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CHAPTER 1 

EXECUTIVE SUMMARY 

The principal goal of this research program was to develop a systematic methodology for the 

design of feedback control schemes capable of shaping the response of complex dynamical sys- 

tems. A continuation of an ongoing research effort, the specific research program we proposed 

was aimed at the development of a systematic control methodology for lumped and distributed 

parameter systems, applicable to both the equilibrium and the nonequilibrium cases. The typical 

design objectives involve designing feedback schemes which achieve one or more of the follow- 

ing: asymptotic tracking, an appropriate form of internal stabilization, and asymptotic disturbance 

rejection. 

For linear and nonlinear systems, stability has been classically defined as closed-loop exponen- 

tial stability of an equilibrium. In the equilibrium case, when taken together these form the control 

task classically known as the servomechanism or output regulation problem, a problem which is 

one of the defining problems of classical automatic control. For linear multivariable systems this 

problem was addressed in very elegant geometric terms by Davison, Francis. Wonham [26, 28] and 

others. In particular, one of the most relevant contributions of [28] was a clear delineation of what 

is known as internal, model principle, i.e. the fact that the output regulation property is insensitive 

to plant parameter variations "only if the controller utilizes feedback of the regulated variable, and 

incorporates in the feedback path a suitably reduplicated model of the dynamic structnre of the 

exogenous signals which the regulator is required to process." Conversely, in a stable-closed loop 

system, if the controller utilizes feedback of the regulated variable and incorporates an internal 

model of the exogenous signals, the output regulation property is insensitive to plant parameter 

variations. 

There is now an extensive literature on output regulation for nonlinear control systems. As 

we describe, part of our ongoing research effort is the design of internal models, using immersion 

techniques, for attenuating disturbances and tracking reference trajectories for nonlinear control 

systems. This effort was transitioned by Boeing to the development of improved (e.g., lower cost, 

lower weight) actuators for UCAV's. a transition which has been tested with success using their 
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X-45A simulator. 

In general, there are important existing and emerging DOD research and development pro- 

grams which will require nonequilibrium control methodologies. While flight control in a trim 

condition is a typical problem of output regulation near an equilibrium setting, tailless or nearly 

tailless aircraft, such as UCAV's, will also have multiple nonlinear axes and a smaller domain of 

stability than conventional aircraft, involving nonlinear trajectories which cannot be regarded as 

small perturbations of an asymptotically stable equilibrium. Moreover, these aircraft enjoy less 

drag and more agility, and require less control to produce significant nonlinear excursions. Taking 

advantage of these nonequilibrium nonlinearities in tailless aircraft also promises to impact afford- 

ability by enabling the use of smaller, low cost actuators to enhance agility and maneuverability. 

As another motivation, the design of aircraft capable of longer strike capabilities has become 

more important as access to a worldwide network of air bases diminishes,. These aircraft will 

typically need to weigh less and have increased agility. Both of these desirable characteristics 

will need controller designs which are able to tolerate, or even incorporate, significant nonlinear 

excursions. As another example, the JDAM kit, which can convert conventional missiles into 

smart weapons, induces a periodic, spinning, motion during the end game in order to improve 

accuracy as well as to acquire additional information about the target. Underscoring the nonlinear, 

nonequilibrium nature of this problem is the very existence of (locally) isolated, stable periodic 

orbits, a nonlinear phenomenon which has no linear counterpart. Such examples also point to an 

important feature of nonequilbrium controller design which is desirable for existing and emerging 

DoD technologies, the potential to take advantage of - rather than to attenuate - nonlinear effects. 

Of course, one of the essential features of being able to shape the steady-state response of a 

nonlinear feedback system is to clearly delineate what the steady-state response of a control sys- 

tem is. To this end, we proposed developing this concept of steady-state response for input-output 

feedback systems that typically arise in in problems of non-equilibrium nonlinear feedback sys- 

tems. After considerable research, we have accomplished this research task, using the notion of the 

limit set of a set, rather than the more customary concept of the limit set of a point, pioneered by 

G. D. Birkhoff. This broader concept was used by Ladyzhenskaya in her study of the two ditnen- 



sional Navier-Stokes equation and by Hale and Sell in their study of general infinite dimensional 

dynamical systems. 

As discussed above, another key to output regulation is the design and use of internal models 

to yield asymptotic proxies for state feedback laws which would be classically designed using 

knowledge of states and uncertain parameters, but which can, in fact, be unobservable from the 

measured output. Our current design philosophy is ihe parallel design of two separate controllers. 

The first controller, commonly referred to as the internal model, generates an asymptotic proxy for 

the input which renders invariant a set on which the error variables are zero. Under an appropriate 

system invertibility hypothesis, this input is unique and is typically a function of slate variables 

and uncertain parameters. For this reason, the internal model contains an immersed copy of the 

exosystem and a set of uncertain parameters but is itself detectable using a proxy for the desired 

input as the output of the internal model. In the classical local case, we have shown that the second 

system locally exponentially stabilizes the interconnection of the plant and the first controller. In 

the nonequilibrium case, it renders the invariant set attractive. 

