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Final Report 

ELECTRICALLY CONTROLLED OPTICAL METAMATERIALS BASED ON 

DISPERSIONS OF NANO-RODS  

Andrii B. Golovin , Jie Xiang, Heung-Shik Park, Luana Tortora, and Oleg D. Lavrentovich 

Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA;E-Mail: olavrent@kent.edu;  

Tel.: +1-330-672-4844; Fax: +1-330-672-2796. 

 

Abstract: In modern transformation optics, one explores metamaterials with properties that vary from 

point to point in space and time, suitable for application in devices such as an “optical invisibility 

cloak” and an “optical black hole”.  

We proposed an approach to construct spatially varying and switchable metamaterials that are based 

on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic 

forces, originating in the electric field gradients, create spatially varying configurations of aligned 

NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical 

properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrated electrically 

induced change in refractive index on the order of 0.1. By exploring local light absorption and 

birefringence, and by developing a model of light propagation in a medium with spatially varying 

composition,  we determined the concentration of NRs and field-induced changes in the refractive 

indices as the function of spatial coordinates in a nonuniform electric field. We demonstrated that the 

electric-field induced condensation and alignment of gold NRs near the central region of a cylindrical 

shell causes bending of light rays around the region enclosed by the shell and to the mitigation of the 

shadow of the central electrode (nonideal cloaking effect).  We also describe liquid crystal 

metamaterials (LCMMs), representing a composite of a liquid crystal (rather than an isotropic fluid) as 

a dispersion medium and solid (metal) NRs as a dispersed component.  The purpose of the metal 

component is to vary the effective refractive indices and the resulting birefringence.  By spatially 

distorting the optic axis of LCMMs and by controlling concentration of the metallic component, one 

can design different trajectories of light propagation through the medium as illustrated analytically and 

numerically for cylindrical samples of LCMMs. Depending on the refractive indices and configuration 

of the optic axis in LCMM, the light beam can be concentrated thus offering an approach for the solar 

energy storage, or bent around the obstacle. 
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1. Introduction 

Optical metamaterials represent artificial composites with building blocks of a metal and dielectric 

nature, intertwined at a sub-wavelength scale. When properly arranged, these building units lead to 

fascinating optical effects, such as negative refraction and sub-wavelength imaging. Optical 

metamaterials in which the electric permittivity and magnetic permeability vary in space, and can be 

switchable, are of special interest. The reason is simple: by controlling the spatial variation of 

permittivity and permeability, one controls the local refractive index and thus the pathway of light in 

the medium. According to the Ferma’s principle of least time, a light ray propagating from a point A to 

a point B follows a path that minimizes the travel time. For a small path element, the quantity to 

minimize is simply a product of the geometrical path length and the refractive index. Thus the spatially 

varying refractive index can make the light rays follow curved trajectories. If these trajectories are 

designed to avoid a certain region of the medium, one obtains an invisibility cloak, as any object 

placed within this region would not interact with light [1,2]. Potential applications of metamaterials 

with spatially varying properties are much wider than cloaking and extend from perfect magnifying 

lenses with sub-wavelength resolution [3] to optical “black hole” collectors [4,5], as reviewed recently 

by Wegener and Linden [6]. To find the pathway of light, theoretically, one uses the equivalence of 

coordinate transformations and renormalization of permittivity and permeability; this is why the field 

of study is called the “transformation optics” [1,2,7-9]. 

The fact that light rays follow curved trajectories in a medium with a varying refractive index has 

been known for a very long time in the physics of liquid crystals. In the simplest liquid crystal, the  

so-called uniaxial nematic, rod-like molecules align parallel to each other, along the common 

“director” n̂ . The director is a unit vector with a property ˆ ˆ n n  (the medium is non-polar); it is also 

a local optic axis. The associated birefringence          of a typical nematic formed by  

low-molecular-weight organic molecules is significant: the ordinary refractive index    is often about 

1.5, while the extraordinary index    is about 1.7. In liquid crystals, the local orientation of molecules 

and thus the local optic axis can be made varying in space and time, for example, by setting proper 

surface alignment at the boundaries and applying an electric field to realign n̂  (a phenomenon at the 

heart of modern liquid crystal displays). The early liquid crystalline example for transformation optics 

has been presented by Grandjean in 1919 [10]. Grandjean considered a cylindrical nematic sample in 

which the director was arranged radially. When such a structure is illuminated with light polarized 

normally to the axis of cylinder, the rays are bent away from the central axis and leave a segment of an 

opening angle             un-illuminated [10]. This particular example represents, loosely 

speaking, half a cloak, as the trajectories are diverging. The limitation of a regular liquid crystal is that 

although the ellipsoid of refractive indices is changing its orientation in space, it cannot be shrunk or 

expanded at will [10,11].  

In a metamaterial, the refractive index (or indices) can be made to change from point to point. An 

excellent example is the optical cloak proposed by the Shalaev’s group [12]. A cylindrical shell of a 

(rigid) dielectric is penetrated with radial metal nano-wires. The metal filling factor increases as one 

moves from the outer to the inner surface of shell. The optic axis configuration is identical to the 

Grandjean’s model, but in the metamaterial,    changes with the radial coordinate, down to zero at the 
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inner surface, while in the Grandjean’s liquid crystal,         . The light trajectories in the cloaking 

shell first diverge and then converge, to restore a flat front as they pass around the shell [12]. By 

properly adjusting the radial variation of the refractive index, one can greatly reduce the visibility of an 

object enclosed by the shell [12]. Such a proper adjustment requires one to distribute small  

(sub-wavelength) elements in an essentially gradient manner, which represents a major technological 

difficulty [13-21]. Nowadays, metamaterials are fabricated by electron beam lithography, focused  

ion-beam milling [13], deposition of alternating metal and dielectric layers [16], or by growing 

metallic wires from  

within a dielectric medium [17]. These metamaterial structures should be more properly called 

“metasurfaces” or “metafilms” as their functionality is determined by only one or a few layers normal 

to the direction of propagating light [6]. For complex architectures, involving property variations along 

the three spatial dimensions and switching, new approaches are needed. Among the potential 

candidates are bottom-up self-assembly [18], alignment of NRs by a uniform electric  

field [19] or assembly through a non-uniform electric field [20]. 

Recently, we proposed that the next wave of metamaterials with spatially varying and even 

switchable optical properties can be based on dispersions of small (sub-wavelength) metal nanorods 

(NRs) in a dielectric fluid, controlled by a nonuniform ac electric field [22]. The gradients of the 

electric field pull the highly polarizable NRs towards the strongest field and also align them along the 

field lines. The reason is that the field-induced dipole polarization experiences different pulling force 

at the two ends of the NRs when the field is non-uniform. The effect is known as dielecrophoresis [20]. 

If the electric field is radial, for example, created by two concentric cylindrical electrodes, then the 

NRs align radially and condense near the inner electrode [22]. The structure is similar to the cylindrical 

cloak proposed in [12], with the difference that the location and orientation of NRs is determined by 

the dielectrophoretic forces and interactions between the NRs rather than by mechanical means. We 

used NRs that are much smaller than the wavelength of light, of a length of about 40-70 nm, to reduce 

light scattering. Previously, dielectrophoretic manipulation has been demonstrated for much larger 

supra-micron metal wires [23-29], but the viability of downscaling is not obvious as the 

dielectrophoretic force acting on the particle is proportional to its volume [20] and might be too small 

at nanoscales. Similarly small NRs were previously studied under the action of a uniform electric field 

that can impose an orienting torque on the NRs [19, 30-32].  Cook et al [33] used a strong gradient dc 

electric field to harvest ferroelectric nanoparticles; this effect of a “permanent dipole dielectrophoresis” 

is different from the “induced dipole dielectrophoresis” in the ac field discussed by us. We expand the 

scope of the original experiments [22], present new data for different dispersions of NRs and analyze 

the  field-induced pattern analytically and numerically, in order to obtain information about the 

dielectrophoretic forces acting on NRs, field-induced spatial distribution of NRs, field-modified 

refractive indices and coefficients of absorption. 

