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ABSTRACT 

In the current global cyber warfare landscape, cyber attacks on infrastructure are 

a serious threat. Although network administrators use intrusion detection systems 

(IDSs) to detect threats and anomalies, they usually only offer post-attacks alerts. 

If we could predict malicious activities, we could allow network administrators or 

security enhancing software to take appropriate actions in advance of damage 

occurring. Incoming intrusion detection alerts can be considered as a sequence. 

We used Pytbull to simulate cyber attacks within a testbed network environment 

and collected Snort generated intrusion detection alerts. We tested four sets of 

alert-prediction programs with this data: Single-Scope Blending algorithm, a 

Simple Bayesian Mixture algorithm, a Multiple Simple Bayesian algorithm and a 

Variable Markov Model algorithm. The harmonic mean of the precision and recall 

(F-score) measured prediction accuracy. The Single-Scope Blending algorithm 

performed the best in these tests, especially in a multiple attacker environment.  
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I. INTRODUCTION 

In his statement that “cyber threat is one of the most serious economic 

and national security challenges we face as a nation,” President Obama stressed 

the importance of securing networks against cyber attacks (Council, n.d.). 

Network administrators employ intrusion-detection systems (IDSs) to detect 

malicious threats on their computer networks. The intrusion-detection system 

monitors and generates alerts for network traffic that are malicious or suspicious 

(Albin, 2011). However, if an attack is genuine, the system usually reports the 

attack only after it has happened since most attacks happen in seconds and 

most intrusion-detection systems are not linked to an intrusion prevention system 

that takes immediate action. Network administrators will then take steps to rectify 

any system malfunction caused by the event by inspecting the alerts later. It 

would reduce or even prevent damages if one could predict the attack and 

perform pre-emptive actions.  

The goal of the thesis was to provide data to compare the performance of 

several prediction algorithms that could infer alerts earlier. These algorithms 

have various degrees of success in predicting states, events and actions on an 

agent-based simulation system (Tan & Darken, 2012a, 2012b). Tan adapted the 

programs used in Tan and Darken (2012a, 2012b) to predict Snort alerts. We 

evaluate the prediction algorithms by running the programs provided by Tan to 

compare their prediction accuracy on the effects of different attack 

configurations. The research required a collection a representative set of 

intrusion-detection system alert logs as the dataset for processing by the 

prediction algorithms. Computer networks are constantly exposed to cyber 

attacks. This threat has been growing over the years in terms of attack frequency 

and damage level. According to Symantec (2011), there are more than 

286 million new threats in 2010. The U.S. Computer Emergency Readiness 

Team (US-CERT) reported a 40 percent increase in cyber attacks in 2010 on 

federal agencies, from 30,000 the previous year to 41,766 (Johnson, 2011). 
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Traditionally, damages arising from cyber attacks range from taking Internet 

services offline to classified company information leaks, loss of personnel 

information, credit card information theft, etc. The focus has shifted to attacks 

that can cause significant damage.  

Intrusion detection alerts can be expressed as a Relational Time Series 

(RTS). The intrusion-detection system generates alerts as malicious activities 

arrive in time sequence. According to Tan and Darken (2012a, 2012b), a RTS is 

a “sequence of relational percepts.” (Tan & Darken, 2012b). The intrusion 

detection alerts RTS is inherently unknown, noisy and constantly evolving. Hence 

an alerts RTS provides a good domain for evaluating the effectiveness of new 

prediction algorithms. 

Chapter II describes the background of prediction algorithms. We will 

discuss the background of the key components used for the thesis in Chapter III. 

Chapter IV presents the steps involved in the setup of the experiment, details of 

the software, hardware and individual component configurations. Chapter V 

provides the evaluation of the results and Chapter VI provides the conclusion and 

suggestions for future work.  
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II.  BACKGROUND ON ALERT PREDICTION 

Intrusion-detection systems generate alerts when attack activities have 

taken place. They allow network administrators to conduct remedial actions. 

However, intrusion-detection systems cannot predict attack activities. A proactive 

approach is to anticipate and conduct possible attacks to prevent damage. This 

chapter describes the current approaches to prediction algorithm that may be 

applicable to predicting intrusion detection alerts. 

One approach to predicting an attacker’s behavior is plan recognition. 

Geib and Goldman (2001) defined a plan library of specific attacks to predict an 

attack plan. Plan recognition entails having a security professional to compile the 

plan library manually. It is time consuming and not always able to respond to new 

attack variants. To account for variation in order or missing actions in an attack 

sequence, will increase the complexity of the plan matching. Also, the plan library 

must be updated frequently to meet new attack sequence.  

Other methods do data mining to predict the occurrence likelihood of the 

next alert. Cipriano, Zand, Houmansadr, Kruegel, and Vigna (2011) introduced 

such a prediction algorithm, Nexat, that automates machine learning process.  

During data mining, it uses historical data to learn the co-occurrence of the alerts. 

At run time, it uses the trained database and weighted probability to predict the 

next alert. A large database of historical data is required. Nexat finds a fit to the 

historical data and so cannot predict new attacks.  

Other work proposed proposed the use of “network attack graph” to 

analyze the security vulnerabilities and find all possible attack sequences (Lei & 

Li, 2007). A network attack graph is generated by correlating alerts according to 

source and destination Internet Protocol (IP) addresses. The predicted next alert 

is determined through predictability scores derived from the attack graph. It 

provides graphical flow of the attack sequence to the network administrator. 

However, the graph generation process includes low probable alerts into the 
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attack sequence, which must then be removed manually to improve the 

prediction. This method also cannot detect out of sequence attacks. 