The other focus of our proposed research program focused on the problem of output regulation 

for linear and nonlinear distributed parameter systems. The incorporation of linear and nonlin- 

ear distributed parameter effects also presents an opportunity in the control of complex dynamical 

systems. Indeed, flow control provides examples of the potential impact of nonlinear control of 

distributed parameter systems involving both equilibrium and nonequilibrium cases. For example, 

active control of flutter and of buffeting would increase the life-cycle of aircraft through suppress- 

ing buffet loads on fighter aircraft with vertical tails as well as on the tails of commercial and 

transport aircraft. Our research efforts focused on developing a systematic design methodology 

for the output regulation of linear parabolic boundary control systems in n spatial dimensions. For 

set-point control problems for lumped systems or for distributed parameter systems evolving in 

one spatial dimension, the exosystem generating constant signals is finite dimensional. In higher 

spatial dimensions, however, it often will need to be infinite dimensional and we needed to begin 

with an extension of the more classical cases to this setting. We proposed two approaches to this 

research task. The first was based on the geometric theory of the regulator equations, and has been 

successfully researched for bounded input and output operators in the literature. In this report, we 

also describe our research in the unbounded case. The second approach is based on compensator 



design using zero dynamics, ultimately leading to an infinite dimensional compensator. 

Another of our longer term goals was the development of a theory of nonlinear output regula- 

tion as parallel as possible to the theory we envision for linear problems. While output regulation 

is an asymptotic theory and the long time existence of solutions to open-loop nonlinear distributed 

parameter systems remains extremely challenging, we have been successful in establishing long 

time existence and asymptotic behavior for the control of certain examples or system classes us- 

ing particular feedback design methods ([20, 21, 16, 17, 19, 18]). Still, the control of nonlinear 

distributed parameter systems is sufficiently difficult that our proposed research efforts have fo- 

cused on local results for output regulation with respect to signals and disturbances generated by- 

finite-dimensional exogeneous systems, where techniques such as center manifold methods can 

yield some powerful insights. We emphasize the fact that these local techniques are not simply an 

appeal to linearization. Even in the lumped nonlinear case, elementary examples show that a so- 

lution to the problem of output regulation for the linearization does not solve the output regulation 

problem for the nonlinear problem. 



CHAPTER II 

RESEARCH TASKS AND ACCOMPLISHMENTS 

2.1    Output regulation for lumped nonlinear systems 

An essential aspect of output regulation, in both the equilibrium and the nonequilibrium cases. 

is the development of a model for a system which generates the disturbances to be rejected or the 

signals to be tracked. The generators of these two types of signals can be connected in parallel, 

so that we typically assume there is one exogenous signal generator. One of our objectives was 

to investigate the properties of exogenous signal generators, as well as to delineate the properties 

of bounded signals which can be generated by exogenous systems with an appropriate form of 

stability. The goais of this research thrust were described in the body of our proposal. In the 

classical equilibrium approach to output regulation, in order to produce periodic exogenous signals 

one is forced into the unecessary compromise of using an exosystem with an equilibirium, such as 

the harmonic oscillator. As an extreme example, in the nonlinear case, every perioidic singal, with 

a given period, is some nonlinear output of the one-dimensional system, f = 1. In our research we 

have considerably enhanced classical output regulation theory by including nonlinear exosystems 

with no equilibria. Another of our objectives was to develop the foundations for a non-equilibrium 

theory of nonlinear output regulation, giving a more general (non-equilibrium) definition of the 

problem. 

Of course, one of the essential features of being able to shape the steady-state response of a 

nonlinear feedbaclc system is to clearly delineate what the steady-state response of a control system 

is. After considerable research, we have accomplished this research task, using the notion of an 

u-'-limit set of a set, rather than the more customary concept of an c^-limit set of a point, pioneered 

by G. D. Birkhoff. This hroader concept was used by Ladyzhenskaya in her study of the two 

dimensional Navier-Stokes equation and by Hale and Sell in their study of general infinite dimen- 

sional dynamical systems. In [7], we developed this concept for input-output feedback systems 

that typically arise in in problems of non-equilibrium nonlinear feedback systems. 

This recent advance is significant and clarifies and extends our previous research on a non- 

equilibrium theory of nonlinear output regulation. In particular, it allows for a more general (non- 

equilibrium) definition of the problem, deriving necessary conditions, and, using these necessary 



conditions, we present a set of sufficient conditions and a design methodology for the solution 

of the problem in question. Our analysis leads to a non-equilibrium enhancement of the internal 

model principle, which can be expressed as a relationships between two uniformly stable attractors. 

The first is an attractor for the combined dynamics of the exogenous signal generator and the so- 

called zero-dynamics of the plant to be controlled, intrinsic to the formulation of the problem. The 

second is the uniformly stable attraetor for the dynamics of the closed-loop system determined 

by the controller which solves the problem of output regulation, under hypotheses which are non- 

equilibrium enhancements of those familiar from the equilibrium case. This enhancement of the 

internal model principle asserts, roughly speaking, that any controller solving the problem of output 

regulation has to contain a copy of an attraetor which may combine the dynamics of the exogenous 

system with certain nontrivial steady-state motions occurring in the plant to be controlled. In the 

simple case in which there is only one (and trivial) such steady-state motions, and the analysis is 

only local, the theory we develop reduces to the one presented in our earlier work. On the other 

hand, the more general approach discussed here makes it possible to solve problems to which none 

of the existing design methods for output regulation is applicable. 

