess N ’Di‘:i‘i‘f:/i 8'57;1'; fg ‘]’/F ile| 1f c==0x12003 h
[h==SectionHandle] EoerieloeE else empty

If c==0x1200C e, _
ProcessHandle else empty
Y L 2
Protead h1 NtWrite VirtualMemmory

[h1==ProcessHandle] h
h (h1, h2, h3) | h2=Buffer_offset+24 v
h3=Buffer_offset+28

y v Accept
NtCreateThread L
[h==ProcessHandle] NtW”teV’m’@

ThreadHandle | NtCreateNamedPipeFile |

(h1, h2, h3)
Y A

- GetPar(FileHandle,
@——> I\[Irfff'rshl:g;jp:::;:]d DesiredAccess,
h ObjectAttributes. Attributes)
h1 1

NtFsControlCode h
Connect Pipe [h=FileHandle, Named Pipe
ControlCode=0x110008]

color H=HANDLE

color I=unsigned int32

Color S=string

varh, h1, x: H

vary, z: |

vars: S

const Ds = “\Device\Afd\Endpoint”
B(x,y)=(x&y==y)

GetPar(x,y,z)=(x,B(y, GENERIC_WRITE)*PIPE_ACCESS_OUTBOUND
+B(y, GENERIC_READ)*PIPE_ACCESS_INBOUND, B(z, OBJ_INHERIT))

Figure 10. High Level (Subsystem Level) CPN for the “Remote Shell” Functionality

Figure 10 shows the high-level CPN. where places are shaped as ellipses and transitions as
rectangles. The CPN node indices correspond to the AD nodes they recognize. For instance,
transition # 7.1 and place #7.2 will recognize Node #7 of the Remote Shell AD. In Figure 10, the
cloud shapes symbolize external CPNs such as Remote IPC CPN, Low level CPN, and others.
These external CPNs recognize the corresponding functional/ subsystem manipulations and
enable relevant transitions. For instance, transition #1.1 is enabled when functional object
“‘Remote IPC” is created. The transition’s guard, “PID in PIDList”, checks whether the process
performing “Remote IPC” belongs to the list of descendant processes. This requires tracing a
generated process as specified in the AD in Figure 9. The process tracing is performed by the
“Process Generation” CPN that provides a descendant PID list as tokens to transition #7.1. The
Object places are highlighted with bold fonts. Place #5.2 (*RemotéShel a
recognition/functional place that represents a successful functionality recognition.

43

A low-level CPN is shown in Figure 11. It recognizes the following subsystem level
manipulations: “Create Socket” (socket API), “Bind”, “Listen” (listen API), “Accept” (accept
API) which are exported by ws2_ 32.dll; and “Create Named Pipe” (CreateNamedPipe API),
“Connect Pipe” (ConnectNamedPipe API) which are exported by kernel32.dll. In parentheses,
we provided an API function that belongs to the group of equivalent subsystem APIs performing
the associated manipulation. The CPN has three color sets (types): handle (H), whose variables
represent object handles; string (S) for the file names, and uint32 (1) for access flags. Color and
variable declarations are written using CPN markup language (CPN ML) syntax [47]. The CPN
has 10 inlet transitions corresponding to system call execution. These transitions generate tokens
representing attributes of the system calls that are processed by the CPN.

Duplication CPN

7.2

p @nérated
Processes

[ChildrenPIDList, PIDList]

71
Process

(PID,EndPoint
Type,ID,Handle)

PIDList
11 —X
RemotelPC

[PID in PIDList]

If EndPoint==Client
then Handle,
else empty,

If EndPoint==Server
then Nandle

1.2
RemlIPC_Client

Process Generation CPN, Remote IPC CPN, File Relocation CPN,

(ChildrenPIDList,
ParentPID)

Generation

[OrigHandle in hList]

(PID,EndPoint,
Type,ID,hList)

(PID,EndPoint, Type,

/__/4

[ParentPID in
PIDList]

(OrigHandle,
NewHandle)

Duplication
6.1

(NewFiles
ParentFile)

2
T T (RemlIPC_Server)«

hList
3.1
RemotelPC_Accept

[Handle/Out]

hList

established

51X

ID, [hList, NewHandle])

[OrigHandle
in hList]

Duplication

(PID,Type, .
(OrigHand Handle_In (SFt:I’T:lame,
rigHandie, Handle_Out ’
NewHandlé) _Out) Stdout)

Low level CPN, Remotg IPC CPN, Duplication
CPN

4.1
File Relocation

If (FileName in Flist) &

([StdIn, StdOut] |in hList)
then simple
else empty

A

52—
RemoteShell

Figure 11. Low Level (system call level) CPN for the “Remote Shell” Functionality

It can be seen that a CPN'’s structure is very similar to the structure of the AD. A CPN is a
very efficient recognition mechanism due to token dynamics. Hence, a CPN causes a minimal
performance penalty for the anti-obfuscation generalization we introduced in Section 3. This
ensures that our approach is highly scalable, allowing us to address most of the known high-level

obfuscation techniques.

44

4.5.3 Dynamic Information Flow Tracing

Depending on the specification, our IDS could employ a coarse-grained detector or fine
grained detector. Coarse-grained detectors only trace system call execution discarding
information dependencies. Fine-grained detectors trace information flows using dynamic data
tracing techniques such as the taint propagation [48, 49], thus potentially providing additional
discriminative power. However, it was shown that purely dynamic techniques cannot trace data
transmitted through covert channels such as implicit flows [50]. A particular attack on the taint
propagation technique was described in [43] using implicit flow techniquethat is hard to defend
against as confirmed in [51]. Since the implicit flow allows transmitting a bitobgxecuting a
branch conditioned by a tainted value, control flow analysis techniques such as [48, 49] are
useless in this case. Note that the static analysis ofbthexecuted branch would not help either
because, in general, the branched code could be encrypted. Forced execution of such a branch
may fail if it has implicit jumps depending on tainted values.

In general, malware can evade data tracing by using an implicit flow that is easy to
implement [43]. However, malware cannot avoid using system calls. Consequently, dynamic
information flow tracing would not decrease false negatives compared to purely system call
based detection. On the other hand, taint propagation may decrease false positives since there is
no reason for legitimate software makers to use covert channels in their codes unless they want
to protect their products against reverse engineering.

The proposed AD formalism (2) allows for specifying functionality with informational
dependency between the operation attributes. Recognition of such a functionality would require
the utilization of the taint propagation engine [48, 49] coupled with the system call monitor.

4.5.3.1 Taint Propagation Engine

While implementing the tainting engine, we generally followed the methodology given in
[52], [48], [51], and [49] but our implementation differs in the following aspects:

. Taint source and sink utilization
. Taint dependencies and propagation

4.5.3.1.1 Taint Source and Sink

In our system, the objective of the tainting engmeo trace information flow between
object operations. In the AD formalism (2), an information flow can be specified through a
variablex that is referred to by the content through a transformdifeh In this case, the source
of the information flow is the operation whose output attribute defines the variable. The
destination of the flow is the operation whose input attribute depends on the content of the
variable. Note that in the case when the variable representing the flow is referred to by the
content in several operations/attributes, an information flow may have multiple destinations.

Functional object operations are based on subsystem operations that in turn are
implemented through APIs and system calls. Hence, technically, information flow tracing is
initiated by tainting the output argument of a system call implementing the source operation. At
the same time, the flow is recognized by checking the taint of the input arguments of the system
calls realizing the destination operations. To avoid false positives, we utilize a unique taint label
for each particular instance of the specified information flow.

45

4.5.3.1.2 Taint Dependencies and Propagation

As described in [51], our system propagates the tabel according to three dependency
vectors: explicit data flow, system call and control flow.

For the x86 architecture, data flow dependency could be represented by data transfer and
stack instructions such as MOV, MOVX, PUSH, POP, etc., or arithmetic and logical instructions
such as ADD, SUB, AND, OR, etc. In the case of direct data transfer, the engine propagates
tainted bytes of the source to respective bytes of the destination. However, if the source is a
register and it is tainted, the engine marks all of the destination bytes. Note that the source
operand could be indirect, for instance MOVZX ecx, word ptr [ecx+eax*2]. In this case, the
engine taints all of the destination bytes if either the index or displacement registers of the source
is tainted. Such a policy enables tracing array manipulations indexed by tainted values.

Control data flow usually takes place when a variable is assigned within the sdbpe of
else or switch case blocks that are conditioned by the tainted value. To resolve such a
dependency, we tried to follow the methodology in [49] that implies tainting every destination
within the scope of the conditioned branches. However, based on our experience, sometimes one
cannot take into account the entire scope, because if any of its branches lead to the return of the
current function, the system taints everything in the rest of the function resulting in false
positives. In such a case, we mitigate false taint propagation by pruning such branches from the
flow graph and limiting the depth of the scope.