The dielectrophoretically controlled metamaterial is discussed in the first part of the report, pages 2-

26; the second part, pages 26-47, describes a liquid crystal metamaterial, for which we performed 

numerical and analytical simulations demonstrating the ability to control light trajectories with the 

distorted optical axis. 
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2. Experimental Materials and Methods 

2.1. Dispersions of NRs in Toluene 

We used dispersions of gold (Au) NRs in dielectric fluids, such as toluene and water. Au NRs can 

be grown by the so-called seed mediated process in water solutions of a cationic surfactant 

cetyltrimethylammonium bromide (C16H33)N(CH3)3Br, abbreviated as CTAB. CTAB forms a charged 

bilayer around the NRs, preventing them from aggregation. When Au NRs reach the desirable length 

    and diameter    , the NR dispersion is centrifuged and redispersed in deionized water. We also 

used water dispersions of Au NRs commercially available from Nanopartz, Inc. 

For optical experiments with NR dispersions in glass containers, it is convenient to match the 

refractive index of the dispersive medium with the refractive index of glass. We use toluene with 

1.497tn   measured at 589.3   nm and 293 K; tn  is close to the refractive index of borosilicate glass. 

To transfer Au NRs from water into toluene, we followed the approach developed by N. Kotov and 

P. Palffy-Muhoray groups, in which the Au NRs are functionalized with thiol terminated polystyrene 

[30,34]. A 2 wt% solution of thiol terminated polystyrene (molecular weight 53,000, purchased from 

Polymer Source, Inc) in tetrahydrofuran is added by rapid stirring to the water dispersion of  

CTAB-stabilized Au NRs. The mixture is incubated overnight for hydrophobization-induced 

precipitation of NRs. The rods are collected after supernatant removal, by re-dissolution in toluene. 

The volume fraction of Au NRs in toluene was increased by centrifuging to              . The 

typical volume fraction of Au NRs in water dispersions produced by Nanopartz, Inc. was                . 

To facilitate the study of spatial structure and optical properties, we use three types of dispersions: 

(1) “long/thin” NRs in toluene, with an average length lNR = 70 nm and diameter dNR = 12 nm, showing 

a longitudinal plasmonic absorption peak at    1040 nm; (2) “short/thick” NRs in toluene, with  

lNR = 50 nm, dNR = 20 nm, and the absorption maximum at 725 nm; (3) “short/thin” NRs in water and 

toluene with lNR = 45 nm, dNR = 10 nm. The spectral properties of dispersions strongly depend on the 

dispersive medium and NRs geometry, in particular, on the aspect ratio       ⁄ , Figure 1(b,c). 

Figure 1. Transmission electron microscope image of “long/thin” Au NRs (a), absorption 

spectra of toluene dispersions of “long/thin” and “short/thick” Au NRs (b), and water 

dispersion of “short/thin” Au NRs at volume fraction        (blue line), as well as toluene 

dispersions with volume fractions 4       (red line) and 50       (black line) (c). 

(a) (b) (c) 
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The “short/thick” NRs are suitable to explore spatial distribution and orientation of NRs by monitoring 

absorption near 725 nm, while the “long/thin” NRs are better suited to observe the cloaking effect. The 

results were similar for water and toluene dispersions. However, since the refractive index of water 

does not match that of glass capillaries confining the dispersions, we describe only the  

toluene case. 

2.2. Two Types of Samples: Flat and Cylindrical Cells 

We study two different geometries, flat cells and cylindrical cells. (1) The flat cells are formed in 

between two glass plates, with two mutually perpendicular electrodes in the plane of the cell, Figure 2 

(a,b). One (grounded) electrode is a copper wire, of diameter 2 m, in a borosilicate glass shell, of 

diameter 20 m, that determines the separation between the glass plates. The second electrode is a 

similar wire (with the glass shell stripped near the tip) connected to a waveform generator. The cell is 

filled with the toluene dispersion of Au NRs and sealed. The gradient electric field    in the crossed 

geometry of electrodes in the flat cell mimics the radial gradient in the cylindrical sample, Figure 2 (c). 

(2) The cylindrical sample represents a circular capillary. The electric field    is created by coaxial 

electrodes; one is a bare copper wire of diameter 2 m running along the axis and the second one is a 

transparent layer of indium tin oxide (ITO) deposited at the outer surface of the capillary. The space 

between the inner surface of glass capillary and the central electrode is filled with the dispersion of 

NRs that represents our electrically controlled metamaterial shell. The central electrode (2) plays a dual 

role, setting up the gradient electric field and also serving as the object to be “cloaked” by the shell. 

Figure 2. Samples used in the experiments: The flat (a,b) sample formed between two 

glass plates (1) with orthogonal copper wires (2) and (3), filled with Au NRs dispersed in 

toluene (4) that are isotropically distributed when the electric field is off (a) and form a 

condensed oriented structure when the field is on (b). The cylindrical sample (c) in a glass 

capillary (1) with coaxial electrodes (2) and (3); the cavity is filled with Au NRs dispersed 

in toluene (4) and sealed by a transparent optical adhesive (5). 

(a) (b) (c) 
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2.3. Dielectrophoretic Force 

The size of NRs is much smaller than the characteristic scale of the electric field gradients, thus the 

dielectrophoretic force FDEP  acting on a NR can be calculated in dipole approximation [20]  

        , where the potential   is 

   
 

 
             

 , (1)  

  is the volume of the NR,        is the root-mean-square (rms) value of the electric field, and        

is the real part of the effective complex polarizability written for an elongated particle as [20]: 

      
   
    

 

  
    (   

    
 )

 . (2)  

Here           is the complex permittivity of NRs and the medium (subscripts “NR” and “t”, 

respectively),   is the conductivity,      ,    is the depolarization factor that depends on the 

orientation of the NR with respect to the electric field. With         ,                      , 

          ,                ,               ,         , one finds |   
    

 |      so 

that the expression for the real part of the effective complex polarizability simplifies to 

   
  

  
   (3)  

Using the typical NR volume       
                 , applied field           , and the 

scale of gradient        , one estimates the dielectrophoretic force acting on an isolated NR of a 

modest aspect ratio yielding a depolarization factor       , as           . The corresponding 

potential                       (  is the room temperature) is high enough to overcome the 

Brownian randomization and to accumulate the NRs in the regions of maximum field. This estimate 

also suggests that the major axes of NRs (corresponding to the smallest depolarization factor   ) orient 

along the field and that the medium becomes structurally and optically similar to a uniaxial nematic 

liquid crystals, with NRs being the building units. 

The depolarization factor for the major axis of a NR can be calculated by using a model of prolate 

spheroid with axes          and eccentricity   √    
    

 , see, e.g., [31]: 

    
    

   (  
   

   
   ). (4) 

For a spheroid with the aspect ratio       ⁄ , one finds          . Numerical simulations show 

that the difference in the depolarization factors calculated for cylinders and spheroids of the same 

aspect ratio is small, less than 5% [31,32]. 

We use a commercial Finite Element Package of COMSOL Multiphysics with AC/DC module, 

version 4.0a, to simulate the electric field patterns and dielectrophoretic potentials, Equations (1,3,4), 

in the flat and cylindrical cells, for            ⁄ , Figure 3. The geometry (diameter of electrodes, 

distance between them) and material properties chosen for simulations are close to the experimental 

parameters. Numerical simulations show that the dielectrophoretic potentials   in the cylindrical and 

flat cells are similar to each other. The flat cells thus represent a convenient experimental model of the 
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cylindrical cell, mimicking the cross-section of the latter which is hard to visualize in real experiments. 