The foundations of this theory were originally presented in [24], which relied heavily on [33] 

in a preliminary preprint form. For the sake of completeness we shall review the basic assumptions 

considered in this work. Rather than assuming that the zero-dynamics of the controlled plant have 

a globally asymptotically stable equilibrium, this assumption is replaced with the (substantially 

weaker) hypothesis that the zero dynamics of the plant "augmented by the exsosystem" have a 

compact attractor. In this work, though, we have retained the (rather strong) assumption, itself also 

common to ail earlier literature, that the set of all "feedforward inputs capable of securing perfect 

tracking" is a subset of the set of solutions of a suitable linear differential equation (assumption 

of "immersion" into a linear system). In the subsequent paper [25] we showed that, within the 

new framework, the assumption of linearity can also be weakened and replaced by the assumption 

that the set in question is a a subset of the set of solutions of a suitable nonlinear differential 

equation (assumption of "immersion" into a nonlinear system). These results were subsequently 

generalized to the ease of a system having higher relative degree, by showing how output regulation 

can he achieved by means of a (dynamic) pure error feedback. 



2.2    Nonlinear oscillations 

The most classical example of a nonequilibrium attractor for a nonlinear dynamical system is 

a periodic orbit. In two dimensions. Poincare-Bendixson Theory gives a complete criterion for 

the existence of periodic orbits for differential equations leaving a bounded domain invariant and 

having no equilibria in the domain. The only bounded planar domain with these properties is 

an annulus. It has long been a goal in the theory of dynamical systems and ordinary differential 

equations to extend some versions of Poincar6-Bendixson Theory to higher dimensions, and some 

progress has been made some on replicating this theory, under fairly strong hypotheses. Most 

of the research starts with a region, generalizing the two dimensional annulus, that is positively 

invariant. More explicitly, suppose M C R3 is a closed bounded domain with smooth boundary 

which is diffeomorphic to B"~l x 51. We say that M, which is shaped like a higher dimensional 

"doughnut," is a solid n-torus. For example, it is a famous question of Smale [ II ] as to whether 

every nowhere zero vector field that points inward on the boundary of a solid three torus must have 

a periodic orbit. If this had turned out to be true, it would have been a neat generalization of an 

essential part of the Poincare-Bendixson theory to three dimensions. Moreover, in three and higher 

dimensions, there are a lot of examples of nonlinear systems with this property arising in biology, 

chemistry, physics and engineering [8J. As it turns out, the answer to Smale's question is no. 

Nonetheless, in [2] we have developed a positive answer to a more restricted set of such prob- 

lems by incorporating some ideas similar to those in Lyapunov theory, but adapted for the ease of 

periodic orbits rather than for equilibria. In some more detail, an angular ODe-form on a bounded 

domain D for a vector field X in Vect(RD) is a closed differential one-form u = J2i=-.\ aidXi such 

that 
n 

where X», for i — 1,..., n are the components of tbe vector field X. 

In [2] we have proved the following result. 

Theorem 2.1. Suppose X G VectfR") defines a differential equation x — f{x) on Mn which 

leaves a solid torus M positively invariant. If X has an angular one-form, then X has a periodic 

solution. 



Moreover, in [2] we have proved that the conditions hypothesized in this theorem are necessary 

conditions for the existence of a locally asympotically periodic orbit for a smooth vector field X 

on any smooth manifold, including Rn. 

Our most recent research directions include the continuing development of a more general, 

user-friendly criterion [IJ based on the results of 12] as well as its applications to specific dif- 

ferential equations, such as those describing biological and electronic systems. In particular, we 

are developing a general criterion that applies to specific differential equations, such as those de- 

scribing a phase-locked loop circuit and mathematical models of biological systems, such as the 

May-Leonard equations describing the population dynamics of three competing species with im- 

migration into the population pool. 

2.3    Asymptotic proxies and moment problems for signals, systems and control 

In this project, we also proposed to research a general concept embodying the behavior of 

asymptotic proxies for a system state or for state feedback laws. This was based on a serendipitous 

discovery we have made as we tried to glean some insight about asymptotic proxies by analyzing 

the dynamics of a fast filtering algorithm, viewed as a nonlinear, discrete-time dynamical system 

on the space of positive real transfer functions. Our original interest in these dynamics stemmed 

from the asymptotic evolution of proxies for the Kaiman gain, but the analysis of the phase portrait 

also contributed to the solution of two long-outstanding problems in interpolation theory. 

The first resulted in a new design methodology for speech analysis and synthesis, including 

speaker recognition as a biometric and a new technique for high-resolution spectral estimation. 

Four U.S. Patents have now been granted for these new design methodologies. The development 

of this phase portrait also contributed to the solution of the rational Nevanlinna-Pick interpolation 

problem with degree constraints, leading to a new methodology for shaping the response of robust 

control systems. Indeed, many robust control problems, including the standard Hx problem, can 

be reduced to Nevanlinna-Pick interpolation. This approach yields a systems theoretic parame- 

terization, in the discrete-time case, of all solutions not exceeding the degree of the widely used 

central solution. In addition, we have shown that each such solution is the unique minimum of a 

convex, mixed entropy integral that can be derived as the primitive of a closed one-form which is 

canonically associated to the generalized moment formulation of the Nevanlinna-Pick interpolation 
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problem. The moment problem as formulated by Krein and Nudel'man is a beautiful generaliza- 

tion of several important classical moment problems, including the power moment; problem, the 

trigonometric moment problem and the moment problem arising in Nevanlinna-Pick interpolation. 