System call dependency is represented by data processing system calls/APIs such that they
do not perform any system related activity and are only responsible for generating output data
from the input data. Such data processing system calls are best exemplified by the RTL functions
RtlIinitAnsiString, and RtlIAnsiStringToUnicodeString. For instance,
RtlIAnsiStringToUnicodeString(outbuff, inbuff, ...) creates a null terminating UNICODE-string
(outbuf) from an input null-terminated ANSI-string (inbuff). Upon execution of this system call
our engine would respectively taint the Unicode characters (words) of the output string (buffer)
corresponding to the tainted ANSI characters (bytes) of the input string (buffer). Note, here we
perform a one to one tainting to exclude false taint propagation. Some system calls may untaint
the input argument. For instance, if RtIFreeHeap is to be invoked, then the input buffer is freed
from the heap causing our system to untaint the content of the buffer.

Unlike [49], in our system, a particular taint label may become obsolete (retired). When the
information flow is recognized, the taint label of the flow retires, meaning that the system will
untaint any object tainted by the retired label. A label may also become obsolete if the system
identifies that the source system call was executed in the frame of a wrong (non-source)
operation. The latter situation may occur if two different operations begin with the same
subsequence that originated in the source system call and then split. In this case, the operations
only will be recognized at the end of the execution, after the source system call. That means that
the engine must start tainting before recognizing the entire operation.

4.5.3.2 Taint Utilization in CPN

While the taint engine is responsible for taint propagation, in order to recognize the
information flow in the operation session the CPN-based recognition engine is responsible for
taint label management. Upon execution of a system call, the corresponding enabled transition
creates a token representing the system call. If the system call is the source of a specified
information flow, the transition should also signal the taint engine to create a new taint label and
add the label to the new token as a field. This way we transmit the taint label of this particular

46

information flow’s instance. When the destination system call is executed its transition also
checks to see if the taint label of the input token is equal to the taint label of the system call's
input attribute. If the labels match (meaning that the instance of the information flow reached its
destination) the CPN recognizes the flow itself by enabling the corresponding transition and
firing a token to the recognition place.

Token dynamics play a critical role for the efficiency of the information flow recognition.
Since the taint label becomes a part of a token, the recognition mechanism verifies the taint label
in only two transitions corresponding respectively to the source system call and the destination
system call. In other transitions where there are no information flow endpoints, the taint label is
not verified. This separates the tainting engine from the recognition engine, thus achieving the
optimal overhead (complexity) distribution.

4.6 IDS Implementation

4.6.1 AD Designer

According to the architecture presented in Figure 5, an expert has to specify and supply
activity diagrams of the functionalities defined in terms of the AD formalism (2). UML 2.x AD
syntax provides enough constructs for specifying all components of the functionality formalism
[53]. The state nodes are represented as UML actions, complex functional nodes as UML
activities, and object operation attributes and variable assignments as UML tag values.
Additionally, UML syntax allows for using so-called stereotypes that are convenient for creating
simple node profiles that define the set of tagged values. For each object operation, we use an
individual stereotype that determines a set of attributes in the form of tagged values. In our
implementation, the choice of the UML AD designer is not critical as long as it is strictly
compatible with the UML 2.0 standard. In our experiments, for UML we used Visual Paradigm,
a commercial software that offers free community releases [23]. After finalizing the AD design,
the expert exports the AD to the UML XMI, a format that is used to exchange diagrams among
UML compatible applications.

4.6.2 Specification Generalizer and CPN Constructor

We utilized the Python language to implement prototypes of the Specification Generalizer
and CPN constructor modules. The script for the Specification Generalizer module constitutes
710 lines of code and implements all three generalization algorithms and the specific functions
defined in Appendix D. We also developed a function that imports a formal AD from the input
UML XMl file created by the UML AD designer (Visual Paradigm). The importing is performed
by interpreting and mapping UML constructs (e.g. tag values, actions, activities) to
corresponding AD components (e.g. variables, object instances, operations) as defined by
formalism (2).

Prior to execution, the Specification Generalizer module imports the input functionality
AD along with the generalization functionalities’ AD and the functional operations that were
pre-designed in Visual Paradigm (see Appendices B and C). Then, the module applies the
generalization algorithms to the input functionality and produces a generalized AD. Finally, the
module exports the generalized AD to the XMl file. The resultant XMl file can be imported by
the UML designer for on-demand editing or by the CPN constructor for producing a CPN
recognition model.

a7

The CPN Constructor module applies #iBtoCPN procedure to the given functionality
AD to produce the recognition CPNs defined as a tuple (3). Finally, the Constructor translates
the obtained Petri networks to a CPN ML like format and exports it as an XML file for the CPN
recognizer modules.

4.6.3 Functionality Recognizer

We developed two versions of the functionality recognition modules. The first
implementation was intended to evaluate the scalability and runtime efficiency of the
methodology. The CPN recognizer was implemented in 3,500 lines of native C++ code. Here,
the CPN configuration is mostly hardcoded and its modification usually requires recompilation.
To minimize the complexity of token matching we utilized self-balancing trees to store tokens in
places. The trees are indexed by corresponding colors (usually handles) utilized in guard
expression of the output transitions. To store tokens that represent file derivatives (copies) of the
original target file we utilized chained hash tables indexed by file names.

For the sake of efficiency, in this version the system call monitor operated as a Windows
device driver. We used an SSDT substitution technique in the driver to hook Windows system
services [3, 23]. Due to this type of driver, such an IDS is not completely transparent, however,
the IDS’s activity could be concealed through applying driver hiding techniques and covert
user/kernel communications [23].

The second version is less efficient, but much more generic. For this version we developed
a highly scalable and generic CPN simulator in C# .NET with Ling extension. The source code
of the most of the CPN simulator components is available at http://apimon.codeplex.com. The
program package includes several projects constituting 7,900 code lines in total. The projects are
responsible for system/API call hooking, call data parsing and transmission, and CPN
simulation. The CPN is built for simulation by translating arc and guard inscriptions into
generative and filter expressions backed by Ling objects.

For the sake of performance and operability, we introduced some simplifications to the
CPN simulator. The first simplification is that we treat the CPN as an open model that is fed with
tokens from external systems such as the system call monitor and the taint propagation engine.
Next, we did not implement binding of variables belonging to different arc expressions in order
to avoid computationally expensive cross list matching. Finally, we eliminated the possibility of
specifying the number of tokens retrieved by an arc from a place.

In spite of these simplifications, we preserved most of the CPN execution semantics. In
particular, we treat arcs as token generators and guards as token binders. Hence, the CPN
simulator is not limited to any particular execution domain and can process events of any nature
from multiple sources. For example, the CPN simulator can process system/API calls, API
functions, and functional object operations supplied from other CPN simulators. Such diversity
allows us to build and simulate complex, hierarchical CPNs with low execution overhead.

4.6.4 Taint Propagation Engine

For the prototype, we did not attempt to achieve low tainting overhead because we were
primarily interested in evaluating the recognition mechanism in tracing information flows
specified in the functionality. The taint propagation engine was implemented using an IDA
debugger with a IDA python debug management script. The engine runs the traced process in
debug mode and analyzes each instruction and its operands. For each library function call, our
system resolves the name of the function and input attribute. When a function is called, the IDA
debugger breaks with dbg_step_intcevent and passes control over to our script. The script

48

verifies the function entry address and parses its attributes as well as disassembles the body of
the function.

To determine entry point addresses of the system calls our script verifies whether the
process loaded the native system library (“ntdll.dll”). To achieve this, every time a library is
loaded, the debugger breaks withg_library loadevent, then our script parses the ntdll.dll
image and records its export functions entry addresses aligned to the base address of the loaded
module.

In our system, an expert has to provide system call declarations that are used as call
dependencies as well as related structure declarations. The script parses standard declarations so
that the expert may directly feed the engine with declarations from the MSDN website.
Moreover, the expert has to provide dependencies between input and output attributes of each
particular system call that is a call dependency. Such dependencies are specified in a simple
XML format.

4.7 Conclusions

In this chapter, we addressed present and future limitations of the current Behavior Based
IDS (BBIDS) associated with signature expressiveness, behavioral obfuscation and detection
efficiency. We advocate for the separation of the specification and detection domains. We
presented a new approach for formal specification of the malicious functionalities based on
activity diagrams defined in an abstract domain. We introduced so-called abstract functional
objects that along with system objects can be used for creating generic specifications that cover
multiple functionality realizations while preserving perfect discriminatory power. We developed
and tested an automated procedure, enabling human experts responsible for the formulation of
malicious behavioral patterns to concentrate on conceptual realizations while omitting certain
implementation details.

We analyzed and classified possible behavioral obfuscation techniques, both inter-process
and intra-process, that can compromise existing BBIDSs. As a mitigating solution, we suggested
the concept of specification generalization that implies augmenting (generalizing) otherwise
obfuscation prone specification into a more generic obfuscation resilient specification.
Generalization algorithms that make AD immune to the obfuscations were developed.

We proposed a methodology that uses a CPN to recognize functionalities at the system call
level. Moreover, we developed an approach for incorporating information flows into a CPN to
achieve fine-grained recognition. Finally, we proposed an automatic procedure for converting a
given AD into a CPN that recognizes the defined functionality in the system call domain that was
enriched with information flow data. In the end of the chapter, we described an implementation
for all of the IDS modules.