Note, however, that for the flat cell, the simulations are 2D and do not take into account field 

variations along the coordinate normal to the cell, which is an oversimplification of a real  

experimental situation.  

Figure 3. Spatial map of the electric field in the cylindrical cell filled with pure toluene, 

under an applied voltage 200V; 1 is the glass capillary, 2 is the central electrodes running 

along the axis of the cylindrical cavity, 3 is the outer electrode, and 4 is toluene, filling the 

gap between the central electrode and the inner surface of the glass shell (a). The same for 

the flat cell; 2 is the “central” electrode connected to a waveform generator, 3 is the 

grounded electrode perpendicular to the electrode 2, and 4 is toluene (b). The electric field 

(c) and the dielectrophoretic potential (d) for two cells, as the function of a radial distance 

  measured from the axis of the cylindrical cell in (a) and from the center of the 

semispherical tip of central electrode in (b).  

(a) (b) 

   

(c) (d) 
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3. Experimental Results 

The model [12] considers the optical cloaking effect achieved by a metal-dielectic shell of variable 

composition with the outer and inner diameters         and        , respectively. To yield a 

monotonous decrease of the effective refractive index from 1 to 0 between them, the filling factor of 

metal wires should gradually increase as one moves towards the inner surface. In theory [12], the feat 

is achieved by using a solid dielectric with metal wires piercing it along the radial directions; the filling 

factor increases near the inner surface and the whole structure is kept together mechanically. In our 

approach, the dielectric is fluid rather than solid and the filling factor is nothing else but the spatially 

varying volume fraction          of NRs. A gradient electric field       is applied to the dispersion 

of metal NRs in a dielectric fluid to create a dielectrophoretic force that condenses and aligns the NRs 

in a radial fashion. The resulting spatially varying      is determined by the dielectrophoretic coupling 

with the applied field and also by the forces that oppose it, such as the osmotic pressure, repulsive 

electrostatic and steric interactions of NRs. One of the important goals of this work is to establish the 

dependency      experimentally. It is expected that the volume fraction increases towards the 

maximum of the field, in our particular examples, towards the central electrode. 

3.1. Flat Cells 

At zero field, the NRs are distributed randomly, Figure 2(a), as their volume fraction in toluene 

dispersion is orders of magnitude lower than the one needed to form a nematic liquid crystal of the 

Onsager type (caused by steric repulsions). There is no preferred alignment, and the optical appearance 

of the cell does not depend on light polarization. When viewed between two crossed polarizers, the cell 

appears dark. When the AC field    (typical frequency 100 kHz) is applied, the Au NRs, being more 

polarizable than toluene, move into the regions of high electric field because of the dielectrophoretic 

effect [20], Figure 2(b). The flat cell design is convenient for the analysis of field-induced radial 

gradients of structural and optical properties of the dispersions. 

Observations under a microscope with two parallel polarizers reveal that the field accumulates the 

Au NRs near the central electrode, Figure 4. We quantify the spatial distribution of NRs by measuring 

the intensity of light transmitted through the cell as a function of a spatial coordinate along the line 

OX, crossing the central electrode of the flat cell near the tip, Figure 4. The transmission is lower for 

light polarization parallel to OX than for light polarized perpendicular to it, Figure 4c, suggesting that 

the NRs are aligned perpendicularly to the central electrode’s surface.  

To characterize the concentration gradients of “short/thin” Au NRs, we measured the transmittance 

profiles of light polarized parallel to OX, as a function of the applied voltage, for the wavelength 

        , for which the dependence of absorption on the orientation of NRs was found to be 

relatively weak. Near the central electrode, light transmittance is reduced when the voltage is on, 

confirming accumulation of NRs, Figure 5(c). Since the absorption depends exponentially on the 

concentration of absorbing particles and the cell thickness, we determine the ratio               ⁄  

as the measure of how much the local field-induced filling factor       of Au NRs averaged along the 

cell thickness, is larger than the initial (field-free) filling factor   . We estimate       from the 

transmittance                 , where          is the cell thickness. This thickness is too 



 

 

9 

 

small to determine    accurately; thus we used transmittance data             , shown in 

Figure 1(c) which we obtained for a thick cell          :          . Figure 5(d) shows that for  

        , the ratio                                      reaches the values of 55 and 

higher near the electrode (2), which corresponds to        . 

Figure 4. Voltage-condensed (U = 200 Vrms, f = 100 kHz) cloud of “short/thin” Au NRs in 

toluene, accumulated near the central electrode of a flat cell. The sample is viewed under a 

microscope between two parallel polarizers with the transmission direction E either 

perpendicular (a) or parallel (b) to the line OX crossing the central electrode, in the 

spectral region (550-700) nm of the CCD camera. Light transmission along the line OX for 

the two polarizations (c).  

(a)                                         (b)                                                         (c) 

   

Figure 5. Optical microscope textures of the toluene dispersion of “short/ thin” Au NRs in 

the flat cell when the field    is off (a) and on (b); spatial profiles of transmitted light 

intensities (c) and local filling factors ratio                                

     , measured in a monochromatic (460 nm) linearly polarized light (d). 

(a) (b) 

 
 

(c) (d) 
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3.2. Polarizing Microscopy of Toluene Dispersion of Au NRs in Flat Cells 

Under the microscope with crossed polarizers, in absence of   , the dispersion of NRs appears dark 

because it is structurally and optically isotropic. When the field is applied, the clouds of NRs 

assembled by the field gradients near the central electrode (2), show strong birefringence, which 

implies an orientational order of NRs, Figures 6,7. The sign of birefringence can be determined with 

the help of an optical compensator [10]. A waveplate (   530 nm) inserted into the optical pathway of 

microscope, induces yellow (total retardation less than 530 nm) interference color in the regions where 

the long axes of NRs are parallel to the slow axis Z’ of the waveplate, Figures 6(c,d) and 7(c,d). A blue 

interference color (retardation higher than 530 nm) is observed in the regions where the NRs are 

aligned perpendicularly to the slow axis. We conclude that the birefringence of Au NR clouds is 

negative, i.e., the index of refraction for light polarized parallel to the long axes of Au NRs in 

dispersion is smaller than for the polarization perpendicular to them. 

Figure 6. Polarizing microscope textures of the flat cell observed with crossed polarizers A 

and P. At zero electric field, the toluene dispersion of “short/thin” Au NRs is isotropic and 

the field of view is dark (a). When the voltage is on (U = 200 Vrms, f = 100 kHz), a 

birefringent cloud of aligned Au NRs appears near the central electrode (2) (b). When an 

optical compensator Z’X’, a 530 nm waveplate, is inserted between the sample and the 

analyzer, yellow and blue interference colors reveal that the field-induced birefringence is 

negative [(c) and (d)]. Note that reorientation of the sample by 90 degrees from (c) to (d) 

causes an interchange of the yellow and blue regions. 

a b c d 

    

0V U = 200 Vrms, 100kHz U = 200 Vrms, 100kHz U = 200 Vrms, 100kHz 

Figure 7. Polarizing microscope textures of the flat cell filled with “long/thin” Au NRs 

observed with crossed polarizers A and P [no field in (a) and with the field in (b)] and with 

an inserted waveplate [(c) and (d) with the field on, two different orientations of the sample 

showing the yellow and blue interference colors interchanged]. 

 

 

(a) (b) (c) (d) 
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Figure 8 shows the flat cell textures for toluene dispersion of “short/thin” Au NRs viewed between 

parallel polarizers in monochromatic light (        ). In zero field, the dispersion is isotropic. 

When the voltage is applied, the Au NRs accumulate around the central electrode (2). The texture 

depends on polarization E of the probing beam, Figure 8(b, c, d), confirming the optical anisotropy. 