However, the importance of rational functions in systems and control and other engineering ap- 

plications imposes certain complexity constraints. In [3, 5, 4] we present a new formulation of 

the moment problem which respects these constraints. While this version of the problem is de- 

cidedly nonlinear, the basic tools still rely on convexity. We give a complete parameterization of 

all solutions. This can be seen as a global analysis approach, where one studies an entire class 

of solutions as a whole. We then show that each solution in this class can be obtained by mini- 

mizing a strictly convex nonlinear functional. Thus the methodology employed is a combination 

of nonlinear analysis, geometry and optimization. Finally, we apply these results to interpolation 

problems of the Carathodory and of the Nevanlinna-Pick type, arising in signal processing and con- 

trol theory, where we consider smooth bijective transformations from spaces of tuning parameters 

to entire classes of solutions. 

Prediction-error methods for ARMA modeling play a major role in system identification, but 

in general they lead to nonconvex optimization problems for which global convergence is not guar- 

anteed. In fact, although these algorithms are computationally simple and quite reliable, there is so 

far no theoretically satisfactory algorithm for ARMA parameter estimation. In [ 10] we identify cer- 

tain classes of ARMA models in which prediction error minimization leads to convex optimization. 

It is known that model approximation via prediction error identification leads to an optimization 

problem that is related to the minimization of the Kullback-Leibler divergence criterion. This, in 

tum, leads naturally to our theory of analytic interpolation and generalized moment problems with 

complexity constraints. 

In [C. I. Byrnes, P. Enqvist, and A. Lindquist, Identifiability and well-posed ness of shaping- 

filler parameierizations: A global analysis approach, SIAM J. Control and Optimization, 41 (2002), 

23-59] we proved that any stochastic process of degree n is characterized by its first n + 1 eovari- 

ance coefficients together with its first n cepslral coefficients. This paper also contains a solution 

of the corresponding inverse problem. In [9] we provide an approximation-theoretic justification 

of this solution. More precisely, we approximate any given spectral density with a rational one 

having a prescribed number of poles and zeros (n poles and m zeros inside the unit disc and their 



conjugates), as a model-marching problem of a type previously considered by other authors in the 

context of least-squares estimation. Here we instead utilize the Kullback-Leibler divergence as a 

distance measure. The stationarity condition for optimality requires that the approximant matches 

n + 1 covariance moments of the given power spectrum and m cepstral moments of the corre- 

sponding logarithm, although the latter with possible slack. 

Over the past three decades there has been interest in using Pade approximants K with n = 

deg(K) < deg(G) = N as reduced-order models for the transfer function G of a linear system. 

The attractive feature of this approach is that by matching the moments of G we can reproduce the 

steady-state behavior of G by the steady-state behavior of K, for certain classes of inputs. Indeed, in 

[6] we illustrate this by finding a first-order model matching a fixed set of moments for G, the causal 

inverse of a heat equation. A key feature of this example is that the heat equation is a minimum 

phase system, so that its inverse system has a stable transfer function G and that K can also be 

chosen to be stable. On the other hand, elementary examples show that both stability and instability 

can occur in reduced order models of a stable system obtained by matching moments using Pade 

approximants and, in the absence of stability, it does not make much sense to talk about steady-state 

responses nor does it make sense to match moments. In this paper, we review Pade approximants, 

and their intimate relationship to continued fractions and Riceati equations, in a historical context 

that underscores why Pade approximation, as useful as it is. is not an approximation in any sense 

that reflects stability. Our main results on stability and instability states that if N > 2 and I, r > 0 

with 0 < l-r-r = n < N there is a non-empty open set of stable transfer functions G, having infinite 

Lebesque measure, such that each degree n proper rational function K matching the moments of 

G has / poles lying in C~ and r poles lying in C~. The proof is constructive. 

2.4    Sensitivity, Bifurcation and Uniqueness for Hydrodynamic Systems 

Of considerable importance in fluid dynamics are problems related to predicting the onset of 

turbulence and understanding the underlying mechanisms. During this research period, in a joint 

work with John Burns at VPI & State University, we have made some interesting discoveries 

related to these issues for a model problem described by a viscous Burgers' equation. In partic- 

ular, consider the initial boundary value problem for the one dimensional Burger's equation with 
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Reynolds number R 

zt(x,t) m R->zffX(x.t) - z(x,t)z,(x,t), 0 < * < 1, (2.1) 

z(x, 0) = <p(x) 

z(l,t} = 0, 

It can be rigorously proven (see e.g., [69]) that for every initial condition c? the time dependent 

solution z(x, t) will approach zero, i.e., 

limz(x,t) = 0   for all  0 < x < 1. 

Nevertheless, one finds that depending on the size and shape of the initial condition the numerical 

solution of this problem (using any standard numerical method) instead converges to a nonzero 

steady state solution. In [67J we were able to show that, for a finite difference time marching 

scheme (based on the Crank-Nicolson method) this strange anomaly is due to the particular non- 

linearity in Burgers equations and the fact that all computers use finite floating point arithmetic. 

Indeed, for any given computer arithmetic we can predict exact conditions on an initial condition 

for which the solution will converge to a false (nonzero) solution. 

In continued efforts in studying this example we have exhibited in numerical simulations that 

this situation can be explained in terms of a problem in sensitivity of the Neumann boundary 

condition to a small non-homogeneous term. Namely we have been able to show in numerical 

experiment that the false solutions arise as solutions to a bifurcation problem that derive from (2.1) 

by replacing the homogeneous boundary condition at x = 0 by a non-homogeneous coudition. In 

particular these false solutions are solutions of the problem 

xt{x,t) = R~lz.rr(x.t) - z{xj.)zx{x,t). 0 < x < 1. (2.2) 

5(i,0) -*»(*) 

zx(0J) = -a. 