49

5 EVALUATION OF THE DEVELOPED IDS

5.1 Experimental Setup

An experimental evaluation of the technology described in this document was conducted
on the virtual network testbed at Binghamton University [2], [3]. The testbed was configured for
a virtual network comprising dozens of victim hosts represented by virtual machines with
vulnerable versions of the Windows OS and our prototype IDS. Using the testbed, we
experimented with various types of replication engines as well as malware payloads representing
the following set of potentially malicious functionalities:

Replication engines:

. Self code injection — A malware infects an executable file through injecting its own code
into the executable body and replacing code entry points. It is used by file viruses.

. Self mailing — A malware emails its image as an attachment. It is used by e-mail worms

. Executable Download and Execute — Downloads a file from the Internet and executes it.
Used as a part of self-propagation engine of network worms [2], hence it is exposed by
exploited processes and network bot agents such as Trojan-downloaders.

. Remote shell — Described in Section 2. Used as a part of propagation engine for network
worms; also exposed by network bots.

Malicious payloads:

. Dll/thread injection— Injects DLL/thread to the address space of a process. Used for
password stealing or process control highjacking.

. Self manage cmd script create and exeeufemalicious process creates a command script
and executes it by running command interpreter. The command interpreter performs
various operations on the malware image/dlls after its termination. This functionality
relocates/deletes the malware image to conceal its footprint. Afterwards, a command script
usually erases itself.

. Remote hook Sets a remote hook into a victim process for a particular event; used for
keylogging.

. Password stealing Steals credentials and sends them to the Internet. This functionality is
discussed in the next section.

These functionalities were specified, generalized and translated to CPN. Since
functionalities share the same object operation sessions, to decrease simulation overhead we
eliminated CPN structural redundancy by integrating the high level CPNs into a single universal
CPN having several functional places recognizing all given malicious functionalities. The low-
level CPNs were also integrated into a single Petri network capable of detecting object
operations involved in the functionalities. The CPN configurations were then loaded into the
Recognizer modules of the IDS.

We experimented with the malware known, according to AV descriptions, for perpetrating
at least one of the malicious functionalities in order to verify the detection rate. The selected
malware set included:

. File viruses — 7 instances (W32.Neo, Abigor, Crucio, Savior, Nother, Halen, HempHoper)

50

. Network worms — 10 instances (W32.Welchia.A, Sasser.C, Bozori, Iberio,
HLLW.Raleka.A, Alasrou.A, Kassbot, Shelp.A, Blaster, Francette)

. E-mail worms- 9 instances (5 variants of w32.Netsky and 4 variants of w32.Beagle)

. Network bots/Trojans— SpyBot.gen, IRC.SdBot, RxBot families, Win32.Banker,
Win32.lespy

We ran each malware image in the corresponding environment allowing it to execute its
payloads and/or replicate properly. The replication activity was exposed when victim hosts were
attacked by various worms [2, 13]. The set of test worms included strains that had been modified
to assure their propagation success, as well as unmodified strains to assure test fidelity. To
invoke the malicious payloads, we executed malware in certain preset conditions, e.g., we
established an ftp/tftp server for the “executable download and execute” functionality. In some
cases, we had to force malware strains to run their payloads by using debugging and run-time
code modification.

We ran multitude of benign software including web-browsers, messengers, email clients,
file utilities, network and system utilities and office tools in order to evaluate the false positive
rate. We ran the tested software under various conditions/inputs to expose their functionalities.
We should point out that our experiments did not cover all execution branches of the tested
programs because some of them were missing certain minor behavior patterns. Nevertheless, we
believe that in our experiments the tested software successfully exposed all of the main activities.

5.2 Detection Results

Tables 6, 7 and 8 capture the main results of our experiments. The upper part of Table 6
presents detection results for the legitimate software. Each cell indicates how many programs
were detected based on the given functionality.

The lower part of table 6 features results for malicious software. For each malware set, we
indicate how many instances possessing the given functionality were detected. For example, 4/4
means that there were four malware instances exposing the given functionality and all four were
detected by our IDS.

The rest of this section discusses in detail results for the false positives and negatives.

5.2.1 False Positives

To assess the false positives, we performed two experiments.

In the first experiment, we manually ran a diverse set of 210 legitimate programs including
web browsers, e-mail clients, system tools, file managers, office tools, hooking software, etc. We
did not traverse all functionalities in all of the tested software because we were only focusing on
main features of each tested program.

Table 6 indicates that eight programs out of 210 that showed false positives. Indeed, some
known malicious functionalities could be exposed by certain legitimate software due to the
following reasons.

. Executable Download and Execute. This functionality can be performed by Internet
browsers or file managers, mostly on behalf of the end-user. In addition, many programs
perform periodic checks for updates, if there is an update available, the program
downloads and automatically executes it. This activity can also be tagged as download and
execute.

51

DLL/thread injection This can be performed by user/system monitoring software. In
particular, the Easy Hook library injects a DLL to trace API calls performed by an arbitrary
program. The WinSpy program performs a DLL injection in order to retrieve the window
objects data of a foreign program.

Self manage cmd script create and exectite uninstall hooks, the Easy Hook exiting
functions run acmd script that waits for the hooking process to end, then removes the
hooked DLLs.

Remote hook. Hooking can be performed by chat programs to indentify whether a user is
idle. These programs hook into other processes for the input events such as a keystroke or
mouse message.

Self-mailing.When a user opens the “Save/Open file” dialog window, many programs
show every file found in the directory by the proper icon in the dialog window. In this case
if a user browsed to the programs image location in the dialog window right before sending
an e-mail with attachment, the e-mail clients may show up as a false positive. However,
such behavior coupled with the sending of email using a client image is considered to be
atypical user activity. Since this type of situation only happened in a particular scenario
artificially performed during testing, we did not attribute it to a false positive of the entire
e-mail client program.

Table 6 clearly demonstrates the difference in discriminatory power of various

functionalities that are frequently exposed by malware. According to Table 6, self-code inject,
self-mailing and remote shell were never exposed by benign software, thus they have near
perfect discriminatory power and can be used for malware detection. However, “Executable
Download and Execute” (“ED&E”) that is exposed by benign software such as a web browser
has low discriminatory power, hence it cannot be recommended for signature-based detection.
Regardless of the discriminating power, our experiment demonstrates the ability to reliably
detect individual functionalities. This ability could be beneficial for the detection of complex
malicious payloads, such as password stealing, that may involve the combined use of several
interrelated primitive functionalities.

Table 6. Functionalities Detection Rate and False Positive Rate

Self-replication | Replication/ payloads Payloads
Self code Self Exec. Remote | Dll/thread | Self manage cmdRemote
inject mailing | Download| Shell injection |script create &Hook
& Execute execute

Legitimate software

203 [Windows systen
tools, office appd 1 1
other utilities

2 Web browsers
(Opera, IE)

2 E-mail clients
(Outlook Expresd 2(?)
Eudora)

1 Instant messagin
client (Yahod 1 1
messenger)

52

2 File managers 1
(FAR,Win Exp)
Total detected 4/210 1/210 1/210 2/21(
7 File viruses 717
. 10 l;loec;\;v:rk worm shel 2/ 8/8
% 6 |Network —worm 4/4 11 11 11
s payloads
9 E-mail worms 9/9
SpyBot.gen family all all all
IRC.SdBot family all all all all
RxBot family (11) all all all all all
False positive 0% 0% 1.92% 0% 0.48% 0.48% 0.99%
Detection rate 100% 100% 100% 100% 1009 100% 10Q%

The second experiment was performed utilizing a large set of system tools. The purpose of
this experiment was to verify whether the MS Windows package has programs that expose
malicious functionalities in their main operational mode. This was achieved by automatically
running all binary executables from the Windows system folders (C:\Windows\ and
c:\Windows\System32\). For each program, our system performed the following steps:

Create suspended process

Initiate CPN simulator and system call monitor

Resume process and collect data until program finishes execution or after 20 second timeout
Write place reachability statistics to a report file

Clear Petri Net contents for the next run

arwnpE

In total, our system ran 339 programs located in windows folders. All CPN statistics
reports are summarized in Tables 7 and 8. Table 7 features the reachability statistics for the low
(system call) level CPN (see Figure 5). The low level CPN recognizes object operations exported
by the subsystem API. Hence, it has a recognition place for each necessary subsystem API
exported by kernel32.dll and ws2_32.dll. In table 7, the first column shows the names of the
libraries whose API are recognized by the CPN. The second column shows name of the API
functions that export object operations recognized by the CPN. The third column shows the
number of programs that invoked a particular API resulting in successful recognition of the
corresponding APIl/operation. For instance, the table shows that CPN recognized the
kernel32.WSASocket API in the system call flow in 8 out of a total of 339 programs.

It can be seen that the reachability for places associated with system call execution is
higher than the reachability of the API (object operation) places. This happens due to the fact
that a single APl may repeatedly invoke several system calls resulting in many tokens for each
system call. However, during the process of API recognition, most of the CPN transitions take
several system call tokens and fire only one API related token. Note, since the number of
processed tokens decreases towards the recognition place, the CPN simulation overhead also
decreases while as we near the moment of functionality recognition.