We determined the spatial profiles of transmitted intensities   
  ,   

 , and   
   along the line     

(Figure 8) that correspond to E making an angle 0, 45, and 90 degrees with the central electrode (2), 

respectively, Figure 9. In Section 4, we will use these profiles to determine the optical path difference 

between the ordinary and extraordinary waves and to reconstruct the spatial map of optical 

birefringence. For the same purpose, we determined the light transmission profile   
   for crossed 

polarizers at the same wavelength 656 nm along the line     , Figure 10. 

Figure 8. Polarizing microscope textures of a flat cell viewed in monochromatic light  

656 nm between two parallel polarizers, at zero voltage (a), at U = 200 Vrms, f = 100 kHz 

(b), (c), and (d). The vector E shows the transmission direction of polarizers. 

 

 

(a) (b) 

  

(c) (d) 
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Figure 9. Profiles of intensities   
   (a),   

  (b), and   
   (c) vs. distance    for the flat cell 

viewed in monochromatic light at 656 nm between parallel polarizers. 

(a) (b) (c) 

   

 

Figure 10. Texture of the flat cell with the toluene dispersion of Au NRs under an applied 

voltage U = 200 Vrms, f = 100 kHz, viewed in monochromatic light at 656 nm between two 

crossed polarizers A and P (a); transmitted light intensity   
   measured along the direction 

     (b). 

(a) (b) 

  

3.3. Cylindrical Cell: Electrically Controlled Visibility of Central Electrode 

The coaxial electrodes in the cylindrical cell create a gradient electric field       ⁄  that decreases 

with the distance   from the central electrode, Figure 2(c). Similarly to the case of a flat cell, the AC 

voltage accumulates and aligns the Au NRs near the central electrode, Figures 11 and 13. 

The most striking optical feature of cylindrical cells is that the applied field weakens the shadow of 

the central electrode, Figure 12, when the latter is observed in the orthoscopic mode under the 

microscope. The effect is wavelength and polarization dependent, being pronounced for light polarized 

perpendicularly to the capillary (and thus parallel to the Au NRs), Figure 12(a,b,c). We explored the 

wavelength dependence for “long/thin” NRs as for these the longitudinal peak of absorption is shifted 

towards the near infrared region [22]. The transmittance profiles measured for three spectral regions, 

“red”, “green” and “blue” (decoded from the RGB signal of CCD camera) show that the field-induced 

reduction of shadow is most pronounced in the “red” region with               , i.e., where the 

field-induced birefringence is the highest, Figure 12(a). Propagation of light with parallel polarization 

is hardly affected by the electric field, Figure 12(d,e,f).   
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Figure 11. The cylindrical cell formed by a glass capillary (1), a copper wire electrode 

along the capillary axis (2), and a transparent electrode at the outer surface (3). The cavity 

is filled with “long/thin” NRs in toluene (4) and sealed by polymerized optical adhesive 

(5). Microscope textures (parallel polarizers) of the capillary when the field    is off (a) 

and on,           ,           (b). 

(a) (b) 

  

 

Figure 12. Electric field-induced redistribution of “long/thin” Au NRs changes the profiles 

of light transmission through the capillary for the light polarization perpendicular to the 

capillary (a), (b), (c), but not for E parallel to the capillary (d), (e), (f). Black traces: the 

field    is off, red traces: field on. 

(a) (b) (c) 

Red (550-700nm) Green (480-610nm) Blue(400-520nm) 

   

(d) (e) (f) 

   



 

 

14 

 

Figure 13. Variable visibility of the central electrode (2) in a cylindrical capillary (1) 

filled with toluene dispersion of “short/thin” Au NRs, shown by the textures at zero 

voltage (left texture) and at the voltage 90Vrms, 100 kHz (right texture). Observation 

under the microscope with light polarized normally to the capillary axis. The right part 

of the figure illustrates how the light transmission changes along the direction OX for 

light polarized normally to the capillary (top row) and parallel to it (bottom row). 

 

 

To obtain a better insight into the electric field-induced optical effects, below we analyze the 

textures theoretically. 

4. Field Induced Optical Retardation in the Structure of Oriented and Concentrated Au NRs 

4.1. Light Transmission Through an Absorbing Birefringent Medium 

Consider propagation of a linearly polarized monochromatic wave that is normally incident on a 

slab with unidirectionally aligned NRs. The optic axis is tilted with respect to the slab’s normal by an 

angle  . The wave splits into the ordinary and extraordinary waves with different indices of refraction 

   and     , and indices of absorption    and     , respectively. For the ordinary wave, the refractive 

and absorption indices do not depend on the orientation of the optic axis, i.e.,       and      , 

where the subscript   means that the quantity was measured with the light polarized normally to the 

optic axis. For the extraordinary wave,      and      depend on   [35,36]:  

     
    

√  
         

      
 , 

(5) 
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   , (6) 

where    and    correspond to the case when light propagates perpendicularly to the optic axis 

(    ⁄ ) with polarization E parallel to the optic axis. 

To derive an expression for light transmittance through the slab of thickness  , viewed between two 

arbitrary oriented polarizers, we employ the formalism of Jones matrices. Let us choose a Cartesian 

coordinate system with the Z-axis directed along the wave vector of light. The polarizer P, slab and 

analyzer A, are perpendicular to the Z-direction. The X–axis is chosen to be along the projection of the 

optic axis (specified by the long axes of Au NRs) onto the plane normal to Z. The transmission 

direction of the linear polarizer P is oriented at an angle   with respect to X, while the analyzer‘s 

direction A makes an angle   with X. The electric field     of the wave exiting the analyzer is related 

to the incoming electric field   through the product of Jones matrices: 

        , (7)  

where   (
             

             
) is the Jones matrix of the analyzer,     

  

 
       (  

    

  

  
    

 

) 

is the Jones matrix for the slab with the average refractive index   
       

 
 and absorption 

coefficient   
       

 
;     (

  
  

  
  )  stands for the light wave exiting the analyzer, and  

    (
    
    

) stands for the light wave passed through the polarizer. Note that by the last definition 

for    we effectively normalized the amplitude of the electric field exiting the polarizer by the 

amplitude   of the incoming electric field. In the definition of  , we introduce two new notations: the 

linear birefringence   and the linear dichroism  . For a uniformly aligned slab,   
  

 
(       ) 

and   
  

 
(       ). For a general case, when the orientation of NRs changes with the coordinate 

  normal to the slab (and the director experiences splay and bend deformations but not the twist 

deformations), these quantities are represented by integrals: 

  
  

 
∫ [    (    )    ]   

 

 
   

  

 
∫ [    (    )    ]  

 

 
.   (8) 

The light transmittance through the system is          , where the *-symbol denotes a complex 

conjugate. Using Equation (7) for arbitrary   and  , we find: 

     
  
 

  {                
 

 
                              }  (9) 

For parallel polarizers       the transmission reads 

     
  
 

  {          
 

 
                   } 

 

(10) 

The expression for    can be rewritten in terms of the transmittances   
     

    and   
  

 between parallel 

polarizers, corresponding to three different azimuthal orientations of the director,            and 

     , respectively: 
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√  
   

  

 
             

       . (11)  

Measuring   
     

    and   
  , one deduces the absorption indices      and   , dichroism        , 

and birefringence              , using the following relationships: 

  
    

  

 
     

,   
     

  

 
   

, (12)  

   
        

 
 

   
   (  

    
  )

 √  
   

  
. 

(13) 

There is an alternative possibility to measure the phase retardation, by placing the sample between two 

crossed polarizers, in which case    
 

 
 , and the transmission reads 

   
 

 
    

  
 

  {          }         (14)  

Note that Equation (14) contains three unknown parameters:  , D and R. Since we are mostly 

interested in determination of R which is a measure of the field-induced birefringence in the dispersion 

of NRs, we need to exclude   and D from the consideration. This can be achieved, for example, by 

measuring three quantities, namely, transmittance   
   between crossed polarizers, for      ;   

  

determined with a pair of parallel polarizers,     = 0 and   
   for     

 

 
 . This is precisely the 

set of parameters that was measured in the experiments illustrated in Figure 9 and 10. Equation (14) 

can be rewritten as 

   
 

 
{  

    
    √  

   
      }         (15)  

which leads to a straightforward expression to determine the field-induced birefringence  

              associated with the effective extraordinary index of refraction     : 

   
        

 
 

(  
    

  )    
  

 √  
   

  
. 