Another technique called “sequence pattern mining” reduces the effort to 

construct pattern rules. Using the database derived from a historical attack 

sequence is vulnerable to new attack strategies. Li, Zhang, Li, and Wang (2007) 

observe that most attacks are completed within a certain time span. They 

proposed an incremental mining algorithm to identify sequential attack patterns 

over divided time window. The database is updated within a shorter period after 

the new attack strategy appears. After the initial rule generation, the performance 

of subsequent updates would be faster as the number of new alert sequence 

received reduces.  

Another way of processing security alerts is by organizing them into 

relational time series (RTS). The intrusion-detection system generates security 

alerts in a sequential order by time of arrival. These alerts form a sequence of 

relational percepts. “Each percept is a ground atom defined as pi = r(c1, c2, …, 

cm), where r is the predicate and cj(1..m) are constants that represent objects” 

(Tan & Darken, 2012b). For security alerts, r is the alert type/identity and cj(1..m) 

refers to an entity such as source or destination IP. We give an example of this 

representation for a stream of alerts in Table 1.   
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Time Incoming Security Alerts Relational Time Series 
0 Alert message: (spp_frag3) 

Short fragment, possible DoS 
attempt  
Source: 192.168.1.2 
Destination: 192.168.1.3 

ShortFragDOS(192.168.1.2, 
192.168.1.3, UDP) 

21 Alert message: Reset outside 
window 
Source: 192.168.1.2 
Destination: 192.168.1.3 

ResetWindow(192.168.1.2, 
192.168.1.3, TCP) 

30 Alert message: ICMP-INFO 
Fragment Reassembly Time 
Exceeded 
Source: 192.168.1.3 
Destination: 192.168.1.2 

FragReassemblyExceed(192.168.1.3, 
192.168.1.2, ICMP) 

38 Alert message: Reset outside 
window 
Source: 192.168.1.2 
Destination: 192.168.1.3 

ResetWindow(192.168.1.2, 
192.168.1.3, TCP) 

38.5 Alert message: (spp_frag3) 
Fragmentation overlap 
Source: 192.168.1.2 
Destination: 192.168.1.3 

FragOverlap(192.168.1.2, 
192.168.1.3, UDP) 

Table 1.   Example of Network Security Alerts in Relational Time Series 

A software agent can learn percepts based on the situation (situation 

learning) and can predict future events in a RTS (Darken, 2005). When predicting 

the next percept, we can take into account all previous percept sequences to 

derive a probability distribution for a prediction. A simplifying assumption is that 

recent percepts are more useful than all the percepts. This is relevant to cyber-

attack activities where related attack events generally arrive within a short time 

span (“situation-based learning”). This also helps with noisy network traffic by 

reducing stray alerts from the predictor function. The situation learning approach 

organizes the RTS into smaller grouped situations. In addition to increased 

predictor relevancy (in terms of recent percepts), situation learning reduces the 

prediction complexity. Situation learning can be accomplished by a variety of  
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inferencing methods such as Variable Order Markov Models (VOMM), Multiple 

Simple Bayesian (MSB), Simple Bayesian Mixture (SBM) and Single-Scope 

Blending (SSB).  

Tan and Darken (2012a) compared the prediction performance of these 

methods in a role-playing game environment, where an agent moves and 

perform actions randomly together with other agents. In Multiple Siple Bayesian 

inference, there is a naïve Bayesian network for each predictive percept and 

situation pair. During each prediction event, the Bayesian network forms a 

probability distribution for all previously seen alerts by computing P(Ai|C), where 

P is the conditional probability, Ai refers to each alerts observed, C is the current 

situation. Simple Bayesian Mixture inference is implemented by normalizing a 

linear combination of multiple probability densities. Variable Order Markov 

Models use a variable order Markov chain instead of a fixed order.  

Single-Scope Blending inference is shown in Figure 1. A “generic space” 

contains the common atoms in both concept 1 and concept 2. Concept 2 is the 

current situation, and concept 1 is a previous situation that is selected to 

maximize the generic space. That is, concept 1 is the most similar situation. 

Blend B is the predicted situation which is generated by using the frame from 

concept 1 and constant mapping from concept 2. This is a form of inference by 

analogy. 

 

Figure 1.   Single-Scope Blending Network (From Tan & Darken, 2012b) 
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Single-Scope Blending could achieve better prediction performance than 

the other inference methods because it makes use of similarities for prediction 

instead of exact matching (Tan & Darken, 2012b). Since intrusion detection alerts 

form a RTS sequence, Single-Scope Blending would seem promising. Thus Tan 

adapted the programs used in Tan and Darken (2012a, 2012b) to predict Snort 

alerts. We tested these programs to evaluate their performance. A collection of 

intrusion-detection datasets was required. We generated these alerts within a 

controlled environment using the tools described in Chapter III. 
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III. METHODOLOGY  

A. HONEYPOTS 

A collection of datasets (intrusion detection alerts) is required for the 

prediction-algorithms analysis. One way to gather the dataset is through 

honeypots, machines explicitly designated solely to learn the methods used by 

black-hats to probe and hack a system so that a network administrator can 

improve the security policies (Spitzner, 1999). Monitoring tools, such as an 

intrusion-detection system, are installed on the honeypot. If placed within the 

network, honeypots are used to monitor abnormal activities such as 

compromised systems within the organization. Our first experiments used such 

data. 

However, with honeypots we cannot control important factors that may 

affect prediction performance, such as frequency of attacks, number of attackers 

and number of targets. There is also noise traffic in honeypot data which makes 

analysis difficult. Collection of data sufficient for analysis through deployment of 

honeypots can be time consuming. Also, as vulnerabilities of the honeypot are 

learned, hackers may give up and go after easier targets, which decreases the 

alerts logged (Rowe, Custy, & Duong, 2007). 

Therefore, the thesis explored an alternative of simulating honeypot data. 

We controlled the environment to provide data on only specific types of attacks. 