Table 8 presents reachability statistics for the high (subsystem) level CPN. The low level
CPN provides the high level CPN with tokens that are associated with system object operations

53

involved in particular functionalities. In the table, the second column depicts the name of the
operation or functionality that is represented by its respective recognition place. Similar to Table
7, the third column of Table 8 shows number of programs that reached the particular place
associated with the functionality or object operation.

Table 8 presents five functionalities of interest (marked by a grey backgrsetfdjode
inject, self mailing remote shell, and executable download and exe@deshould point out that
each functionality is represented by a recognition place in the high level CPN. Therefore, a
functionality is detected in the program if a corresponding CPN place is reached by a program
during the test.

Tables 7 and 8 indicate that most programs opened files and read/wrote some data,
however only a few accessed files of interest such as executables or libraries. Several programs
created a socket and established a connection, however, none of them utilized that socket for
remote shell or to download an executable. As a result, CPN recognition places (shaded rows)
were never reached by any of the 339 programs tested, indicating that there were zero false
positives exposed.

Table 7. Place Reachability Statistics for Low Level CPN

Library | System calls/API # of programs reached the pldce
ZwClose 193
ZwCreateFile 119
ZwOpenFile 106
Ntdll
(System | ZwReadFile 94
call
) ZwWWriteFile 64
ZwCreateSection 50

ZwMapViewOfSection 151

CreateProcess 36
Kernel32
CreateNamedPipe 0
(API)
ConnectNamedPipe 0
WSASocket 8
connect 6
; 7
ws2_32| bind
(AP1) listen 1
accept 0
send 4

54

Table 8. Place Reachability Statistics for High Level CPN

Object Operation/functionality # of programs reached the place
Map file 38
Read file 15
Write file 4
File Read itself of map itself 0
Write to executable file 0
Inject self-code 0

Start process from edited or created execut hBle

Pipe created and connected 0
Named Pip
Remote shell via named pipes 0
Socket connected 6
Download and execute 0
Socket bound 7
Socket listening 1
Socket
Accepted sockets 0
Remote shell via socket 0
SMTP protocol 0
0

Self-mailing

The goal of the second experiment was to verify windows system tools using standard
inputs in standard operating mode. Our experiments showed zero false positives. It seems that
the reason for zero false positives could be attributed to the fact that windows tools only have
only necessary and limited capabilities strictly defined by the purpose of the tool. Therefore there
is no reason for redundancy on the functional level. For instance, the registry management tool
would never download a file from a remote host, simply because this functionality could be
achieved through another dedicated tool. Certainly, such tools would not perform unnecessary,
potentially malicious, functionalities such as self code inject or self-mailing.

5.2.2 False Negatives (Detection Rate).

As Table 6.indicates, for each malware containing the given functionality, our IDS
successfully detected the functionality with zero false negatives. Such a low false negative rate
could be attributed to the signature generalization. For instance, the Beagle worm drops itself
into the system folder, and then it e-mails its dropper. However, our prototype system

55

successfully detected this type of self-mailing activity because it traced the dropper as an object
relocation functionality.

While creating the AD specifications for the tested malware, we observed an interesting
fact - that malware strains within the same family rarely demonstrate a conceptually novel
realization. Instead, new malware strains frequently introduce minor alterations to their
functionality realizations such as the utilization of alternative APIs or changing a Local IPC, i.e.,
switching from a named pipe to shared files. We see two reasons for this trend. First, the
attackers try to change the malware system footprint in order to avoid certain AV signatures.
Second, in the case of botnets , they simply try to enhance the performance of malware by
optimizing or simplifying their implementation.

5.2.3 Case Study - Password Stealing

Table 6 demonstrates that malware, such as botnets, carry many malicious functionalities
as their payloads. Such diversity could be conducive to detection. We may target not just one
malicious functionality, but rather a pattern of such functionalities that would determine the
degree of hostility of the process.

As indicated in table 6, remote hooks had several false positives. While remote keystroke
hooking may not be malicious (at least with chat programs), keystroke stealing is certainly
malicious. The fact that the hooked (victim) process transmits some data to the master process
and then the master process sends something to the Internet, is much more suspicious. This
rather complex functionality can only be detected by analyzing the combined activity of both
processes (master and victim) and correlating their invoked manipulations. In this case, such
activity combines functionalities 7, 5 and Local IPC.

The functionality mentioned above is known as Password stealing and is presented in table
9. In the first step, the master malicious process sets keystroke hooks into the victim process. In
the step 2, the hook handling function in the victim process transmits a keylog to the master
process. Finally, in the step 3, the master process sends keylog data to the Internet. In the table,
step 2 represents the combined activity of both the master and the victim processes. While steps
1 and 3 constitute individual activity, e.g. the master process does not need cooperation from the
victim process to perform a remote hook or to send data to the Internet.

Table 9. Password Stealing Functionality

Process 1 (master process) Process 2 (victim, hooked process)
1 | Hook to victim process keystroke events
2 Establish Inter-Process Communication (IPC) with the victim process
3 | Send the data to Internet |

The CPN was designed with only functional objects recognized by external CPNs. The
transition 1.1, 2.1 and 3.1 correspond to the activities in steps 1, 2 and 3 respectively in Table 9.
These transitions are enabled upon recognition of the corresponding functional operations in the
external CPNs such as: Remote Hook, Local IPC and Remote IPC. As shown in Figure 12, node
6 represents a successful recognition of the functionality. The remote Hook CPN recognizes the
Remote Hooking functionality, which is step one in table 9. This CPN has one recognition node
— named “Hook”. Each token in this recognition place represents the successful execution of a
remote hook. The color of such a token defines the following: ID of the process that performed
the hook, ID of the thread that is hooked, and the type of hook for an instance of the keystroke
hook (WH_KEYBOARD). This CPN recognizes several realizations of remote hooking such as:
DLL injection, direct windows hook and windows message parsing.

56

PID, TID,
idhook

Remote Hook CPN,

Local IPC CPN, Remote IPC CPN

PID, Buffer

A

y

3.1

A

y

11
[Remote Hook 21 { Remote IPC_Send |—
I idhook==keystroke [Local IPC D
then (PID,| TID) if type1 =[type2,
else empty PID, Endpoint, endpoint1&enpoint2 =|server&client, ID1=1D2
1.2
32 —1
@e Hook Local IPC
Senders

endpoint

PID, TID
. 3 PC (PID1, PID2) PID
if PID=PID1 && TID=PID2 | 4 _ 5 A 4 6
PID=PID2 && T|D=(l;!|%1) Hook IPC PID IPC Keylogging

Figure 12. High Level CP-subnet for the “Password Stealer” Functionality.

Detection rate. We experimented with two families of malware that include four variants
of the Win32.Banker and two variants of Win32.lespy. According to their description in
viruslist.com, these malware expose a functionality that we can recognize, i.e. password stealing
with IPC. Our prototype IDS successfully detected the password stealer functionality in all of the
malware that we tested.

False positive rate. To estimate false positives we experimented with several popular
programs: two messengers (QIP Infium, MS Messenger), two browsers (MS Internet Explorer,
Opera), a file manager (Far), an email client (Outlook Express) and an automatic keyboard
layout switcher (Punto Switcher). The results for place reachability of the CPN are summarized
in table 10. This data indicates that all tested programs performed “Hooking” functionality (place
1.2 was reached) and that most of them opened Remote IPC (place 3.2 was reached) and sent
some data. None of them connected to the process which they hooked to (place 4 was not
reached). Hence, we did not observe any false positives on this set of software.

These results demonstrate that it is more effective to detect complex functionalities rather
than primitive functionalities. This example shows the significant advantage of utilizing CPNs
for processes behavior recognition - that is their ability to trace the activity of several processes
in the context of a single CPN. Moreover, in the CPN, the necessary attributes propagate as
token fields allowing for system call association by process and thread ID. This makes if possible
to recognize an interposed (system-wide) activity such as password stealing that involves two
processes (the master process and the victimized process with an injected DLL).

Table 10. Place Reachability of CPN for "Password Stealer"

Remote Hook (1.2)| IPC established (2.3) Senders (8.2) Hook IPC (4) Keylogging (6)
Far manager Y
Internet
% v
Explorer
QIiP Infium \Y; Y

57

MS Outlook
v % %
Express
MS Messenger %
Opera \Y
Punto Switcher % %

5.3 Performance Overhead Evaluation

The scalability of our IDS depends on two main factors: the execution overhead of the
monitored processes and the overhead penalty of CPN generalization. The first factor determines
the quantitative restriction of our IDS, i.e. how many processes could be protected by our IDS.
The second factor defines the qualitative restriction, i.e. how generic our IDS should be to
address possible obfuscations.

Process execution overhead is mostly imposed by the system call monitor and to a much
lesser degree, by CPN processing.

The system call monitor driver is always active in the Windows Kernel. When a system
call of interest is invoked, the driver receives execution control from the system service
dispatcher, reads the system call input parameters, invokes the original system call, reads the
output parameters of the system call and returns execution control back to the dispatcher. Such
reading and saving attributes contribute the most to process execution overhead.