*(!,*)-0, 

1! 



where a is a small (bifurcation) parameter. Indeed, even for positive nnmbers a less than machine 

precision zero we can, depending on the initial condition, obtain a nonzero steady state. 

With the Reynolds number R and the (constant) non-homogenous Neumann boundary input 

c. considered a.s bifurcation parameters we first show that, for each fixed R there is a saddle-node 

bifurcation with respect to the boundary parameter a. Namely, for large a the associated stationary 

Burgers' problem has no equilibria but for decreasing a there is a critical value at which there is 

a single stationary solution which has the following property: The linearization of the spatial 

Burgers' operator about this stationary solution has a simple zero eigenvalue and all others are 

negative. For all smaller values of a, there are two stationary solutions, denoted by h^x) (Left) 

and hft(x) (Right). 
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The stationary solution IIL(T) is stable and generally very small (near zero) while the station- 

ary solution hn(x) is (very slightly) unstable and tends to be large in comparison with h{,(z). The 

linearization about /tfl(j) has one very small positive eigenvalue and all other eigenvalues are neg- 
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ative. Nevertheless, for small values of a (and larger values of R) an interesting anomaly appears, 

for certain initial data the solution of the corresponding time dependent Burgers' problem can con- 

verge to a spurious (nonexistent) numerical stationary solution very near hH{x). We expect that 

this situation may well be related to the general problem of sensitivity and onset of turbulence. We 

note that, in a standard way, this problem can be recast as a somewhat different bifurcation problem 

for Burger's equation with a non-homogenous forcing term. In a related work we have obtained a 

complete bifurcation analysis of homogeneous and non-homogeneous boundary controlled viscous 

Burgers' equation in [12]. We expect that the results in [12] will be useful in obtaining a complete 

understanding of the bifurcation mechanisms for the boundary controlled Burgers equation and, in 

turn, we expect this to shed new light on the corresponding problems in hydrodynamics. 

The existence of such false solutions is very disturbing. This is especially true considering 

that a control mechanism based, for example, on a controller using such a model could produce 

devastating results. 

More recent work by the authors strongly suggests that a similar anomaly takes place for a 

broad class of nonlinear parabolic equations containing convective type terms. Moreover, there 

is a strong numerical evidence that the same type of anomaly may occur for real hydrodynamic 

equations - Euler and Navier Stokes. We have identified a sensitivity/bifurcation phenomenon 

which, together with unavoidable limitations of computer arithmetic, has lead us to understand, 

at a fundamental level, the underlying mathematical origins and of strictly numerical solutions to 

certain hydrodynamic type boundary value problems. We expect that similar such bifurcations 

occur for many similar problems and therefore that one must include such considerations in any 

computational study of non-unique solutions to partial differential equations that govern physical 

systems such as fluid flows. 

2.5    Geometric Output Regulation for Nonlinear Distributed Parameter Systems 

Our second main area of research in distributed parameter systems was concerned with pursu- 

ing our systematic efforts toward the design of control laws for problems of tracking and distur- 

bance rejection, i.e., regulation, for a general class of linear and nonlinear distributed parameter 

systems for a wide range of applicable control and sensing mechanisms. In this area we have sig- 

nificantly extended our earlier work on design methods based on geometric constructs involving 
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the regulator equations to include boundary controlled nonlinear distributed parameter systems. 

Here we have studied the problem of solving or approximating solutions to the regulator equa- 

tions using iterative methods such as Newton iteration and various fixed point methods in infinite 

dimensional Banach spaces. 

An important goal in the development of a systematic theory of nonlinear output regulation is 

to establish a theory as parallel as possible that which has been established for finite dimensional 

linear [26, 27, 28] and nonlinear systems ([33, 32, 13, 30, 341). In this direction, we note that 

for a large class of linear DPS problems those state feedback control laws which solve the prob- 

lem of output regulation for a stable linear system with bounded inputs and outpnts can also be 

characterized in an appealing systems theoretic fashion [36, 37], [38, 39] and [18]. 

Output regulation is an asymptotic theory and the long time existence of solutions to open-loop 

nonlinear distributed parameter systems remains extremely challenging. Nonetheless, we have 

been successful in establishing long time existence and asymptotic behavior for certain examples 

or system classes using particular feedback design methods (see, e.g., [20, 21, 16, 17, 19, 18]). For 

example, our current efforts are primarily focused on local results for output regulation with respect 

to signals and disturbances generated by finite-dimensional exogeneous systems (see, however, 

[311 for a discussion of infinite-dimensional exosystems). In our setting, the exosystem is both 

finite dimensional and neutrally stable [33] and we can appeal to powerful center manifold methods 

to obtain some nontrivial insights and results. We emphasize the fact that these local techniques 

are not simply an appeal to linearization. Even in the lumped nonlinear case, elementary examples 

[23] show that a solution to the problem of output regulation for the linearization does not solve 

the output regulation problem for the nonlinear problem. 

Thus we have considered the output regulation problem for a special class of nonlinear dis- 

tributed parameter systems (NLDPS). The main goal of our work was to show that the geometric 

theory of nonlinear output regulation, which has been extensively developed for lumped nonlinear 

systems, can be extended in a local setting to this class of NLDPS. Our approach is geometric, 

based on the center manifold theorem. Even for local problems, however, one must surmount 

technical issues that inevitably arise in the infinite dimensional setting. The particular class of 

nonlinear systems and exogenous systems for which center manifold methods can be used to ob- 

tain state feedback control laws for solving problems of tracking and disturbance attenuation is 
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quite large and includes most common systems arising in the literature. The main restriction in 

our main result is that the input and output operators are bounded in the Hubert state space. This 

means that things like point observations are not allowed. This is merely a technical issue and 

providing detailed proofs in these more general cases is currently in progress. 