This minimized “noise traffic” as the intrusion-detection system  was not directly 

exposed to the Internet. The testbed environment consisted of a local-area 

network, the intrusion-detection system and the attackers on other machine. The 

attacks were carried out in various configurations and we kept a log file of the 

alerts produced. These log files are used as the dataset for the prediction 

algorithms.  
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B. INTRUSION DETECTION SYSTEM 

1.  Intrusion-Detection Techniques 

Intrusion-detection techniques are anomaly-based and/or signature-

based. Anomaly-based detection examines the operation profile of the network 

and determines what considers the normal activities. A deviation from the 

operation profile causes the intrusion-detection system to send an alarm for 

anomaly activities. Signature-based detection, also known as rule-based 

detection, uses information of historical malicious activities as signatures to 

determine the threats. In this thesis, we use Snort to generate the intrusion 

detection alerts.  

2.  SNORT 

Snort is an open source network intrusion prevention and detection 
system (IDS/IPS) developed by Sourcefire. Combining the benefits 
of signature, protocol, and anomaly-based inspection, Snort is the 
most widely deployed IDS/IPS technology worldwide. With millions 
of downloads and nearly 400,000 registered users, Snort has 
become the de facto standard for IPS. (Snort, 2012) 

We choose Snort because it is an open source product that is free to 

download and can be deployed cross-platform (Windows and Linux). It can be 

installed and run from a personal computer. The Sourcefire Vulnerability 

Research Team provides tested and certified rules free for registered users. The 

rules are updated regularly. A subscription is required for latest initial release. 

The rules are available to registered users after 30 days of initial release. Snort 

monitors the network and detects known threats using signatures and threat 

patterns.  

We briefly describe the Snort architecture (Figure 2) Snort consists of four 

main components (Olney, 2008): 

 Packet decoder. The key requirement of Snort is to capture network 
packets. Libpcap (for Linux) or Winpcap (for Windows) must be 
installed for packet capturing. The packet decoder translates it into 
packet-header information and payload.  
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 Preprocessors. The preprocessors rearrange or reassemble 
packets before the detection engine analyzes them. Incoming 
packets may be fragmented to avoid detection by the standard 
Snort rules, so preprocessors reassemble fragmented packets and 
generate pseudo packets to be fed back to the packet decoder. 

 Detection engine. The detection engine analyzes all packets with 
pre-defined rules. If a match is found, the packet is sent to the 
output module. The rule syntax can include various elements in a 
data packet such as protocol type, port number, packet length, 
packet header and packet content.  

 Outputs. After a threat is detected, the information is passed to the 
output module for presentation. An alert can be sent to the 
administrators by pop-up messages or email alerts. The alerts can 
be stored on a text file, csv (comma-separated values) file or on a 
Structured Query Language (SQL) database. Our research stored 
the generated alerts into csv files. 

 

Figure 2.   Snort Architecture (From Olney, 2008) 

We deployed Snort by connecting it to a port-mirroring switch. We 

configured the switch to send a copy of every network packet of other ports to the 

mirrored port. The test environment entails both attacker and target machines 

within the local-area network.  
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C. PYTBULL 

To create various attack configurations for prediction performance 

analysis, we use tools to simulate malicious traffic in an experimental network. A 

intrusion-prevention system penetration tester can do this. It injects malicious 

packets into the network either by means of custom packets with attack 

signatures or simulating attack patterns. We used Pytbull to do this and yield an 

alert file (Damaye, 2012).  

Pytbull can automatically conduct simulated attacks on a target. A Pytbull 

application consists of an attacker machine and a server. The prerequisite 

services running on the server are FTP, HTTP, SSH and the Pytbull server itself 

(running a reverse shell). These services allow Pytbull, executing from the 

attacker machine, to conduct tests related to these services. Pytbull provides 

about 300 tests in 11 testing modules, listed in Table 2. These modules are 

reconfigurable, which allow us to customize the attack patterns. 

 

No. Test Module Description 
1 badTraffic Non-RFC-compliant packets are sent to the server. 
2 bruteForce Tests the ability of the server to track brute force 

attacks (as on FTP). 
3 clientSideAttacks Uses a reverse shell to provide the server with 

instructions to download remote malicious files. 
4 denialOfservice Tests the ability of the intrusion-detection system to 

protect against denial-of-service attempts. 
5 evasionTechniques Check if the intrusion-detection system can detect 

various evasion methods. 
6 fragmentedPackets Sends various fragmented payloads to the server to 

test its ability to recompose them and detect attacks. 
7 ipReputation Tests the ability of the server to detect traffic from/to 

low reputation servers. 
8 normalUsage Sends payloads that correspond to normal usage. 
9 pcapReplay Repalys pcap files (packet sequences) 
10 shellCodes Sends various shellcodes to the server on port 21/tcp 

to test its ability to reject them. 
11 testRules Testing of basic rules. of the intrusion-detection 

system/intrusion prevention system. 

Table 2.   Pytbull Test Modules (From Damaye, 2012) 
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Each testing module allows tests that to be enabled or disabled via 

configuration files. Pytbull conducts these tests in sequence. At the end of each 

run, we extracted the alert log file to determine whether the tests are detected.  

Similar experiments were conducted in (Albin, 2011), which identified tests 

such as client-side attacks and pcap replay (pcap of the Slammer worm) that 

were not detected by Snort, although a large number of repetitive and not 

meaningful “reset outside window” alerts were found in our experiment. We 

excluded these tests from our random attacks run to reduce the number of “reset 

outside window” alerts. We broke down the individual attacks into separate 

configuration files so that we could select or randomly launch individual attacks.  