(16) 

Equation (16) is similar to Equation (13), as in both cases, the ratio (  
    

  ) ( √  
   

  )⁄  is 

nothing else but the ratio of the arithmetic  ̅  (  
    

  )  ⁄  and geometric mean  ̂  √  
   

   for 

  
  and   

  . The only difference is that Equation (13) uses the quantity   
  , while Equation (16) deals 

with the quantity   
  ; the latter might be more convenient to use as it can be measured more 

accurately, especially in weakly birefringent cases. We used both approaches to derive the map of 

spatial profile of the field-induced path difference           in the flat cells. Figure 14(a) shows 

the profile of           along the direction OX in Figure 8(b,c,d) across the central electrode, 

calculated using Equation (13). Figure 14(b) shows variation of    along the different direction O’X’ 

defined in Figure 10(a); in mapping    , we used Equation (16) and the data shown in Figure 10(b). 

Both approaches produce similar maps, demonstrating that the maximum field-induced optical path 

difference is about (-250) nm. The approach based on Equation (16) produces somewhat smoother 
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features in the region of small path difference, apparently because of the higher accuracy in measuring 

  
   as compared to   

  .  

Within the Au NRs cloud, concentration and orientation of the NRs vary along the Z direction. The 

local optical quantities such as       and       depend on these two and also on the degree of 

orientational order of NRs and thus also vary with Z. The simple relationship           thus 

produces only a rough estimate of the field-induced birefringence                  . We can 

neglect the spatial variation of   , as light with polarization perpendicular to the optic axis “sees” only 

the circular cross-sections of NRs that occupy a relatively small fraction of space [12]. Assuming for a 

moment that the thickness of a highly concentrated part of the Au NRs cloud is approximately equal to 

the diameter of electrode        , one can roughly estimate the maximum magnitude of  

field-induced birefringence in Figure14(a,b) as         
  

  
                 . As we shall 

see in Section 4.2 below, a more refined approach with numerical simulations of light transmittance 

through the flat cell produces a similar result. 

Figure 14. Optical path difference effL n d    vs. distance OX calculated using Equation 

(13) (a) and Equation (16) (b). All data correspond to the toluene dispersion of “short/thin” 

Au NRs, 656nm  , applied voltage U = 200 Vrms, f = 100 kHz. 

(a) (b) 

  

4.2. Light transmission through flat samples with NR dispersions 

To get a better insight into the magnitude and spatial distribution of the field-induced optical 

properties of the switchable metamaterial, we need to consider the radial configuration of the optic axis 

and account for the fact that the system is spatially limited. We calculate light transmission through the 

sample of thickness d , placed between two crossed polarizers. We choose the Cartesian coordinate 

system { , , }x y z  with the origin at the wire axis, direct the z-axis normal to the substrates, and the y-axis 

along the wire. We assume that the dielectric tensor at optical frequencies is uniaxial with radial  

(
2 2r x z  ) dependence of the ordinary ( )n r  and extraordinary ( )n r  refractive indices and that the 

optic axis n̂  is normal to the wire, ˆ={sin ,0,cos } n , where tan x z  , Figure 15. In such a 
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medium, light propagates along the z-axis as an ordinary wave with the refractive index ( )n r  and an 

extraordinary wave with the effective refractive index  

2 4

2 2 2 2

( ) ( )
( ) ( ) ( )sin ( )sin

( )cos ( )sin
eff

n r n r
n r n r r r

n r n r
   

 







   


 (17)  

where 

2 2 2( ) ( ) ( ) ( ) 2 ( )r n r n r n r n r  
    , 

2
2 2 4( ) 3 ( ) ( ) ( ) 8 ( )r n r n r n r n r  

    . (18)  

Here the expansion parameter is ( ) ( ) ( )n r n r n r   , because ( ) ( )r n r   , and 2( ) 3 ( ) 4r n r   . 

Figure 15. Light propagation (vertical green arrow on the right hand side) in a medium 

with radial configuration of the optic axis (red bars) around the wire (grey circle).  

 

 

Our goal is to recover ( )n r  from the experimentally measured optical path difference ( )L x  

shown in Figure 14(a) (the data in Figure 14(b) produce similar results). Considering 

( ) ( ) ( )n r n r n r    small, we calculate 

 
/2 /2

2

/2 /2
( ) ( ) ( ) ( )sin

d d

d d
L x n r n r dz r dz 

 
      (19)  

We represent ( )r as an inverse power series ( ) m

m

m

r r   . Then,  

 

 

 
 

 2

/2 2 2

2

2 2

/2

1

2

1 2,( 2) 2,3 2, (2 )
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.

d m

m
d

m

m
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m

L x x x z dz

d x F m x d











  

   



 


                                     

(20) 
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Here  2

2 1 1 2,( 2) 2,3 2, (2 )F m x d    are the Gauss hypergeometric functions, Figure 16, that are 

linear for small x  and saturate to 1 for large x , 

 
   

2

2 1

2
1 2,( 2) 2,3 2, (2

1,
)

( 1) 2 (2 ) 2 ( 2) 2 , 2,

x

x

d
F m x d

m x d m d




 


 
            

(21) 

where  ( 1) 2m   is the gamma function. 

Figure 16. The Gauss hypergeometric functions  2

2 1 1 2,( 2) 2,3 2, (2 )F m x d    vs. 

2x d  for different m. 

 

We start the analysis of experimental data with the determination of the center of wire 

38.29 0.02 mcx   by fitting the left wing of the experimental plot in Figure 14(a) with an 

interpolation from the right wing and vice versa, Figure 17. Then we combine both wings in 

Figure 14(a) using cx  as an origin, Figure 18 and 19, and fit the optical phase retardation profile using 

different sets of terms in Equation (20). Figure 18 demonstrates that fitting the left wing (red), right 

wing (green) and all experimental data (blue) with m = 3 and m = 5 from Equation (20) results in 

almost the same interpolation curves. 

Figure 17. Fitting the left wing (red) of Figure 14 (a) with interpolation from the right 

wing (green) and vice versa allows us to determine the center of wire 38.29 0.02 mcx  . 
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Figure 18. Fitting the left part (red), right part (green) and all experimental data (blue) 

with Equation (20) with m = 3 and m = 5 results in almost the same interpolation curves. 

 

Figure 19. Fitting (all) experimental data with Equation (20) with different sets of m, 

shown in the legend. 

 

Figure 20. Radial dependence of the birefringence parameter ( )r , Equation (18), 

obtained from the fittings shown in Figure 19. 
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With Figure 19, we produce the fitting of the birefringence parameter ( )r , Equation (18), using 

different sets of m, Figure 20. The fitting curves for different approaches are very close to each other, 

signaling that the data on ( )r  are robust. Apparently, the set m = {3,5} provides the most reliable 

fitting because further expansion of the basis of fitting functions does not improve the result 

substantially. Thus for this set we calculate the radial dependence of permittivity 

 2 3( ) ( ) ( ) ( ) 2 ( )r r n r n r n r r     , Figure 21, assuming that the ordinary refractive index ( )n r  is 

constant across the capillary and equal to the refractive index of toluene 1.49tn  , so that 
2( ) ( ) 2.21r n r   . The spatial distribution of the radial and azimuthal components of dielectric 

permittivity (refractive indices) induced by the gradient electric field (U = 200 Vrms, f = 100 kHz) in a 

flat cell shown in Figure 21 is one of the major results of this work. These dependences will be used in 

the numerical simulations of light propagation through the Au NRs dispersion in cylindrical cells, 

Section 4.3.  