Each system call of interest that is invoked by a process gets processed by the CPN.
Hence, the more systems calls that we invoke per time unit, the higher the overhead that is
imposed by CPN processing. However, our CPN execution semantics appeared to be very
efficient in processing a large number of system calls.

Periodically, the CPN recognizer requests system call data from the monitor driver. Such
User/Kernel communication imposes additional overhead that is minimized due to buffering
system call data and desynchronizing system call input and output attributes. In other words, the
driver does not wait for system call execution and may send input parameters before receiving
the output parameters.

The IDS was executed in Windows XP Professional SP2 running on an AMD Athlon 64
X2 (2200 Mhz) processor with 2 Gb of memory. In our performance tests, we evaluated the
overhead imposed by tracing different tasks and applications. Moreover, we estimated the
performance penalty for tracing generalization functionalities caused by behavioral de-
obfuscation.

5.3.1 Run-time Performance Analysis

We measured overhead of system and application tasks using commercial benchmarks and
manual setup. To achieve consistent results on Windows XP, we deactivated the Windows
prefetcher, scheduled tasks and only accounted for warm runs (to minimize cache influence).
Some tests, such as file search and software installation were performed in a virtual machine
where we reverted the machine to the initial snapshot state for each run.

The test results for the Remote Shell functionality are presented in table 11. For the sake of
brevity, we only showa select set of standard tests that are representative of execution overhead.
The table depicts two system tasks and three application tasks. These tasks intensively utilized
OS resources (services) resulting in a large number of invoked system calls. Some tasks involved

58

user interaction with the GUI of the corresponding application. In these cases, we utilized
TestComplete software [54] to simulate user behavior.

We also ran a series of benchmarks using the well-known PC Mark 05 suite [55]. Internet
Explorer was tested using the Peacekeeper benchmark [55]. We ran each task/benchmark several
dozen times with identical initial conditions and computed the mean value and standard
deviation of the execution time/score assuming a normal distribution.

In order to estimate the qualitative scalability of our IDS we tested each task against two
CPN configurations: Basic and Full. The Basic configuration covers alternative realizations of
the functionality in question, but does not trace generic objects or obfuscations. In contrast, the
Full configuration traces the necessary functionality generalizations and addresses all three
obfuscations. To estimate the quantitative scalability, our IDS obsalvacdtive processes, but
CPN recognizer in all performed tests.

For each task, table 11 shows: base execution time when the IDS is disabled (no system
call monitoring or processing) and execution time when the IDS is enabled with both Basic and
Full CPNs recognizing the Remote Shell functionality (with monitoring all active processes).
One can see that even using the Full CPN IDS does not impose much overhead (less than 4% on
average), while monitoring more than 50 (all active) processes. In fact, we also ran the IDS with
highly loaded Windows XP (more than 100 processes) without any significant overhead. This
result shows sufficient scalability to protect all processes of a modern OS.

It could be seen that generalization and de-obfuscation does not impose a significant
overhead penalty (0.31% in average). Note that in some tests Base and Full CPN overheads were
considered to be invariant under a statistical hypothesis with 80% power. This shows that our
IDS is highly scalable and can address many additional behavioral obfuscations.

While the tasks in table 11 exposed some overhead, many other standard computationally
expensive tests did not show any execution overhead. For instance, Matlab did not show any
overhead because its benchmarks involved mostly memory manipulations and math
computations which utilize few system services resulting in a low number of invoked system
calls. Similarly, the MS Word search and replace task imposed significant overhead on the CPU,
but virtually none on the OS itself.

Table 11. Execution Overhead due to IDS

Execution (seconds / score) S
. ystem
Benchmark/Application IDS enabled Overhead
. . IDS call
(Task discretion)) - (%)
disabled | Basic CPN Full CPN count

< | Fi 58.96 62.01 5.2 (Basic

g | Files Search 63.66 +2.04| 22 B350 | 5e) 168

*é‘ (Search *.exe in c:\) +0.907 +1.04 7.96(Full)

] . . .

g | Application Installation) 15 5 | 1y came 113.6 115

@ | (Install DirectX 9.0c)

35.9 37.4
c | MSWord The same 418 | 95894
= (Save a big file as rtf) +0.787 +0.52
X
(ST i
= g WinRar _ 298 (Full)
o (Compress Window: 292 The same . 2.05 98,396
<C 296 (Basic)
system folder)

59

Internet Explorer 8
(Peacekeeper Browser 202 665 657 5.3 (Basic)
Benchmark, S S S 6.4 (Full
www.futuremark.com) (Score) (Score) (Score) 4 (Full
icati i 4.96 4.87
_ | Application loading The same 184 | 10,345
g (Mb/sec) +0.0132 +0.355
O .
2.0332 1.8892
% | Web page rendering The same 708
8 | (pages/sec) + 0.04672 +0.1088
S il i 36.827 35.746 100,508
% File Encryption . The same . 203
~ (Mb/sec) +0.134 +1.066
O 5.88 5.75 7843
- XP Startup The same 2.21
(Mb/sec) +0.022 +0.28
Basic CPN configuration
. . o 3.67%
) (with multiple realizations
Average execution overhead _ .
Full CPN configuration
, — . 3.98%
(with generalization and de-obfuscation)

5.3.2 Stress Test

The purpose of this test was to estimate the overhead of the IDS operating under a stress
attack. The stress attack could be conducted by a malware in order to congest the IDS. Such an
attack implies invoking many system call chains without closing handles causing the IDS to
process all of the objects and bind their handles. Such an attack would only be successful if the
malware could effectively congest our IDS before congesting the OS while keeping a low
execution profile. In the case of congesting the OS, such malware would be forced to expose
itself and could be detected and terminated by any system administration tool.

We utilized the Microsoft Performance Monitor (Perfmon) tool to measure the runtime
overhead of the IDS. In this test, we evaluated the performance penalty for countering the
obfuscation through object relocation. In particular, we measured the overhead imposed by the
handle and file tracing functionalities that were introduced by the corresponding generalization
algorithms. In this experiment, we ran accustom designed test program that opened 70 files
(kernel32.CreateFile) in the Windows system folder and for each file it duplicated 20,000
handles (kernel32.DuplicateHandle) and 20,000 mappings (kernel32.CreateFileMapping). As a
result, it creates 1,400,000 distinct file object handles and 1,400,000 mapping (section) object
handles.

Figure 13 shows CPU usage for test program and our IDS module. Our results indicated
that the test program consumes a substantial amount of CPU cycles (around 90%), while the IDS
recognizer module imposed less than 2% overhead on average for the trace object relocation
activity. Such a drastic difference in overhead can be attributed to the fact that each object
creation and handle allocation imposes a certain amount of overhead due to parsing/updating the
internal Kernel structures, manipulating low level objects by Object Manager and pre-processing
system call attributes in the API implementation. Even for a simple handle duplication, the
system call invocation requires user/kernel switching that is expensive for Windows OS. In
contrast, the CPN handle binding only requires user mode memory manipulations with highly

60

efficient algorithms, e.g. balancing trees, or simple pointer resolution, e.g. hash tables. Hence, for
each handle duplication or object creation the CPN imposes significantly less overhead.

100

90 +
80 +

—=—Process Time IDS

70 +

—+—Process Time Tester

60 +
50 1
40 +

CPU usage (%)

30 +
20 T

10 +
0 4= "#"“#"“““'¢“‘"‘/’.I\““"/I\‘“/.\“T“
12 60015 232003 400803 572944 742752 896683 1056360 1185633 1330015

of handles

Figure 13. Handle Duplication Test
5.4 Conclusions

This chapter presented the experimental results for the signature-based prototype IDS. This
IDS was evaluated on hundreds of legitimate programs and dozens of malware that had various
types of replication engines and payloads. In general, the experimental results indicate low false
positives and negatives. However, the experiment demonstrated the variability in discriminatory
power of various functionalities that are frequently exposed by malware. The experiment also
indicated that self-code inject, self-mailing and remote shell are never exposed by benign
software, thus they have near perfect discriminatory power and can be used for malware
detection. However, “Executable Download and Execute” is exposed by benign software such as
web browser has low discriminatory power, hence it cannot be recommended for use in
signature-based detection. Regardless of the discriminating power, the experiment successfully
demonstrated the ability to reliably detect individual functionalities of any complexity.
Additional experiments indicated that it is more effective detecting complex functionalities
rather than primitive functionalities.

Finally, we performed a series of experiments to estimate the IDS runtime overhead using
well-known benchmarks and manual setup. The results indicated two practical advantages. First,
the IDS caused low overhead, which was less than 4%. Second, the overhead increase due to the
anti-obfuscation generalization constituted only 0.3%. Such a low overhead difference between
original and generalized CPNs indicates that an expert can always address many more
obfuscation techniques with negligible execution cost.