D. BACKTRACK LINUX 

We needed an operating system for both Snort and Pytbull. Snort can 

operate on either the Windows or Linux platform while Pytbull only operates on 

the Linux platform. We choose Linux as our operating system to simplify the 

software configuration so that we could install both applications on a single 

platform. We replicated the operating system and software configuration for 

multiple machines by using virtual machines. 

BackTrack is a Linux-based intrusion-detection system/intrusion-

prevention system penetration testing distribution that is free  (BackTrack, n.d.). It 

provides security professionals with a large database of security tools packaged 

in the Linux operating system. We use BackTrack release 2 with KDE desktop 

environment. BackTrack can be installed and boot from a thumbdrive, harddrive, 

or directly from a Live DVD. A Live DVD refers to the ability to boot the entire 

operating system and run applications directly from a DVD.  

BackTrack is pre-installed with 12 categories of security tools as shown in 

Table 3: 

 

 



 14

BackTrack intrusion-detection system/intrusion-prevention 
system penetration testing modules 

Information gathering Stress testing 
Vulnerability assessment Forensics 

Exploitation tools Reporting tools 
Privilege escalation Services 
Maintaining access Miscellanous 

Reverse engineering  
RFID tools  

Table 3.   BackTrack Intrusion-detection System/Intrusion-prevention  
System Penetration Testing Modules 

Both Snort and Pytbull, and their prerequisite tools (such as Tcpdump and 

Libpcap) are pre-installed in BackTrack. Therefore, we do not have to go through 

an entire package installation process. Software updating and rules updating (for 

Snort) is advised to ensure the latest package release is installed. 

E. VIRTUALIZATION TECHNOLOGY 

Virtualization software, such as the VMware, seeks to improve machine 

versatility by allowing a single machine to run multiple operating systems at the 

same time (VMware, 2012). A virtualization application runs on the main 

operating system, sharing the system resources with other applications. Multiple 

operating systems then run on the virtualization application. The resources 

allocated to the virtualization application are shared among these virtual 

machines. For example, the main operating system can be a running Microsoft 

Windows 7 operating system, while the virtual machines are running Linux 

operating systems. Virtual machines are installed on “virtual disk” residing on a 

separate file container on either the main machine or separate storage system. 

This separation ensures the files belonging to different virtual machines and main 

machine do not corrupt.  
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In our experiments, we used the VMware player version 5 as the 

virtualization software. This enabled us to use two physical machines to run six 

virtual machines at the same time. Snort and Pytbull were configured on these 

virtual machines.  

F. EVALUATION CRITERIA 

This section describes the metrics used to evaluate the prediction 

algorithms. 

A true positive refers to making a correct positive prediction (the predicted 

event occurred) whereas a false positive refers to making a wrong positive 

prediction (the predicted event did not occur). A false negative refers to making a 

wrong negative prediction (the actual event coincides to the event that is 

predicted as not occurring). An intrusion detection alert prediction predicts the 

attacker IP address, the target IP address, the alert identification and the protocol 

type. These fields must match the real fields for the prediction to be considered a 

true positive prediction. 

The precision measures the number of true positives in relation to the total 

number of positive predictions (sum of true positives and false positives) made 

(Rijsbergen, 1979). In cyber security, a high precision level is equivalent to 

predicting existence of real threats correctly with low levels of false alarms.  

The recall measures the total number of true positive predictions in 

relation to the total number of actual positives (sum of true positives and false 

negatives). If the prediction in cyber security has a high recall value, we can say 

that the system focuses on security. That is to raise an alert for a possible threat 

than to miss a real threat.  

The F-score is the harmonic mean of precision and recall. It rewards 

increases in both precision and recall. We use this metric for our prediction 

algorithm evaluation as it balances between precision and recall instead of 

sacrificing one metric for the other.  
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IV. EXPERIMENTAL SETUP  

In our alert dataset generation, we identified three key agents - the 

attacker, the victim, and the intrusion-detection system. The attacker uses Pytbull 

to launch various penetration tests on the victim, whereas the intrusion-detection 

system listens to the traffic and generates alerts in a log file. This chapter 

describes the hardware and software configuration used in our experiment. 

A. EXPERIMENT SPECIFICATION 

1.  Hardware Specifications 

The specifications of each hardware component in our experiments are 

listed in Table 4.   

We deployed two physical machines in our networked environment. They 

were connected to the network switch via Ethernet cables. We use virtual 

machines on these computers to simulate multiple hosts on the network. The 

machine running the intrusion-detection system was connected to the mirrored 

port of the switch to listen to network traffic.  

A broadband router acts as a gateway to the Internet. Its main function is 

to lease IP addresses to the virtual machines by acting as a Dynamic Host 

Configuration Protocol Server and to direct incoming and outgoing traffic through 

Network Address Translation.  

Although our broadband router sufficiently connects the computers to form 

an internal network, it did not have a port mirroring feature to allow an intrusion-

detection system to listen. So we deployed a mirroring capable Ethernet switch. 

The machine running intrusion-detection system was connected to port 1, and 

the other machine was connected to port 2. We configured all traffic from port 2 

to be mirrored to port 1. 
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Machine 1 
(Lenovo T500) 

Processor Intel Core2 Duo P8600 2.4 GHz 
Storage 240 GB 
Memory 2 GB 
Network Interface Intel 82567LF Gigabit Network Connection 
Operating System Microsoft Windows XP Professional Service 

Pack 3 
Machine 2 

(Dell Latitude E6500) 
Processor Intel Core2 Duo P8600 2.4 GHz 
Storage 150 GB 
Memory 4 GB 
Network Interface Intel 8256LM Gigabit Network Connection 
Operating System Microsoft Windows 7 Service Pack 1 

Broadband Router 
(Cisco Linksys E4200) 

Standards 802.11a, 802.11b, 802.11n, 802.11g, 802.3, 
802.3u, 802.3ab 

Wireless Frequency 
Band 

2.4 GHz, 5 Ghz 

Network Ports LAN: 4 x 10/100/1000 Mbps Ethernet 
Hi-Speed USB: 1 x 4 pin USB Type A 
WAN: 1 x 10/100/1000 Mbps Ethernet 

Number of Antennas 6 antennas. 3 each per 2.4GHz and 5GHz 
radio band. 