Figure 21. Radial dependence of 2( ) ( )r r n r  , obtained from Equation (18) and ( )r  for 

m = {3,5} shown in Figure 20, with 2( ) ( ) 2.21r n r   . The data correspond to the 

toluene dispersion of “short/thin” Au NRs in the flat cell, 656nm   , U= 200 Vrms,  

f = 100 kHz, see Figure 14(a).  

 

The field-dependent n
 
can be estimated independently by considering the dispersion as a dielectric 

of permittivity t  pierced with parallel NRs of permittivity NR  with the field-dependent volume 

fraction U : 

 1 U t U NRn       .     (22) 

For the experimentally determined (from light absorption data in Section 3.1) 0 0.02  , and for 

012.5NR    at 656 nm [34], one finds 1.4n   and thus 0.1n   , the same order of magnitude as 

other estimates above. 

Birefringence of the NRs cloud reflects the cumulative effect of the Au NRs and their polystyrene 

(PS) coatings. The contribution of PS to the refractive index depends on the configuration of polymer 

chains covalently grafted to the Au NRs. Birefringence of stretched polystyrene is negative with the 

refractive index along the PS chain being smaller than the refractive index perpendicular to the  

chain [37]. Therefore, if the PS chains are directed normally to the NR surface, they will diminish the 
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birefringence effect introduced by alignment of Au NRs; parallel arrangement would enhance the 

effect of NRs. The experimentally measured birefringence of mechanically stretched PS is 

0.0006PSn   at 700 nm [37]. Therefore, if we assume that in flat cells the entire gap         is 

filled with such a birefringent PS, the total optical path difference between the extraordinary and 

ordinary waves L  would be about 12 nm only, i.e., an order of magnitude smaller than the 

experimental value of 250L nm  . The estimate suggests that the main contribution in the field-

induced modification of the optical properties of the metamaterial in question is produced by the 

Au NRs themselves. 

4.3. Simulations of optical effects caused by NR redistribution in cylindrical samples 

We use a commercial Finite Element Package of COMSOL Multiphysics with Radio Frequency 

module version 4.0a to simulate the electromagnetic wave propagation in the cylindrical cell filled 

with toluene dispersion of “short/thin” Au NRs. In simulations of the “cloak on” regime, Figure 22(a), 

we used the dielectric permittivity profile shown in Figure 21, around the central copper electrode of 

the diameter     . Note that the permittivity profile in Figure 22 was obtained for the flat cell but in 

Figure 22(a) it is used to simulate the optical performance of the cylindrical cell. This approximation is 

justified by the fact that the geometries of gradient electric fields and the dielectrophoretic potentials in 

flat and cylindrical cells are similar, Figure 3. Both parts of Figure 22 show the simulated  

magnetic-field component of the wave propagating throughout the cylindrical shell; the black 

trajectories show the power flow.  

Figure 22 illustrates that when the electric field creates a cloud of Au NRs around the central 

electrode, Figure 22(a), the shadow of this electrode is mitigated as compared to the case when the 

electric field is off and the Au NRs are distributed randomly in the cylindrical cavity, Figure 22(b). 

The power flow near the electrode is bent towards the middle plane of the figure. The effect is the 

result of the reduced refractive index n  near the central electrode. Of course, the decrease in n  is 

modest, about 5% of what is used in the theoretical cloak [12], so that the cloaking effect is far from 

being perfect. However, the very fact that the electric field gradients are capable of aligning and 

condensing Au NRs to the extent that the system acquires easily detectable optical anisotropy and 

variation of the refractive index is very encouraging for future developments of reconfigurable and 

switchable optical metamaterials based on dielectrophoretic effects in dispersions of NRs. 

Figure 23 demonstrates a similar comparison of the “cloak on” and “cloak off” regimes when the 

light intensity is measured at some distance from the electrode, after the wave travelled to the right, 

about 19 m  from the electrode. The system parameters are the same as in Figure 22. The plots show 

transmitted light intensity as a function of the vertical coordinate OY. All plots are normalized by the 

intensity of the incident TM plane wave. Note that light intensity in the centre of the expected shadow 

is much higher when the field is on as compared to the case when the field is off, reflecting the 

bending effect of the Au NRs clouds near the central electrode on the light trajectories. These 

simulated intensities are similar to the intensity profiles of the red component of RGB signal measured 

in the experiments with Au NRs, Figure 13. 
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Figure 22. Simulated light propagation in a cylindrical cell with TM illumination at 

        . The applied voltage 200 Vrms induces the radial profile of the extraordinary 

refractive index around central electrode and bends the trajectories of power flow around 

the electrode, mitigating its shadow (a). At zero voltage, the cell has a spatially uniform 

refractive index (of toluene) and the electrode shadow is well pronounced (b). The color 

represents the amplitude of magnetic field; see the scale on the right hand side. 

(a)  

 

(b)  

Figure 23. Normalized intensities of incident TM plane wave before the central electrode 

(red stars), TM wave behind the central electrode with the electric field-induced variation 

of the extraordinary refractive index (empty blue dots), and TM wave behind the central 

electrode when the electric field is switched off (solid black line). In the center of shadow, 

near OY = 0, the light intensity in the “field on” case is higher than in the “field off” case.  
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5. Liquid crystal metamaterials 

5.1. Light propagation in liquid crystals with director distortions 

The concepts of transformation optics, as was already discussed, are not entirely new to the science 

of LCs.  In 1919, Grandjean considered a cylindrical nematic sample in which the director n̂   was 

arranged radially.  When such a structure is illuminated with light polarized normally to the cylinder, 

the rays are bent away from the central axis and leave a segment of an opening angle  2 1 o en n  un-

illuminated (for a modern reproduction of the result, see the textbook[10]).  This particular example 

represents a beam divider, as the trajectories are splitting into different pathways.  This pioneering 

work of Grandjean has recently been substantially expanded by Sátiro and Moraes[43,44] who 

considered other types of director configurations, such as disclinations of strength “1/2” and “-1/2”.  

Light propagation was analyzed as a function of temperature- and wavelength-dependent refractive 

indices 
en  and 

on [44].   

In this work, we extend the consideration of curved light trajectories from a standard LC to a “LC 

metamaterial”, or LCMM, i.e. a material representing a dispersion of a solid (metallic) component 

such as Au NRs in a LC as a dispersion matrix. The LC matrix aligns the NRs along n̂ . The NR are 

much smaller than λ so that the composite is optically homogeneous.  Recent experiments with NRs 

assembled into orientationally ordered substrutures, see, for example, ref[45] and the works mentioned 

above, suggest that a construction of LCMMs is feasible.  The optical properties of LCMM can be 

potentially controlled at three different levels. At the first level, by controlling the shape and 

concentration of solid inclusions, one can control the refractive indices.  Typically, the metallic 

component decreases the effective refractive index (and increase light absorption). At the second level, 

with a given composition and concentration of the components, one can reconfigure and switch the 

optic axis.  Finally, at the third level, the gradients of the optics axis can be supplemented by gradients 

of the composition.  For example, as shown by Golovin et al. [22,46] for isotropic dispersion of Au 

NRs, application of the gradient electric field results in the condensation of Au NRs into 

orientationally ordered structures with spatially-varying concentration, birefringence and optical axis.  

In this work, we consider LCMM properties controlled at the level 1 and 2, i.e., with birefringence 

set up by the concentration of metal NRs dispersed in a thermotropic LC with the distorted optical axis 

controlled by the boundary conditions in a sample shaped as a cylindrical shell.  We first describe 

analytically light refraction at the isotropic-LC medium interface and light propagation for the case 

when the director and the wave-vector of light are confined to the same  ,x y  plane. This consideration 

is followed by a more complex geometry, in which all three components of the director n̂  are nonzero. 