Thus consider an abstract nonlinear infinite dimensional system 

i = Az + f(z) + Bu + d (2.3) 

Ü! — s(w) (2.4) 

2(0) - 20, (2-5) 

y = c(z),   yr = q{w) (2.6) 

e =* y - Vr- 

where z is the state of the system in the infinite dimensional Hubert space Z; u is a control; y is 

the output and z0 £ Zis the initial state of the system and d is a disturbance. Here the nonlinear 

term f(z) satisfies /(0) = 0, /-(0) = 0. Conditions on the linear operator A are given below. 

In addition we assume there exists a neutrally stable [331 finite dimensional exogenous system 

dm 
— = ${w) (2.7) 

u;(0) = wo G W, (2.8) 

(here we assume that W is a finite dimensional Hüben vector space) that generates both a reference 

signal yr and the disturbance d. Namely, we assume 

Vr(t) = q(w(t))     q-.W^Y. (2.9) 

d(t) =p{w{t))    p : W*-*Z.. (2.10) 

The objective of output regulation is to find a control law 

v. = ~,{w) ~ Tw + 7(1*1), 

r e £(w,u), 7(0) = o, pro) - o. 
aw 
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so thar closed-loop trajectories exist and so that the error 

e(t} = y(i.)-yM) = e(z(t))-q(z(t)). 

exists as t —» -t-oc and tends to 0. 

Assumption 2.5.1.       1. (—A) is a sectorial operator with compact resolvent. Therefore (—A) 

generate a Hilbert scale Za. 

2. The analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction 

semigroup). 

3. Be 3(U, Z) and P e £(W, 2) are bounded. 

4. Ce B(20. F) for some a > 0, i.e., there is a constant cQ so that jjCVJjy < c0Ü¥>||a. 

5. We assume that the exosystem has the origin as a neutrally stable equilibrium, i.e., w = 0 is 

a fixed point which is Lyapunov stable but not attracting. A center is an example of such a 

fixed point. This, in particular, implies a(S) C iK (i.e., the spectrum of S is on the imaginary 

axis) and has no non-trivial Jordan blocks. 

Remark 2.1. In our examples, and quite often in practice, .4 is self-adjoint. We also note that, 

since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than exp(--4i) as 

is done, for example, in Henry [29]. 

In order to simplify the exposition we will impose the following simplifying assumptions. 

Assumption 2.5.2. For simplicity of the exposition we will assume that the input and measured 

output are linear functions of the state of the plant and reference signal and disturbance are linear 

functions of the state of the exosystem. Thus we assume 

c(w) = Cw, q(w) — Qw. 

The following result was obtained in [14]. 

16 



Theorem 2.1. Under assumptions 2.5.1 and 2.5.2, the (local) state feedback regulator problem for 

(2.3)-(2.6) is solvable if, and only if, there exist mappings K : W — D{A) C Z and -> : W —* ^ 

satisfying the "regulator equations," 

-^-s{w) = Av(w) + f(v{w)) + B-y{w) + Pw (2.11) 
ow 

c(v(w)) = q(u>). (2.12) 

In this case a feedback law solving the state feedback regulator problem is given by 

u(t) - y(w)(t). (2.13) 

Modulo the inherent technical difficulties that arise in infinite dimensions, Theorem 2.1 can be. 

obtained using an argument similar to that given in [33]. Indeed, under the assumptions on A, B 

and C, we can appeal to a version of the Center Manifold Theorem to aid in the proof. 

Not every problem of output regulation is solvable. Indeed even in the linear case there is a 

non-resonance condition requiring that the transfer function of the plant 

G(s) = C(sI-A)-1B,  aep{A), (2.14) 

be left invertible for all .5 in the spectrum of S, i.e., no eigenvalue of the exo-sysiem, a £ cr(5), is 

a transmission zero of the plant. 

Assuming that the regulator equations are solvable in [15] we considered the problem of obtain- 

ing approximate solutions IT and 7 of the regulator equations (2.11), (2.12). In the typical parabolic 

case, A is an elliptic operator and the first regulator equation produces a system of nonlinear elliptic 

boundary value problems. This elliptic system is then coupled with an auxiliary operator equation 

via the constraint in the second regulator equation. 

The approximate methods proposed here are based on Newton or fixed point iteration. To this 

end we introduce the following notation for the decomposition of the solutions - and 7 into the 

linear parts which solve the regulator problem for the corresponding linear problem. Namely, set 

TC(W) = Tlw ■+• v(w),   i{vo) = Tw + y{w). 

Here TI and V solve the linear approximation to the regulator equations in (2.11), (2.12) 

TlSw = AUw -r (BY + P)w, (2.15) 

CUw = Qw,  V vi 6 W. 
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Under our assumptions on .4 and S it is straightforward to obtain simply representations for II and 

T and we can therefore consider small perturbations of the solutions 138; 39. 36, 19, 18) for the 

linear problem. Using the above notations we ean write the regulator equations as 

dxivi) 
Ylw 

du? 
Sw = A(nw + Z{w)) (2.16) 

+ B (Yw + g{w)) + f {Tlw + Jf(iiO) + Pw. 

0 « CTT(W) - Qw 

= C(Ihu+ *(«}))-Qw. 