Ethernet Switch 
(Netgear ProSafe Plus 8-port Ethernet Switch GS108E) 

Standards 802.3i, 802.3u, 802.3z 
Network Ports LAN: 8 x 10/100/1000 Mbps Ethernet 
Features Network monitoring 

Table 4.   Hardware Specifications 

2. Software Specifications 

Initially, we configured Snort to run on the physical machine. However, we 

could not enable promiscuous mode for the network interface in Windows 

environment. Normally, a network interface only receives network packets 

designated to it; in promiscuous mode, the network interface accepts all network 

packets on the network. Thus, we ran Snort from within a Linux virtual machine,  
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which set the network interface in promiscuous mode during packet sniffing. We 

verified by checking that the Snort generated alert for attacks conducted on other 

virtual machines. 

We installed VMware player 4.0.4 on both computers. We created three 

different types of virtual machines. Each virtual machine used 512 MB of memory 

and 14 GB of hard disk space. The virtual-network adapter was bridged to the 

physical network adapter. We then installed the same software for these virtual 

machines. We created multiple virtual machines by replicating the physical folder 

of the initial installation in other folders. A total of six virtual machines were 

deployed in our experiment. 

The Linux-based penetration testing distribution, BackTrack 5 release 2, 

was installed as the operating system. The distribution uses KDE as the desktop 

environment and runs on a 32-bit CPU architecture. We opted for 32-bit instead 

of 64-bit because the physical machine used a 32-bit operating system. This also 

ensures portability across machines (or additional machines). To launch the 

desktop environment, we enter “startx” after the initial boot up sequence. 

BackTrack was pre-installed with Snort and Pytbull. We updated Snort to 

version 2.9.2.3 and its prerequisite package Libpcap to version 1.0.0-6. There 

was a need to update Libpcap so that it is compatible to Snort. We also obtained 

the updated Snort ruleset release 2.9.2.3 from the Sourcefire Vulnerability 

Research Team. We enabled the ruleset in the Snort configuration file. We did 

not need to configure a SQL database for the Snort alert as we are using the 

default csv file logging. 

We updated Pytbull to version 2.0. Prior to executing Pytbull or the Pytbull 

server, we must ensure Apache2, SSH and FTP services are already running as 

some of the attacks were conducted on these services. For both FTP tests and 

alert file retrieval, Pytbull requires the server to setup an FTP account and a user 

home directory. We also specify the paths of the supporting tools (nikto, hping3, 

ping, tcpreplay, ncrack, ab), which are necessary for Pytbull in the configuration 
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file. Pytbull launches specific tests according to the configuration file. The test 

configurations for each type of test were stored in module configuration file. 

Thus, we broke it down into individual tests by creating different module 

configuration files and Pytbull configuration files.  

The test selection is achieved by executing the associated module 

configuration file and Pytbull configuration file. A script was created to select the 

desired test (or choose one at random) and to create continuous test runs. At the 

end of each Pytbull execution, it retrieved the Snort alert file via FTP and hosted 

a webpage to produce a summary of the intrusion-detection system/intrusion-

prevention system penetration test. Since this feature was not required in our 

experiment, and to prevent the webpage hosting from halting our continuous test 

runs (running one test after another), we modified Pytbull codes to skip this 

feature. 

Table 5 shows the three key members of our experiment (the attacker, the 

victim and the intrusion-detection system) and the software components they are 

using. They were virtual machines running within VMware Player 4.0.4. 
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Intrusion Detection System (+ Victim) 

Primary role Sniff packets and generate alert log. Solicit 
attacks. 

Software 
components 

Snort 2.9.2.3 – intrusion-detection system 
Apache – web server 
SSH – secure shell server 
Vsftpd – ftp server 
Pytbull server – server to allow pytbull to 
conduct reverse shell commands 

Victim 

Primary role Solicit attacks. 
Software 
components 

Apache – web server 
SSH – secure shell server 
Vsftpd – ftp server 
Pytbull server – server to allow pytbull to 
conduct reverse shell commands 

Attacker 

Primary role Launch attacks to trigger intrusion-detection 
system alerts. 

Software 
components 

Pytbull – launch penetration test on victim 
machines 

Table 5.   Software Components on Experiment Machines 

3. Network configuration 

We deployed the network participants as virtual machines in our 

networked environment. A total of three attacker and three victim virtual 

machines were deployed, where one of the victims  also had the intrusion-

detection system running. We divided the virtual machines between the two 

physical machines to balance the load. Machine 1 hosted the intrusion-detection 

system, Victim 1 and Victim 2. Machine 2 hosted Attacker 1, Attacker 2 and 

Attacker 3. We determined that the intrusion-detection system required higher 

processing power as it processes all packets sniffed across the network. We 

allocated it to the victim virtual machines in one physical machine as victim 

machines are the receiving ends of the attacksand this did not require high 

processing power.  
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Machine 1’s network interface card connected to the mirroring port on the 

first port of the Ethernet switch. Machine 2’s network interface card  connected to 

the second port. We connected the broadband router to port eight. All the virtual 

network interfaces (within the virtual machines) were bridged to the physical 

machine to simulate physical connections to the switch. We configured the switch 

to mirror all network packets from all other ports to port one. Figure 3 shows the 

network connections. 