61

6 SUMMARY AND FUTURE WORK

We are witnessing an on-going arms race in the splage. The ever-increasing resources
invested in the development of computer defenses are apparently outweighed by low-cost efforts
of the hacker community. The term "asymmetric warfare” is perhaps the best way to describe the
existing shaky balance between defensive and offensive forces in cyberspace. This report
presented research on semantic approaches to malware behavior analysis. Such research aims at
enhancing computer defenses, making them invulnerable to new, mutating and obfuscated
malware. The developed approach is implemented and used to develop scalable IDSs.

In the second section, we studied modern threats and current anti-virus technologies. The
analyses indicated that commercial host based malware detection technologies are not effective
against sophisticated self-mutating malware.

In the third section, we introduced a taxonomy of malicious functionalities of typical
malware that could be attributed to the essence of malicious activity. In particular, we analyzed
basic self-replication mechanisms as well as several malicious payloads. Three types of the self-
replication mechanism were discussed including: binary self-replication, server-side replication
and client-side replication. Moreover, a wide range of malicious payloads was classified and
analyzed. The study indicated that self-replication is an example of highly discriminative and
indicative malicious functionality. Obviously, there is no reason for legitimate software to self-
replicate since it can be distributed by legitimate means (e.g. downloads and install, trial etc.).
Hence, self-replication has become of great interest to the network defense research community.
One of our goals was to model self-propagation in order to investigate and estimate the possible
impact of self-replicating software on network resources.

In the fourth section, we stated that malware maliciousness can be attributed to its goals,
which can be viewed as high level functionalities. While a particular functionality may have
several realizations, each realization would constitute a certain behavior. The behavior of each
malware can be detected dynamically by observing its execution in a particular domain such as
the system call domain. However, it is more important to infer high level functionality of the
malware, rather than its simple behavior. To achieve this, one needs to address the three
following aspects: signature expressiveness, vulnerability to behavioral obfuscation, and run-
time efficiency of signature matching.

We justified the separation of the specification and detection domains. We presented a new
approach for formal specification of the malicious functionalities based on ADs defined in an
abstract domain (i.e. functional objects). We developed and tested an automated procedure
enabling human experts responsible for the formulation of malicious behavioral pattern to
concentrate on conceptual realizations omitting certain implementation details.

We analyzed and classified possible behavioral obfuscation techniques, both inter-process
and intra-process, that can compromise existing BBIDS. As a mitigating solution, the concept of
specification generalization that implies augmenting (generalizing) otherwise obfuscation prone
specification into more generic obfuscation resilient specification was suggested. We developed
generalization algorithms making our AD immune to obfuscations.

We proposed a methodology utilizing a CPN for recognizing functionalities at the system
call level. Moreover, an approach for the incorporation of information flows into the CPN to
achieve fine-grained recognition was developed. Finally, we proposed an automatic procedure

62

for converting a given AD into a CPN that recognizes the defined functionality in the system call
domain, enriched with information flow data.

Our experimental results for a signature-based prototype IDS are presented in the 5th
section. The IDS was evaluated on hundreds of legitimate programs and dozens of malware. In
general, the experimental results indicate low false positives and negatives. However, the
experiment demonstrated the variability in the discriminatory power of various functionalities
that are frequently exposed by malware. The experiment indicated that self-code inject, self-
mailing and remote shell are never exposed by benign software, thus they have near perfect
discriminatory power and can be used for malware detection. However, “Executable Download
and Execute” is exposed by benign software such as a web browser and has low discriminatory
power, hence it cannot be recommended for a signature-based detection. Regardless of the
discriminating power, the experiment demonstrated the ability to reliably detect individual
functionalities of any complexity. Additional experiments indicated that it is more effective to
detect complex functionalities rather than primitive functionalities.

Finally, we performed a series of experiments to estimate the IDS run-time overhead using
well-known benchmarks and manual setup. The results indicated two practical advantages. First,
the IDS causes low overhead which less than 4%. Second, the overhead increase due to the anti-
obfuscation generalization constitutes only 0.3%. Such a low overhead difference between the
original and generalized CPNs indicates that an expert can always address many more
obfuscation techniques with negligible execution cost.

The experiments proved that signature-based behavioral approach appeared to be effective
in detecting malware activity in the system call domain. While the anomaly propagation concept
certainly has its advantages in decreasing false positive rate, it was observed that all such
anomalies could be linked to various malevolent functionalities and detected as behavioral
signatures. Indeed, in the behavioral domain the threat model is known and could be viewed as a
set of malicious functionalities. This is especially true when the threat domain is represented as
malicious functionalities and the normalcy domain as legitimate functionalities. Due to specific
and well established goals, malware exhibits a very limited number of malicious functionalities.
On the other hand, the number of legitimate functionalities is only limited by the imagination of
software makers. Finally, a malicious functionality (threat) is known and deterministic and the
only item that is not determined is a realization of the functionality (i.e. behavior). Hence, it is
critical to specify and detect a functionality not just a behavior.

For future research, we plan to expand the list of possible behavioral obfuscation
techniques and address them into the AD generalization. We intend to explore the increasing role
of behavioral metamorphism as it implies the dynamic scattering of malicious functionalities
among different benign processes so that none of the processes would have a consistent system
call pattern, potentially resulting in offensive information warfare. We are interested in dynamic
AD construction from the monitored behavior of processes of interest. First, this would allow for
automatic retrieval of the functionalities for a particular program. Establishing a set of common
functionalities representing the normal operation of a computer network, would result in a
"customized normalcy profile" that will be invaluable for the development of dependable IDS.
Second, the expansion of the data base of malicious behavioral signatures on the basis of
automatic functionality detection, would result in enhanced misuse based IDS. The deployment
of behavioral anomaly-based and misuse-based IDS would drastically improve computer
defenses for "high value targets”

63

We believe that detecting malicious functionalities using generic signatures is the most
promising approach. Such an approach raises the semantics of the detector from behavior to
functionality, allowing us to identify classes of malware that achieve the same practical
malicious goals. In other words, malware functionality represents the essence of maliciousness.
Hence, detecting malicious functionality is the most accurate and precise method for
distinguishing malware from benign software. Moreover, the proposed technology for dynamic
functionality detection (CPN) was proven to be efficient enough for practical use in IDS.

64

REFERENCES

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Internet Systems Consortium Domain Survey, https://www.isc.org/solutions/survey,
accessed 2010

Tokhtabayev A. G., Skormin V. A. and Dolgikh A. M., “Detection of Worm Propagation
Engines in the System Call Domain using Colored Petri Nets 'Proc. 27th IEEE
International Performance Computing and Communications Conference (IR@Q&)n,

TX, Dec. 2008

Skormin V., Volynkin A., Summerville D., Moronski J. “Run-Time Detection of
Malicious Self-Replication in Binary ExecutableXjurnal of Computer Securijtyol. 15,

no. 2, pp. 273-301, 2007.

Wells, Joe (1996-08-30). "Virus timeline". IBM. accessed 2008-06-06.

"Defining Malware: FAQ", technet.microsoft.com, accessed 2009-09-10.
http://www.securelist.com/en/threats/detect/malware, Malicious Programs, accessed 03-
Dec-2010.

http://www.symantec.com/business/security_response/glossary/, = Symantec Glossary,
accessed 03-Dec-2010

http://www.virusbtn.com, Virus Bulletin Magazine: Glossary, accessed Dec-2010

Szor, Peter, The Art of Computer Virus Research and Defengaldison-Wesley, 2005.
Anti-Virus Comparative, “Proactive retrospective test”, accessed May 2010

Russinovich M. E., Solomon D.AMicrosoft Windows Internals, Fourth Edition,
Microsoft Press, 2005.

Skoudis E., Zeltser LMalware: Fighting Malicious Code, Prentice-Hall, 2003.
Tokhtabayev A., Skormin V., Dolgikh A., Beisenbi M. and Kargaldayeva M., “Detection
of Specific Semantic Functionalities, such as Self-Replication Mechanism, in Malware
Using Colored Petri Nets”, In Proc. SAM’%as Vegas, NV, July 2009

Tokhtabayev A., Skormin V. and Dolgikh A. “Expressive, Efficient and Obfuscation
Resilient Behavior Based IDSI5th European Symposium on Research in Computer
Security (ESORICS 201 ®eptember, 2010 Athens, Greece.

Zou C. C., Gong W., Towsley D.: “Code Red Worm Propagation Modeling and Analysis”,
In 9th ACM Conference on Computer and Communication SecWashington DC,
2002.

Miller Ty “Reverse DNS Tunneling Shellcode” presented at Black Hat USA,
Las Vegas, 2008

Russinovich M. E., Solomon, D.AWindows Internals: Including Windows Server

2008 and Windows Vist4, Fifth Edition, Microsoft Press, 2009.

Alexander Sotirov, “Bypassing Memory Protections: The Future of Exploitati@ENIX
Security August 2009, Montreal

“Symantec Global Internet Security Threat Report trends for "20@6lume XV,
Symantec Corporation, April 2010

Sutton Michael, “Client Side Attacks Come of Age”, ACSAC 2007

Chien Eric, “Techniques of Adware and Spywaré@/hite paper: Symantec Security
Response, in proceedings of VB20D&blin, Ireland, 2005

Porras, P., Saidi, H., Yegneswaran, \Cofificker C analysis Technical report,

SRI International 2009

65

23.