The latter case is treated through numerical simulations, using COMSOL Multiphysics finite element-

based electromagnetic solver.   

5.2. Homogenization of LCMM anisotropic composite 

The LCMMs in this work represents a dispersion of rod-like metallic particles, say, Au NRs, in a 

uniaxial nematic LC medium. Concentration of the metallic part controls the dielectric properties of 

the material and is assumed to be independent of the spatial coordinates.  We consider three director 
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configurations of LCMM in a cylindrical shell that are stabilized by the surface anchoring at the 

bounding walls, Fig.24(a,b,c).  

Figure 24. Director configurations for LCMM in a cylindrical shell, 
in outR r R  , with the 

optic axis represented in the cylindrical coordinates  , ,r z as (a)  ˆ 1,0,0n  ; (b)  ˆ 0,1,0n  ; 

(c)  ˆ sin ,0,cosn   where the polar angle  changes from 0 at the inner boundary of the 

cylindrical shell to 2 at the outer boundary; (d) director orientation in the Cartesian 

coordinates. 

    

a)Radial director field (b)Circular director field (c) Splay-bend hybrid 

director field 

(d)LC director 

For a composite medium with two anisotropic uniaxial components, namely, the metal NRs and LC, 

with the same director, the effective optical properties can be described by the model of Sihvola[47].  

Suppose that each NR is a spheroid with semi-axes  ,  and > =x y z x y za a a a a a  and (isotropic) dielectric 

permittivity
m .  The NRs are embedded into the LC characterized by a permittivity tensor 

LC . We 

neglect the optical properties of the thin functionalizing layers at the surface of NRs that prevent 

aggregation of the NRs.  Then the effective permittivity tensor of the LCMM is  

 
   1

m LC LC

eff LC

LC m LC

f I

f L I

  
 

  

  
 

     
 ,                                             (23) 

where I is the identity matrix, f and 1-f are the volume fractions of the NRs and LC, respectively, and 

L is the transformed depolarization dyadic, 

   2 2
0

det

2
det

LC

LC LC

dsA
L

A s A s



 






   
  ;                                                        (24)
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 and det x y zA a a a . With the given ,  ,   and m LC x ya a  , 
eff can be 

controlled by changing the volume fraction of NRs.  To describe the effective refractive indices of the 

LCMM we use the same notations ne and no as in the case of the regular LCs; the presence of NRs in 

LC changes only the values of the refractive indices but does not change the general uniaxial non-polar 

symmetry of the medium.   

Consider, for example, an LCMM composed of a LC E7 with 1.52 and 1.74o en n  , doped with Au 

NRs of =60  and 15x y za nm a a nm  . For Au, 
m  =-16.7 at for Au at 700nm[48].  The effective 
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extraordinary refractive index 
en  of LCMM calculated according to equation (1), decreases sharply as 

a function of  f, first becoming equal to 
on  at   f=0.013, and then turning zero at a relatively modest f  

just above 0.07,  Fig.25. 

Figure 25, Effective permittivity ( ,    ) and effective refractive indices ( ,  e on n ) of 

LCMM, which is composed of a LC matrix E7 with 1.52 and n 1.74o en   doped with Au 

NRs of =60  and 15x y za nm a a nm  . 

 

The LCMM is an anisotropic material with a non-magnetic response; its components of effective 

permittivity tensor write in Cartesian coordinates as 
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                                      (25) 

where is polar angle of the director and   is the azimuthal angle with respect to the x-axis, Fig.24(d).  

Using equation (25), the dielectric tensor components for different director configurations in Fig.24 

are calculated in cylindrical coordinates, Table1 (permeability 1  ). 

Table1: dielectric permittivity tensor for three director configurations considered in this work 

Director configuration in  

cylindrical coordinates  , ,r z   

Dielectric tensor in cylindrical coordinate 
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Fig.24 (a) shows a pure splay of n̂ , Fig.24 (b) describes a pure bend and Fig.24(c) shows a mixed 

splay-bend deformation. In the latter case, the director configuration depends on the ratio of the bend 
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33
K to the splay 

11
K elastic constants. It can be numerically calculated by minimizing the elastic energy 

of the LCMM with the fixed boundary conditions at the cylindricall boundaries of the shell, 

   0;  2in outr R r R      . We use the values 12 12

11 33
12 10 ,  19.5 10K N K N

 
     typical for E7 [49] to 

plot the director profile in the splay-bend case of Fig.24(c), see Fig.26, although one should be aware 

that the presence of NRs might modify the elastic properties of the LCMM.  

Figure 26. The equilibrium director distribution for E7 confined in coaxial cylindrical 

structure, shown as the dependence of the polar angle  on the radial coordinate within the 

cylindrical shell. 

 

5.3 Light trajectories for planar director field 

In this subsection, we consider planar director field  ˆ , ,0x yn nn ; the wave-vector and polarization 

of light are also confined to the same  ,x y
 
plane.  We first discuss light refraction at the cylindrical 

interfaces with (isotropic) medium adjacent to the LCMM shell. 

(5.3.1.) Refraction at the interface between isotropic and anisotropic medium 

Refraction at an interface of two different isotropic media is described by the Snell’s law, that is 

based on the condition that the tangential components of wavevectors on the two sides of the interface 

are equal to each other [50]. The time averaged Poynting vector for the transmitted light, which defines 

the actual direction of the energy flow of the light, has the same direction as the transmitted 

wavevector. When light with an angle of incidence 
i  

experiences refraction at the interface between 

an isotropic and an anisotropic medium, the directions of wave vector 
t

k
 
and Poynting vector  

tS
 
for 

the transmitted light would be generally different,
 , ,t k t S
  , Fig.27.  
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Figure 27. Refraction at the isotropic-anisotropic media interface. The incident beam is 

polarized in the plane of the figure. The wave vector surfaces are shown as a solid circle 

for isotropic medium, as a solid ellipse for the extraordinary wave, and as a dashed circle 

for the ordinary wave in the anisotropic medium. 

 

As shown in refs. [51,52] if the uniaxial medium has the optic axis tilted by an angle   with 

respect to the interface, and a plane incident wave is linearly polarized in the xz plane, these two 

angles, measured with respect to the z-axis (normal to the interface) in Fig.27,  write 
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where        2 2 2 2 2 2 2 2
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e o e o e o
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The reflection coefficient in this case can be written in the form[53] 

  

2 2 2

2 2 2

sin cos

sin cos

i r i i e o i

i r i i e o i

n n n n n
r

n n n n n

 

 

 


 
                                                                 (27) 

where  2 2 2 2sinr o e on n n n    . Total reflection happens at the interface when the absolute value of r

equals 1. In what follows, we use equation (26) to describe light propagation through the LCMM 

cylindrical shell.  In some cases, such as a planar director field within the shell, the trajectories can be 

found analytically; this case is treated below. 

 

 (5.3.2) Light propagation through the LCMM bulk with planar director.   

Propagation of light in an isotropic medium is described by Fermat’s principle, stating that the 

trajectory of light between two points A and B corresponds to a minimum of time spent to travel, 

which is the product of the physical length and the refractive index, min
B

r
A

N ds  [36], where the 

refractive index rN  might vary in space.  To describe an anisotropic medium, we follow Joets and 
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Ribotta [54] and Sátiro and Moraes[42,43], who interpreted  the Fermat’s principle through geodesics 

in Finsler geometry. The Finsler geometry considers a line element of the trajectory as being 

dependent not only on the location but also on the orientation, 

 , ,ds F x x dt
                                                                                

(28) 

where  ,F x x  is the Finslerian function, x and x dx dt are the space coordinates and its derivative with 

respect to the line element parameter t, respectively. In geometric optics for anisotropic medium, 

Finslerian function reads 

 , rF x x N x 
                                                                                  

(29) 

where Tx x x 
 
is the ordinary distance from the origin to the point x and Tx is the transpose of 

vector x . 2 2 2 2cos sinr o eN n n   is the refractive index for the extraordinary ray, associated with the 

energy velocity, and   is the local angle made by wave vector and Poynting vector. 