 

Figure 3.   Network Connection Diagram 

4.  Problems Encountered 

 We initially deployed Snort in a Windows environment. The 

straightforward configuration is to put the Snort configuration directly on the 

physical machine. However, we realized that we need to determine whether it 

was working only after running the intrusion-detection system/intrusion-

prevention system penetration testing tool. 
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Intrusion-detection system/intrusion-prevention system testing could be 

conducted by manually launching attacks. However, that is time-consuming and 

requires specific individual configuration such as port scanning followed by 

sending a payload. Pytbull presents itself as an automatic tester packaged with 

different types of test modules. Manual updating and configuration for Pytbull are 

required although it was preinstalled in the BackTrack distribution. For instance, 

we created a relevant user account on the operating system for the FTP service. 

The configuration file was also updated to reflect the folder path of the 

prerequisite tools Pytbull depends on. Pytbull launched tests in a fixed order. 

However, we wanted it randomized. We discovered that the tests are based on 

the module configuration file. We segregated these attacks into individual 

configuration files. At each Pytbull execution, we selected the configuration file to 

use by random. 

After Pytbull was configured, we conduct some pilot runs. We discovered 

that Snort only detects network broadcast messages. Network traffic that was not 

directed to the Snort machine was not detected by Snort. Due to the limited 

resources, the participants were networked to the broadband router, which had a 

built-in switch. Online discussion sites revealed the possible reasons were either 

a lack of port mirroring switch, or the network interface’s inability to operate in 

promiscuous mode. The following steps were taken to tackle the problem: 

 Configured Linux-based Snort: We suspected that the physical 
machine’s network interface could not operate in promiscuous 
mode in Windows environment. Since Snort is pre-installed in 
BackTrack, we reconfigured Snort to run from Linux environment. 

 Snort Machine as victim: We conducted tests on the Snort machine 
to verify the configuration. We were unable to perform these tests 
on Windows-based Snort as the victim has to be running the Pytbull 
server in a Linux operating system. 

 Connect the machines to a port-mirroring switch: We procured a 
port-mirroring-capable switch and configured mirroring in place of 
the broadband router’s built-in switch. 
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 Tested Snort detection on victim: We started another virtual 
machine to test if Snort could detect Pytbull tests on other machine. 
We verified that this network configuration was working by checking 
the alerts for detected attacks on victim 1. 

 

B. EXPERIMENT SETUP 

In this section, we describe the different configurations we use to generate 

alert datasets.  

1. Experiment One 

We set up a scenario where there is one attacker targeting one victim. 

Between each attack execution, the attacker waits for a random period of up to 

180 seconds. This is to randomize the frequency of attacks. 

2. Experiment Two 

We  simulated a scenario where there are multiple attackers in the 

network. We increased the number of attackers to three and number of victims to 

three. The attackers launched their entire series of attacks one after another. But 

at any one time, there is only one attacker launching the attacks. Between each 

attack, the attacker waits for a random period of up to 180 seconds. Attackers 

randomly select the victims to attack. Because of this random selection, the 

number of attacker-to-victim pairs increases to nine pairs as compared to one 

pair in experiment one. 

3.  Experiment Three 

In our third experiment, we evaluated the performance on the algorithm’s 

prediction ability if the intrusion-detection system detects multiple attackers in 

randomized sequence. Three attackers were configured to launch attacks 

simultaneously. The wait period is a random period of up to 180 seconds. 
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4.  Experiment Four 

The last experiment evaluated whether the algorithm could perform 

prediction in situations where the attacks from different attackers overlap. Three 

attackers launch their attacks simultaneously with a wait period of about ten 

seconds.  

5. Problems Encountered 

We notice numerous “reset outside window” alerts were generated from 

Snort during our initial data collection. These alerts are repetitive and not 

meaningful. We are unable to explain the phenomenon other than by associating 

these alerts to the attacks that Snort is not able to detect and report. Snort is not 

able to detect client-side attacks and pcap replay (Albin, 2011). To reduce the 

number of “reset outside window” alerts, we disabled these Pytbull modules from 

launching during our experiment. Table 6 shows an example of a stream of “reset 

outside window” alerts Snort generats during client-side attacks. 

 

Timestamp Sig. ID Rev. Message Protocol Source IP Destination 
IP 

06/19/12-
21:02:55.614512  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.614516  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.614547  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.614551  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.615070  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.615078  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.620332  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

06/19/12-
21:02:55.620821  

129 15 1 Reset outside 
window 

TCP 192.168.1.137 192.168.1.101

Table 6.   Reset Outside Window Alerts 
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V. RESULTS AND DISCUSSION 

In this chapter, we present our results from running Tan’s prediction 

algorithm programs, adapted from Tan and Darken (2012a, 2012b), on our 

generated dataset. We compared the prediction algorithms at different entropy 

levels.  

Finally, we conducted significance testing to determine if the prediction 

accuracies of other algorithms were similar to that of the Single-Scope Blending 

algorithm. 

A. ONE ATTACKER VERSUS ONE VICTIM 

Figure 4 shows the accuracy of the prediction algorithm for one attacker 

and one victim. The dataset was divided into 126 batches of 100 percepts each. 

The F-score was used to evaluate the accuracy of the prediction algorithms. We 

post-processed and classified the prediction result of each batch based on 

different entropy levels. Entropy is a measure of uncertainty of random variables 

defined in Shannon (1984). In our context, the random variable is the occurrence 

of alerts. It is computed as 

2( ) ( ( ))
n

i i
i

E p x log p x  , 

where ( )ip x  is the probability of ix . Entropy in each batch of percepts was used 

to represent the number of unique alerts (consisting of the attacker IP address, 

the target IP address, the alert identification and the protocol type). It describes 

the variability of that batch with regards to the proportion of each unique alert. 