24,
25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

Hoglund G. and Butler J.Stbverting the Windows Kernel — Rootkits, Addison
Wesley, 2006

"W32.Stuxnet DossierSymantec Corporation, October 2010

Matrosov Aleksandr, Rodionov Eugene, Harley David and Malcho Juraj "Stuxnet under
the microscope", ESET LLC, September 2010

Parampalli C., Sekar R. and Johnson R. “A practical mimicry attack against powerful
system-call monitors”In Proc. ACM Symposium on Information, Computer and
Communications Security (ASIACCS '03)08

Kumar S. and Spafford E. H. “A Pattern Matching Model for Misuse Intrusion Detection
Approach”. In Proc. of the 17th National Computer Security Conferergg4

Helmer Guy, Wong Johnny, Slagell Mark, Honavar Vasant, Miller Les, Wang Yanxin,
Wang Xia, Stakhanova Natalia “A Software Fault Tree and Colored Petri Nets based
specification, Design and Implementation of Agent Based Intrusion Detection Systems”.
International Journal of Information and Computer Secunfgl. 1, no 1/2, pp. 109-142,
2007

Ho Y., Frincke D. and Tobin D., “Planning, Petri Nets, and Intrusion Detechion”
Proceedings of the 21st National Information Systems Security Confenyséal City,
Virginia, October 1998.

Eckmann S., Vigna G. and Kemmerer R. “STATL: an Attack Language for State-based
Intrusion Detection”,in Proc. of the ACM Workshop on Intrusion Detectidtihens,
Greece, November 2000.

Cuppens F., Ortalo R. “LAMBDA: A Language to Model a Database for Detection of
Attacks, in Proc. Third International Workshop on Recent Advances in Intrusion
Detection October 02-04, 2000

Michel, Cedric; Me, Ludovic “ADeLe: An Attack Description Language for Knowledge-
based Intrusion Detectiontn Proc. International Conference on Information Security
Kluwer, June 2001.

Pouzol, Jean-Philippe ; Ducassé, Mireille “From Declarative Signatures to Misuse IDS”, In
Proc. Fourth International Symposium on Recent Advances in Intrusion DetddtiGis

2212, Springer, 2001, pp. 1-21.

Ning, P.; Jajodia, S.; Wang, X. S. “Abstraction-Based Intrusion Detection In Distributed
Environments”.In ACM Transactions on Information and System Secwity. 4, No. 4,
November 2001, pp. 407-452.

Meier Michael; Bischof Niels; Holz Thomas “SHEDEL - A Simple Hierarchical Event
Description Language for Specifying Attack Signatures”. Pnoc. 17th International
Conference on Information Securigiuwer, 2002, pp. 559-571.

Bernaschi M., Grabrielli E., Mancini L. "Operating System Enhancements to Prevent the
Misuse of System Callsin Proc. ACM Conference on Computer and Communications
Security pp. 174 — 183, 2000.

Kang D., Fuller D., and Honavar V. “Learning classifiers for misuse and anomaly
detection using a bag of system calls representatior’roc. 6th IEEE Systems Man and
Cybernetics Information Assurance Workshop (IAYg) 118-125, 2005.

ThreatFire. http://www.threatfire.com/, accessed 2009

Bayer Ulrich at al., “Dynamic analysis of malicious codeyrnal of Computer Virology

vol. 2, no. 1, pp. 67-77, 2006.

66

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
51.

52.
53.

54.
55.

Christodorescu M., Jha S. and Kruegel C., “Mining specications of malicious behlavior”,
Proc. ACM SIGSOFT Symposium on the Foundations of Software Engine&uiggst
2007.

Martignoni Lorenzo at al., “A Layered Architecture for Detecting Malicious Behaviors”, In
Proc. 11th International Symposium On Recent Advances in Intrusion Detection
(RAID’08), Boston, MA, Sep. 2008

United States Patent 6973577 B3ystem and Method for Dynamically Detecting
Computer Viruses Through Associative Behavioral Analysis of Runtimé€, Stattor
Kouznetsov, Dec 6, 2005

Cavallaro L., Saxena P. and Sekar R. “On the Limits of Information Flow Techniques for
Malware Analysis and ContainmenDetection of Intrusions, Malware and Vulnerability
Analysis (DIMVA) 2008

Visual Paradigm for UML http://www.visual-paradigm.com, accessed 2009.

Linz Peter An Introduction to Formal Language and Automata’, Fourth Edition,
Jones & Bartlett Pub, 2006.

Jones N. D. at al.. “Complexity of Some Problems in Petri N€t&oretical Computer
Science, 4:277-299, 1977.

Jensen KurColoured Petri nets (2nd ed.): basic concepts, analysis methods and
practical use volume 1 Springer-Verlag, Berlin, 1996

Newsome J. and Song D. “Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity softwdneProc. 12th Annual Network
and Distributed System Security Symposium (NZ28pb.

Egele M., Kruegel C., Kirda E., Yin H., and Song D. “Dynamic spyware analggs’oc.
USENIX Annual Technical Conferendeine 2007.

Volpano D. M. “Safety versus secrecy”, In SASD9.

Bayer Ulrich, Comparetti Paolo Milani, Hlauschek Clemens, Kruegel Christopher, and
Kirda Engin “Scalable, Behavior-Based Malware Clustering” in Proc. NDSS, 2009

Moser A., Kruegel C., and Kirda E.. “Exploring multiple execution paths for malware
analysis”, In proc. IEEE Security and Priva@p07.

UML, http://www.uml.org/, accessed 2010

TestComplete, http://www.automatedga.com/, accessed 2010

PCMark’05, http://www.futuremark.com/, accessed 2010

67

APPENDIX A — AD FORMALIZATION

Firstly, let us introduce some basic notations we use in the formalization:
O - set of OS objects.

M - set of object manipulations (operations).

Object or manipulations have attributes

AttList: OO M - U, such that

OxOO : AttList(x) - set of attributes of the object x.
OyOM : AttList(y) - set of parameters of manipulation y.
AttSpace O x AttLis{(O) 0 Mx AttLis{ M) - U’ such that

OxOO,DattDAttList(X) : AttSpacdx att) - set of all possible values (space) of an attribute
att of an objectx.

OyOM,DattdAttList(y) : AttSpacd y att) - set of all possible values (space) of a parameter
att of a manipulatiory.

The set of object® includes both subsystem level objects (e.g. “File mapping”, “Socket”)
and Kernel objects exported to the user mode (e.g. “File”, "Process”, "Find file”). The set of
object manipulationsM is induced by API functions as well as system calls performing the
manipulations. The object manipulation parameter set is generated by attributes of semantically
equivalent API functions that export the particular manipulation. The function AxfListirns
list (set) of parameters of the operation

Based on the above terms, functionality is defined as an Activity Diagram (AD) in the
following form:

F=(Nodes,Arcs,Assign,Vars)

(A-1)
where,
Vars - a set of local variables used in the object manipulations.
Nodes=[Ind State [Seudo ififalfinal } is a set of AD nodes such that,
State =Instances Mahipulations Is a set of Stateodes, where
Instances is a multi-set of object instances defined as:
Instances :{(Ob,Attr)|[ObDO]}, (A-2)

where
[i 01.k] [NameO AttList(OB]

Attr = { (Name, Valu
r {(ame, Valug [Value O{AttSpacd Ob,Nam¢O Vars } 0 Valpe T()x D(Vars]

(A-3)

wherek is the number of critical attribute3() abstract transformation of the input
variable.

® U — universal set (set of all sets)

68

In the setinstances each element represents a particular object instance which is
created in the context of the functionality execution. An object instance consists of the object
name Qb) and a set of attributesfr). Each object-th attribute Attr is represented by a tuple

(Name, Valug . The first element of the tuple represents the name of the attribute that is unique

for a particular object. The second element could define the following: value set from attribute
domain, local variable or transformation of the local variable. Transform&f)as utilized for
specifying informational dependency (flow) between attributes of the operations. Such
transformation should not be defined to specify any information flow, e.g. data dependency of
any nature including control related flows.

The variables are assigned during functionality execution. The set of attributes contains
only those attributes that are critical for functionality execution. For example, in the functionality
presented in Table 1, the instance of the “Process” object (created by CreateProcess) can be
specified as:

5 (bInheritHandles, TRUE (STARTUPINFO.dwFlags, STARTF_USESTDHA
rocess
(STARTUPINFO.hStdInput) STARTUPINFO.hStdOutgut s (A-4)

Manipulations - the set of invoked manipulations that is defined as:

Manipulations ={(M,Param$[m OM]} (A-5)

where

Params= {(Name Valug

[i 01.k] [Name [AttList(M), }

[Value O{AttSpacdM,Name) O Vars } Oh =T(x), xOVars] (A6)

where k is the number of critical parameters, T() abstract transformation of the input
variable.