With our choice of II and F satisfying (2.15) the regulator equations in (2.16) become 

dw 
-Sw =Ax{w) -r f ijlw + n{w)) + Bg(w) 

0 =Cn(w). 

(2.17) 

In the first equation we solve for TT to get 

'dn(w 
? = A_i 

dw 
Sw - / (Ihr 4- K(W)) - Bj(w) 

0 = CK{W). (2.18) 

Next we apply the C to the first equation in (2.18) and use the second condition to obtain 

0 = CA~l dir{w) 

dw 
Sw — f (flu? + 5r(u/)) - B^{w) 

Notice that (7(0} = —CA  lB and, under the non-resonance assumption that G(Q) is invenible we 

can solve for -y to obtain 

g(w) = G(0)-*CA- f(lXw + ~,{w))-^Sw (2.19) 

Setting 

- >i-i = A ~^Sw -f(Tlw + Sr(ui)) - Bg{w)\ . 

F2\     \=G(0r'CA- f(Uw + if(w))-^-Sw 
aw 
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our problem reduces to finding X so that 

X = F(X). X = (2.20) 

This fixed point problem can also be written as 

?(X) = X-F(X) = 0. 

It is in this form that we consider Newton iterations. 

2.6    Regulation Methods Using Zero Dynamics Inverse Design 

In another research effort we have obtained important insight into the practical solution of 

regulation problems for boundary control systems using our recently developed zero dynamics in- 

verse design methodology. We have applied this methodology to numerous prototypical examples 

of linear and nonlinear boundary control systems acting in bounded domains in one and several 

spatial dimensions. For a wide variety of tracking problems for both interior and boundary control 

problems the numerical results are astounding. Indeed, the zero dynamics design methodology 

provides a remarkably simple approach to the design of control laws capable of shaping the re- 

sponse of complicated nonlinear infinite dimensional systems in more mathematically complex 

case of boundary observation end control. In a most amazing recent discovery we have been able 

to show that the the zero dynamics design method is intimately related to the geometric design 

method which is based on center manifold theory in infinite dimensions. Indeed, for certain prob- 

lems of ouLput regulation the regulator given by the zero dynamics inverse is precisely the regulator 

equations whose solution provides the desired control law. 

One advantage of the zero dynamics inverse (ZD1) design method for designing a feedback 

compensation scheme achieving asymptotic regulation is that only the value of the signal yr(t) 

to be tracked or rejected are known at any instant of time. In analogy with the non-equilibrium 

formulation of output regulation the control objective is to achieve zero steady-state error together 

with ultimate houndedness of the state of the system and the controller(s). with a bound determined 
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by bounds on the norms of the initial data and yr. In particular, a controller solving this problem 

depends only on a bound on the norm of yr not on the particular choice of yr, which is used only 

as an input to the controller. ZDI design consists of the interconnection of a stabilizing feedback 

compensator and a cascade controller, designed in a universal way from the zero dynamics of the 

closed-loop feedback system. This methodology has evolved over a series of papers for asymp- 

totic regulation for specific linear boundary control systems and for set-point control of linear and 

nonlinear boundary control systems in one spatial dimension, in which case the input and ontput 

spaces for the transfer functions were finite dimensional. In this paper, we formulate the main in- 

gredients of the zero dynamics inverse design methodology for a class of abstract linear boundary 

control systems for problems with infinite dimensional input and output space. 

Given a plant to be controlled, the ZDI design consists of the interconnection, via a memo- 

ryless filter, of a stabilizing feedback compensator and a cascade controller, designed in a simple 

universal way from the zero dynamics of the closed-loop feedback system. Key features of the 

design are to ensure that the closed loop feedback system is "persistently stable" when driven with 

sufficiently small input signals and that the "zero dynamics inverse" is input-to-state stable (ISS), 

for appropriate choices of norms. Of course, for nonlinear DPS, the compactness underlying in 

the success of the ISS philosophy [57], [55 j for lumped systems is not directly available in infinite 

dimensions. In particular, crucial technical details, including the global existence, uniqueness and 

regularity of solutions to the interconnected systems, need to be checked in order to confirm that 

the basic design philosophy works. The zero dynamics design methodology we formulate here 

has evolved over a series of papers for asymptotic regulation for linear boundary control systems 

and for set-point control of nonlinear boundary control systems [44, 45, 46, 47, 48]. In a paper 

under review [43] the ZDI philosophy is illustrated by the design of an overall controller solving 

the problem of asymptotic regulation for a boundary controlled viscous Burgers' equation, for a 

broad class of input signals. 
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CHAPTER IV 

PERSONNEL INFORMATION 

4.1    Personnel 
Christopher I. Byrnes    Professor. Washington University, St. Louis 

Alberto Isidori Professor, Washington University, St. Louis 

David S. Gilliam Professor, Texas Tech University 

Anders Lindquist Professor, KTH, Stockholm, Sweden 

Nathan McGregor Washington University, St, Louis 

Brian Whitehead Washington University 

4.2    Honors & Awards 

3 IEEE Fellows (Dr.s C.I. Byrnes, A. Isidori, A. Lindquist). 

Dr. A. Lindquist has been invited to give an invited one-hour lecture at the joint IEEE/Chinese 

Control Theory Society Meeting in Shanghai in December 2009 

In 2009, Dr. C. I. Byrnes was named an inaugural Fellow of SIAM. 

In 2009, Dr. C. I. Byrnes was named an Associate Fellow of AIAA. 

In 2009, Dr. C. I. Byrnes held the Giovanni Prodi Chair in Nonlinear Analysis at the Univer- 

sity of Wuerzburg, Germany. 