The entropy increases with the number of unique alerts. Entropy is an 

appropriate measure because when entropy is low (highly repetitive and low 

number of unique alerts), many probabilistic and statistical prediction techniques 

would work well. Conversely, these techniques are expected to fail when the 

number of new alerts is large. 
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Figure 4.   F-score Comparison: One Attacker versus One Victim with  
Random Period of up to 180 Seconds between Attacks 

The accuracy of Single-Scope Blending (SSB) and Variable-Order Markov 

Models (VOMM) were similar across the entropy levels while Simple Bayesian 

Mixture and Multiple Simple Bayesian showed worse declining F-scores. We 

observed that F-score decreased as entropy increased. This was consistent with 

the unpredictability levels. However, there was a decrease in F-score at entropy 

level three for all algorithms, which had only two batches of percepts (Table 7)  

All four algorithms performed badly for one of the two batches, causing a sudden 

decrease in F-score . 

 

 Entropy Level 
 1≤E<2 2≤E<3 3≤E<4 4≤E<5 

Number of 
batches 

13 18 2 6 

Table 7.   Breakdown of Percept Batches: One Attacker versus One Victim  
with Random Period of up to 180 Seconds between Attacks 
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B. THREE ATTACKERS VERSUS THREE VICTIMS 

We wanted to compare prediction accuracy in scenarios where with more 

attackers and victims. We let three attackers randomly select one of three victims 

during each attack. This increased the possible actor pairs (attacker-victim) to 

nine to better simulate real-life cyber threats with multiple hackers scouring for 

potential victims on the network. 

We observed no difference in the types of random attacks launched 

between a the first scenario and a three attackers versus three victims scenario. 

Figure 5 shows that SSB performed consistently better than the rest as we 

increased the number of attackers and victims in our experiment. At entropy level 

five, SSB is 0.1 better in F-score than MSB and VOMM. SBM, on the other hand, 

dd not show any change in accuracy.  

 

 

Figure 5.   F-score Comparison: Three Attackers versus Three Victims with  
Random Period of up to 180 Seconds between Attacks  

(No Overlapping Attacks) 
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At lower entropy levels, we already observed different accuracies among 

the prediction algorithms unlike in the first scenario. The reason appears to be 

that SSB uses structural similarities to better match seemingly dissimilar 

situations. SBM, MSB and VOMM received incoming percepts as nine different 

actor pairs. Assuming there was already a set of situations in the knowledge 

base involving attacker-victim pair A-B performing action set X, as SSB received 

incoming percepts involving a different attacker-victim pair C-D but performing 

same action set X, it could cast an analogy from A-B to C-D to make a prediction 

(Tan & Darken, 2012b). SBM, MSB and VOMM cannot form this analogy, 

because they can only predict alerts that have been generated before.  

Figure 6 shows the results where we allowed three attackers to launch 

their attacks consecutively. We expected the prediction complexity to increase 

because of the increased probability of overlapping attacks from different 

attackers, but a 180 seconds wait between attacks was too large to show a new 

effect. 

 

Figure 6.   F-score Comparison: Three Attackers versus Three Victims with  
Random Period of up to 180 Seconds between Attacks  

(Simultaneous attacks) 
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Table 8 shows the number of alert batches distributed over the different 

entropy level. We reduced the random wait time between attacks to about 10 

seconds. At the same time, the number of incoming percept sequences 

increased within a short time period. Table 9 shows an extract of alerts from 

attackers of different IP addresses. It was observed that other attackers launched 

attacks while IP address “192.168.1.115” sent fragmented packets to IP address 

“192.168.1.101. Other than SBM whose accuracy remained similar to previous 

attack configurations, all other prediction algorithms showed declined accuracy at 

entropy level five. SSB remained the top performer by at least 0.08 as shown in 

Figure 7. 

 

  Entropy Level
    1≤E<2 2≤E<3 3≤E<4 4≤E<5 5≤E<6 

Number 
of 

batches 

Experiment 2 32 30 33 26 3 
Experiment 3 75 101 57 46 11 
Experiment 4 100 140 75 65 15 

Table 8.   Distribution of Percept Batches for Experiment 2,3 and 4 
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Timestamp Sig. ID Rev. Message Protocol Source IP Destination IP 

07/27/12-
08:55:01.345651  

123 13 1 (spp_frag3) Tiny 
fragment 

TCP 192.168.1.115 192.168.1.101 

07/27/12-
08:55:01.345844  

123 13 1 (spp_frag3) Tiny 
fragment 

TCP 192.168.1.115 192.168.1.101 

07/27/12-
08:55:03.695396  

1 17322 1 SHELLCODE x86 
OS agnostic fnstenv 
geteip dword xor 
decoder 

TCP 192.168.1.138 192.168.1.102 

07/27/12-
08:55:03.695396  

1 1378 21 FTP wu-ftp bad file 
completion attempt 

TCP 192.168.1.138 192.168.1.102 

07/27/12-
08:55:03.695396  

125 2 1 (ftp_telnet) Invalid 
FTP Command 

TCP 192.168.1.138 192.168.1.102 

07/27/12-
08:55:03.766376  

1 2000001 0 FTP brute force 
failed login unicode 
attempt 

TCP 192.168.1.117 192.168.1.101 

07/27/12-
08:55:04.009447  

1 1122 10 WEB-MISC 
/etc/passwd 

TCP 192.168.1.117 192.168.1.101 

07/27/12-
08:55:04.323224  

123 13 1 (spp_frag3) Tiny 
fragment 

TCP 192.168.1.115 192.168.1.101 

07/27/12-
08:55:04.323327  

123 13 1 (spp_frag3) Tiny 
fragment 

TCP 192.168.1.115 192.168.1.101 

 

Table 9.   Extract of Alerts from Multiple Attackers 
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Figure 7.   F-score Comparison: Three Attackers versus Three Victims with Random 
Period of about 10 Seconds between Attacks. (Simultaneous Attacks) 

Although SSB outperforms the other prediction algorithms, it was the 

slowest. The computation data is tabulated in Table 10. The maximum prediction 

time for SSB was 4.283 seconds as compared to the MSB (next best performer) 

at 0.141 seconds, while the mean prediction time was 0.221 seconds for SSB  

compared to 0.011 seconds for MSB.   