In the setManipulations each element represents an object manipulation invoked by
the functionality. A manipulation is defined by the operation name and the set of input
parameters. Every parameter is represented by a parameter name and a parameter value set that is
a subset of the corresponding parameter set or that could be specified as a local variable or its
transformation. The set of parameters comprises only those critical parameters that determine
functionality.

Ind - a set of process identities, such that each element of this set represents a local 1D
of the process that performs the object operation. Hence, every distinct process involved in the
functionality has its unique index form the #&d. This addresses the third requirement of the
specification allowing for specifying an inter-process functionality.

Pseudo - pseudo nodes that route the control flow, presented by: decision, merge, fork or
join.

Pseudo ={x|Type(¥ O{ decision merge fork J(}ﬁr (A7)

where Typd ¥ is the type of the node x.

69

Arcs=ControlFlow HahdleFlow is a set of directed arcs connecting operation nodes
as a union of mutually exclusive sets ControlFlowand HadnleFlow .

HandleFlow [Nodesx Node is the set of arcs (handle arcs) that correspond to execution
flow with handle inheritance. A handle arc indicates that the destination operation (node) utilizes
the same object instance handle as a source operation and is executed right after the source. In
other words, the source and destination operations are performed on the same object instance and
are involved in the same manipulation session. In terms of the UML 2.x activity diagrams syntax
[14], such arcs could be viewed as a fusion of the object flow with the control flow.

ControlFlow [0 Nodesx Node is a set of directed arcs that define the control flow
without handle inheritance. The arc from this set indicates that the destination operation is
executed right after the source operation. Note, such arc simply shows the execution order and
does not indicate any data binding (via handle or attribute).

Assign :Arcs - Expressionl [is a variable assignment and guard function such that,

AssignmentexpressioBourcd g State

Assign (a) =
'on (a) {GuardexpressiorSource(30Pseudo

, DaOArcs : Sourc 3 (A-8)

Assignment expressim{zv": out ‘\‘}D Varsut] OutPa(Sourde)é} (A-9)

whereOutPar(X is a list of output parameters of object operation x.

This function defines a variable assignment expression for corresponding arcs having the
Statenode as a source. The assignment expression utilizes output parameters of the arc’s source
operations to assign required local variables. Such parameters may include object descriptors
(handle, memory offset, etc) of the source operation. If the source of the arc is a Pseudo state
node, this function determines a guard expression as defined in the original UML 2.0 activity
diagrams. Note that th&ssign function does not define an expression for every arc, but for
those where it is necessary.

70

APPENDIX B - REMOTE IPC ADS

(EndPoint, ID)

b
b 1
Socket
1 ‘ V1|=Handle
Socket l l
7 5 7 q
Vi=Handle Named Pipe Named Pipe
2 Name=ID, dwOpenMode= Name=ID, dwOpenMode=
’7 PIFEJ‘-\CCESSiouTEC‘UND FIFEi}\(‘(‘ESb‘?OUTBC‘UND
£ =
3 ‘] Vi=Handle V2=Handle
Listen q
T
Mail Slot Connect
name=ID Host=ID[0]
Port=ID[1]
=
Type:=MailSlot =
et Type:=Mailslot
Type:=Socket Handle:=ref

e Handle:=V1 e
Type:=Socket
Handle:=V1

e

Figure B-1. Remote IPC- Create Operation

(Type, Handle)

Il Pipe or Mailslot else a Type==Socket
Il 1s the pipe Duplex ?
pe)&(len(Handle)==2)
andle[0]
1 else V=Handle 2
q Recv
ReadF"e SocketHandle=Handle
PipeHandle=V IpBuffer=Buffer
Buffer=IpBuffer b Buffer =|/pBuffer

(Buffer)

Figure B-2. Remote IPC — Receive Operation

71

(Type, Handle)

Type==Socket a Type==Mailslot
/I No wait operation for
Mailslots
Type==Pipe
b
Socket
Accept
SocketHandle=Handle len(Handle)==2
1 One|way pipe
3 11 Duplex pipe
2 - 3 .
Connect Pipe Connect Pipe
PipeHandle=Handle[0] PipeHandle=Handle[1]
Handle:=ret d
y .
f
> -

Figure B-3. Remote IPC —Wait Operation

(Buffer, Type, Handle)

a

else Type==Socket
II s the pipe Duplex ?
If (Type==Pipe)&(len(Handle)==2)
then V=Handle[1]
else V=Handle 5
WriteFile Send
PipeHandle=V SocketHandle=Handle
IpBuffer=Buffer IpBuffer=Buffer

Figure B-4. Remote IPC — Send Operation

72

APPENDIX C - GENERALIZATION FUNCTIONALITIES AD

DupH
DupP

a/_

Y
5 4
DuplicateHandle
DupH
SourcePID=GptPID[SourceProcessHandle] DupP
TargetPID=GetPID[TargetProcessHandle]
OriginHandlefin

{x : SourceHa
DupH[OriginH
DupP[OriginH

ndle in DupH[x][SourcePID]}
andle][TargetPID]+=TargetHandle
andle]+=TargetPID

Y
b

»

Figure C-1. Handle Duplication Functionality

=

DupH
DupP

L — Depth Value
PList

PList

-

PID in
PList

¢

Process
InheritHandles = TRUE

Px=PROCESS_INFORMATION.dwProcessID
if (Gen[PID]<L):
PList=[Plist, Px]
Gen[Px]=Gen[PID]+1

Figure C-2. Process Generation Functionality

A

PList

73

PList

PList

Mid- PID of the master
(injestor) process

T_pid - PID of the process being injected
T_tid — TID of the thread being injected

Open Process

DesiredAccess=
PROCESS_CREATE_THREAD.

&PROCESS_VM_WRITE

PList

Mid = PID // PID of the master (injector) process

T_pid = OpenedProcess // PID of the opened
/process for di injection

Allocate Memory
flProtect=PAGE_EXECUTE_WRITECOPY

Addr=Base Address 7 Set Windows Hook
3—— idHook=WH_KEYBOARD. PIDin
Write Process Memory ~HOOKPROC-TargelDLL Neme HookPuh | PList
5 - Mid Mod-TargelDLL_Address
oseAddress-Addr " TargelDLL_Add

Buffer=TargetDLL_Name

T_pid=GetPIDofThread(ThreadID)
1/ Get PIDjof the thread being hooked

Create Remote Thread

StartAddress=Kemel32.LoadLibrary
Paramater-Addr

.

Plist=[Plist, T_pid]

Figure C-3. Code Injection Functionality

74

APPENDIX D - FUNCTIONS UTILIZED IN GENERALIZATION ALGORITHMS

AddParallelFunct(F.AD OriginAD, F.AD NewAD, OriginAD.Nodes Fork,
OriginAD.Nodes Join)

It adds AD of NewAD functionality to AD of OriginAD functionality as a parallel flow
that starts right after the node Fork and joins to Origin AD just before the node Join. F.AD means
set of AD of all functionalities.

NewNode=AddParalleINode(F.AD OriginAD, O M NewOperation, OriginAD.Nodes
Fork, OriginAD.Nodes Join)

Creates node representing an input operation (NewOperation) and adds it to OriginAD
functionality as a parallel flow that starts right after the node Fork and joins to Origin AD just
before the node Join. This function returns added node NewNbdeév is a set of objects and
manipulations.

NewNode=AddNextNode(F.AD OriginAD, O M NewOperation, OriginAD.Nodes
ParentNode)

Creates node representing an input operation (NewOperation) and adds it to OriginAD
functionality right after the node ParentNode.

AttValue=GetAttributeValue(AD.Node.State Node, AttList(Node) Attr) |

Returns value of the attribute Attr of the node Node.

SetAttributeValueExpression(AD.Node.State Node, AttList(Node) Attr, String
Expression)

Sets attribute expression for Attr attribute of the state node Node of the current AD.
| SetNodePIDExpression(AD.Node.State Node, String Expression) |

Sets an expression assigning PID of the node Node.

| NewVarName=CreateNewVar(InputAD.Arcs Arc, String Expression) |

Introduces a new variable to the current input AD arc (Arc) that is defined with the
assignment expression (Expression). The assignment expression may use output attributes of the
parent of the arc and other global variables. This function returns name of the newly created
variable. By current AD we mean AD being input of the algorithm.

| InputAD.Nodes.State Node=GetAssignNode(InputAD.Vars Var) |

Searches for and returns the node in current AD which output arc assigns variable Var.

75

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ActiveX — framework for defining reusable software
AD — Activity Diagram

ASLR — Address Space Layout Randomization
BBIDS — Behavior Based Intrusion Detection System
CPN — Colored Petri Net

CPU - Central Processing Unit or Processor

C&C — Command and Control (botnet C&C)

DEP — Data Execution Prevention

DNS — Domain Name System

FTP — File Transfer Protocol

GSR - Gene of Self Replication

ICMP — Internet Control Message Protocol

ICQ — Messaging protocol

IDS — Intrusion Detection System

IRC — Internet Relay Chat

MIME — Multipurpose Internet Mail Extensions

MS — Microsoft Corporation

NIDS — Network based Intrusion Detection System
OS - Operating System

PLC — Programmable Logic Controller

TCP — Transmission Control Protocol

76