Dr. A. Lindquist was awarded the W.T. and Idalia Reid Prize for his contributions to stochas- 

tic systems and control at the SIAM Annual Meeting in July 2009. 

At the 47th IEEE CDC, Cancun, Mexico, in December 2008, Dr. C. I. Byrnes was awarded 

the 2008 Hendrik W. Bode Lecture prize from the Control Systems Society of IEEE. 

Dr. A. Lindquist presented an invited plenary lecture at the Internationa) Congress on the 

Applications of Mathematics (ICAM), Santiago de Chile, March 13-17, 2006. 

Dr.  A. Isidori has been appointed President of the International Federation of Automatic 

Control (IFAC). 
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Dr. Christopher I. Byrnes was awarded the W.T. and Idalia Reid Prize for his contributions 

to linear and nonlinear systems and control at the SIAM Annual Meeting in July 2005. 

Dr. A. Isidori was installed as Edwin H. Murty Professor of Engineering at Washington 

University, November 2004. 

Dr. A. Isidori was elected Fellow of 1FAC, July 2005. 

The paper: C. Bonivento. A. Isidori. L. Marconi, A. Paoli, Implicit fault tolerant control: 

application to induction motors, Automatica, 40, pp. 355-371, (2004) was given the triennial 

Automatica award at the IFAC World Congress in Prague, 2005. 

At the 42nd IEEE CDC, Maui, Hawaii, in December 2003, C. I. Bymes, T. Georgiou and A. 

Lindquist were awarded the 2003 IEEE George S. Axelby Award for the best paper in the 

IEEE Trans, on Aut. Control. 

The paper A convex optimization approach to the rational covariance extension problem, 

by C. L Bymes, S. V. Gusev and A. Lindquist was selected in 2000 to be published in an 

enhanced form in SIAM Review as a "SIGEST" paper. 

At the 40th IEEE CDC, Orlando, Florida, in December 2001, A.Isidori was awarded the 

2001 Hendrik W. Bode Lecture prize from the Control Systems Society of IEEE. 

Te triennial IFAC Best Paper Award, (C.l. Byrnes and A. Isidori), 1993 IFAC World Congress. 

IEEE George S. Axelby Award as the best paper in the IEEE Trans, on Aut. Control, 1993 ( 

C.I. ByrnevS and A. Isidori). 

Dr. C.l. Byrnes was elected in March 2001 as a Foreign Member of the Royal Swedish 

Academy of Engineering Sciences. 

Dr. C.I. Byrnes, was installed as the Edward G. and Florence H. Skinner Professor of Sys- 

tems and Engineering at Washington University, St. Louis, 1998. 

Dr. C.I. Bymes, elected Fellow of the Academy of Sciences of St. Louis in 1998. 
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Dr. C.I. Byrnes was awarded an Honorary Doctorate of Technology from the Swedish Royal 

Institute of Technology, November 1998. 

The Graduate College Distinguished Research Award: C.I. Byrnes, 1988, ASU. 

Fellow, Japanese Society for the Promotion of Science: C.I. Byrnes, 1986. 

"Quazza Medal" awarded to Dr. A. Isidori at 13th 1FAC World Congress in San Francisco, 

1996 for "Pioneering and Fundamental Contributions to the Design of Nonlinear Feedback 

Systems." 

Alberto Isidori was listed in the Highly-Cited database among the top 10 most-cited authors 

in Engineering in the world for the period 1981-1999. 

Dr. A. Lindquist, Zaborszky Lecturer for the year 2000. 

Dr. A. Lindquist, Gordon McKay Visiting Profesor, Berkeley, 2002. 

Dr. A. Lindquist, Israel Pollak Distingushed Lecturer, 2005 

Dr. A. Lindquist, Foreign Member of Russian Academy of Natural Sciences, 1997. 

Dr. A. Lindquist elected Member of the Royal Swedish Acad. of Engr. Sei., 1996. 

Dr. A. Lindquist, Honorary Member of Hungarian Operational Res. Soc, 1994. 
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CHAPTER V 

TRANSITIONS AND DISCOVERIES 

5.1    AFRL Point of Contact 

Dr. Siva S. Banda, Senior Scientist for Control Theory, Air Vehicles Directorate, Air Force Re- 

search Laboratory, Wright-Patterson Air Force Base, Ohio. Phone: (937)255-8677, Fax: (937)656- 

4000, siva.banda@wpafb.af.mil 

5.2   New Discoveries 

C.I. Byrnes and A. Lindquist, Method and Apparatus for Speech Analysis and Synthesis, 

United States Patent 5,940,791, August 17, 1999. 

C.I. Byrnes and A. Lindquist, Method and Apparatus for Speaker Recognition, U.S. Patent 

6,256,609, July 3, 2001. 

C.I. Byrnes, A. Lindquist and T.T. Georgiou, A Tunable High-Resolution Spectral Estimator, 

U.S. Patent 6,400,310, June 4, 2002. 

C.I. Byrnes and A. Lindquist, Method and Apparatus for Speaker Verification Using a Tun- 

able High-resolution Spectral Estimator, US Patent No. 7,233,898. 

12 extensions or foreign patent applications pending. 
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CHAPTER VI 

PUBLICATIONS 

1. Edward Allen, John A. Burns, D.S. Gilliam, "On the use of Numerical Methods for Anal- 

ysis and Control of Nonlinear Convecrive Systems," Proceedings 47th IEEE Conference on 
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