 

Time (seconds) 

SBM SSB MSB VOMM 

Maximum 1.182 4.283 0.141 0.065 

Mean 0.038913 0.220718 0.010814 0.017035 

Table 10.   Computation Time: Three Attackers versus Three Victims with Random 
Period of about 10 Seconds between Attacks. (Simultaneous Attacks) 

Tables 11, 12, and 13 provides the probability the prediction accuracies of 

other algorithms were similar to that of SSB. Paired T-Test compares F-scores of 

each situation while group t-test compares the average F-Scores. These results 
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support the hypothesis (at  95% confidence level) that SSB outperforms SBM, 

MSB, and VOMM from a different perspective. 

1≤E<2 
SBM MSB VOMM 

Paired T-test 5.77E-04 1.36E-02 6.54E-19 
Group T-test 5.68E-03 3.51E-02 7.20E-20 

2≤E<3 
SBM MSB VOMM 

Paired T-test 1.25E-08 6.00E-04 2.49E-05 
Group T-test 4.12E-05 3.02E-02 3.05E-02 

3≤E<4 
SBM MSB VOMM 

Paired T-test 5.35E-10 1.80E-03 1.42E-07 
Group T-test 4.12E-08 1.71E-02 1.55E-03 

4≤E<5 
SBM MSB VOMM 

Paired T-test 7.33E-11 4.97E-07 4.68E-05 
Group T-test 1.40E-15 1.45E-03 2.14E-02 

5≤E<6 
SBM MSB VOMM 

Paired T-test 6.45E-06 1.34E-02 2.65E-03 
Group T-test 1.30E-07 3.23E-02 1.19E-02 

Table 11.   T-test Probabilities that the Algorithm’s Performance is similar  
to that of SSB’s (Experiment 2)  

1≤E<2 
SBM MSB VOMM 

Paired T-test 8.65E-15 3.55E-09 9.53E-15 
Group T-test 1.59E-06 1.75E-03 1.31E-05 

2≤E<3 
SBM MSB VOMM 

Paired T-test 1.71E-12 8.07E-05 2.98E-09 
Group T-test 1.23E-05 3.63E-02 1.48E-03 

3≤E<4 
SBM MSB VOMM 

Paired T-test 1.49E-29 6.06E-15 2.80E-21 
Group T-test 1.37E-19 1.35E-05 1.17E-08 

4≤E<5 
SBM MSB VOMM 

Paired T-test 2.39E-15 2.56E-13 1.73E-10 
Group T-test 1.18E-22 4.47E-04 6.64E-03 

5≤E<6 
SBM MSB VOMM 

Paired T-test 3.18E-07 6.49E-06 7.88E-06 
Group T-test 3.30E-11 1.15E-02 9.95E-03 

Table 12.   T-test Probabilities that the Algorithm’s Performance is similar  
to that of SSB’s (Experiment 3) 



 35

 
 
 
 
 
 
 

1≤E<2 
SBM MSB VOMM 

Paired T-test 8.34E-24 1.34E-14 1.20E-14 
Group T-test 5.17E-04 1.77E-02 2.92E-03 

2≤E<3 
SBM MSB VOMM 

Paired T-test 8.71E-20 9.12E-06 1.37E-14 
Group T-test 1.05E-08 1.50E-02 1.46E-05 

3≤E<4 
SBM MSB VOMM 

Paired T-test 5.56E-28 5.56E-28 6.77E-11 
Group T-test 1.75E-17 1.75E-17 9.24E-05 

4≤E<5 
SBM MSB VOMM 

Paired T-test 4.02E-18 4.02E-18 5.89E-16 
Group T-test 3.58E-25 3.58E-25 9.91E-04 

5≤E<6 
SBM MSB VOMM 

Paired T-test 5.22E-07 5.22E-07 1.74E-04 
Group T-test 3.91E-08 3.91E-08 4.26E-02 

Table 13.   T-test Probabilities that the Algorithm’s Performance is similar  
to that of SSB’s (Experiment 4) 
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VI. CONCLUSION AND FUTURE WORK 

This thesis generated intrusion-detection system alerts to support the 

performance analysis of prediction algorithms in cyber security. We generated 

intrusion alerts by simulating attacks within an internal network environment. This 

provided a sufficient dataset for the evaluation of a prediction algorithm, although 

some Pytbull modules are not detected by Snort. This approach saves effort 

because it would be time-consuming to collect intrusion alerts from real attacks 

through honeypots. We were able to adjust the frequency of attacks, number of 

attackers and number of targets to help us in our evaluation. 

We then evaluated the performance of several relational time-series 

prediction algorithms on our generated alerts. The prediction accuracy declined 

as the entropy level of the alerts increased. We observed that an increase in 

number of attackers and victims lowered accuracy of prediction, except of SBM, 

which underperformed consistently. The performance of MSB and VOMM were 

similar across the experiments, and inferior to that of Single-Scope Blending. It 

appeared that the latter’s conceptual blending approach was able to make good 

use of the structural properties during situation selection. It could help with 

situations where attackers vary IP address and targets.  

For future work, we suggest implementing online prediction algorithms into 

an intrusion-detection system. We could set up a common database to allow the 

system to store new alerts while prediction algorithms retrieve and process them. 

The predicted alerts can be stored in a prediction database to provide network 

administrators with additional information.  
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