We study the extraordinary light propagation in LCMM with a planar director field. The wavevector 

and polarization of the propagating light are confined to the same plane.  The director configuration is 

given by  ˆ cos , sin , 0 n in Cartesian coordinates, Fig28. The light trajectory is

ˆ ˆ( ) cos sint r x r y  R , combining the cylindrical coordinates  and r  with the Cartesian basis  ˆ ˆ,x y . 

Then  t d dtT R  is the tangential vector to the light path at each position parameterized by t ; the 

angle  is calculated from the formula ˆcos n  T T . The path of light ray minimizes the “distance” 

ds , which leads to an interpretation of the light paths as a geodesic in the Finsler space[42,43,54,55], 

2

2
,

0
i j k

i

jk

j k

d x dx dx

dt dt dt
                                                                     (30) 

where t is the ray parameter along the geodesic and i

jk  are Christoffel symbols; ,i j and k  are the 

indices representing different components of the spatial coordinates x . 

Figure 28. Illustration of the light path  tR in 2D liquid crystal director field, its 

tangential vector  tT and the director n̂ of liquid crystal. 
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In the cases of interest in this work, the geodesic equations (30) transform into the coupled ordinary 

differential equations in the cylindrical coordinates[43] 
22
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with the solutions 

   

 
 

2
2

2
2

2

21
 arctan

C
r t E t D

E

E t D
t F

C








  

 
  

 

                                                          (32) 

where , ,  and C D E F are integration constants, which can be obtained by the boundary condition, such as 

the position and direction of the incident light ray, and e on n  .  The expressions are the same as 

those derived by Sátiro and Moraes[43] with the difference that the first term in the expression for ( )t  

is written as 
2 2

C E  in ref [43]and our calculations show this term as 2 2
2C E . 

(5.3.3) Light trajectory through a cylindrical shell with planar director  

Using the rules of light refraction at the interface of isotropic-anisotropic media and light 

propagation in anisotropic medium as discussed above, using equations (26) and (32) we can find 

analytically the light trajectories for the structure shown in Fig.29(a), a cylindrical shell filled with a 

LCMM that has a circular director configuration, stabilized by the so-called in-plane planar surface 

anchoring at the two bounding cylindrical surfaces.  The two adjacent media are both isotropic of the 

same refractive index 1.52 (glass). The values of the refractive indices are controlled by the 

composition of the LCMM. The wavevector of the propagating light is confined to the plane 

determined by the director. The polarization state of the incident light is also in the plane of the 

director field, Fig.29 (b-e). For the pure LC (no added NRs), the refractive indices are 1.74 and 1.52 

for the extraordinary and ordinary waves, respectively.  In this case, the incident parallel light beams 

bend towards the center, Fig.29 (b).  For example, for beam No.1 in Fig.29 (a), the incident angle 
i is 

0.785; the refraction angle is 
, 0.853t S  as follows from equation (26); the integration constants

( ,  ,  , )C D E F in equation (32) are calculated as (-5.852 -7.551 0.439 1.297). The beam propagates through 

the LCMM-glass interface following equation (32) and exits from the LCMM at the point (8.371 

5.470) under the angle (-0.785). 

By adding NRs to the mixture, one effectively decreases 
en , but 

on  changes little because the 

response of the NR to the electric field oriented normal to the NR is small, and at low volume fraction 

of Au NRs it can be neglected.  For example, 
en =1.3 if the LC is doped with the Au NRs (diameter 

15nm, length 60nm) of volume fraction 0.041.  In this case, birefringence is negative and the incident 

light beams bend away from the center, Fig.29 (c). Two external focusing points are obtained when the 

volume fraction of the Au NRs is 0.057 and 
en = 0.8. The incident parallel light beams bend away from 

the center and form two focusing spot outside the LCMM cylinder, which can be used in light 

concentrator for solar application.  
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Figure 29. Light trajectory simulation of LCMM cylindrical shell sample in circular 

director field with different refractive indices (b) no=1.52, ne=1.74; (c) no=1.52, ne=1.3; (d) 

no=1.52, ne=0.8. (e) Magnified image of rectangular area in (d). (a) illustrates the 3D 

structure of LCMM cylindrical shell sample. Here, we neglect the partial reflection at the 

glass-LCMM interface. Six parallel light rays are incident on the cylindrical shell sample 

from the left. Light refraction at the glass-LCMM interface and light propagation in 

LCMM can be calculated using equation (26) and equation (32), respectively. For example, 

four parallel beams(#1, #2, #3, #4, #5, #6) incident on glass-LCMM interface in Fig28 (a) 

at the positions (-7.071  7.071), (-8.090  5.878), ( -9.010 4.339), (-9.010 -4. 339),  (-8.090  -

5.878),  (-7.071  -7.071) and with a refractive angle ,t S  0.847, 0.688, 0.499, -0.499, -0.688, 

-0.847,  respectively. The integration constants ( ,  ,  , )C D E F in equation (31) for light rays 

propagation in LCMM medium are calculated as (-5.852 -7.551   0.439  1.297), (-4.960  -

8.4730   0.456   1.276), (-3.737  -9.244   0.475   1.258), (3.737  -9.244   0.475   4.295), 

(4.960  -8.473   0.456   4.274), (5.852  -7.551   0.439   4.256), respectively. Finally, light 

beams propagate through the LCMM-glass interface at the position (8.371 5.470), (9.286 

3.710), (9.883 1.524), (9.883 -1.524), (9.286 -3.710), (8.371 -5.470), and with a refractive 

angle 0.785, 0.628, 0.448, -0.448, -0.628,-0.785, respectively. 

   

   

 

The director of LCMM can be reconfigured from a circular configuration to a radial and visa versa, 

say, by changing the surface anchoring direction.  Figure 30 shows in-plane polarized light beams 

propagating in this LCMM shell structure with radial director field. The refractive indices are 

controlled by the composition of the LCMM. As compared to the circular director field in Fig.29, the 

simulated results are completely different.  For the pure LC with 
en =1.74 and 

on =1.52, the incident 
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parallel light beams focus at two spots, Fig.30 (b). When 
en  is reduced to 1.3 while 

on  remains the 

same, the parallel light beams are diverged by the LCMM shell, Fig.30 (c). When 
en =0.8, some of the 

incident beams (those that are further away from the center) are totally reflected at the glass-LCMM 

interface, Fig.30 (d). 

Figure 30. Light trajectory simulation of LCMM cylindrical shell sample in radial director 

field with different refractive indices (b) no=1.52, ne=1.74; (c) no=1.52, ne=1.3; (d) no=1.52, 

ne=0.8. Here, we neglect the partial reflection at the glass-LCMM interface. We only take 

into account the total reflection and refraction at the interface. (a) illustrates the 3D 

structure of LCMM cylindrical shell sample.  

  

  

 

6. Conclusions 

The experiments above demonstrate that a non-uniform electric field applied to a colloidal 

dispersion of submicron Au NRs is capable of concentrating the particles in the region of maximum 

field and also of aligning them parallel to the field lines. This field-induced “liquid crystalline 

metamaterial” is characterized by a gradient refractive index for polarized light and nonuniform 

configuration of the optic axis. We thus demonstrate that the approach based on dielectrically 

controlled dispersions of metal nanorods in dielectric fluids can serve as a broad platform for the 

development of future complex metamaterial architectures with unique features of electric switching 

and reconfigurability. In the cylindrical sample, the experiment reproduces the conceptual geometry of 

the theoretical cloak [12], as the optical axis is directed along the radial directions and the refractive 
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index increases as one moves from the centre of the cylinder to the periphery. The difference is that the 

experimentally achieved modulation of the refractive index is modest, about 0.05-0.1. Ideally, an 

efficient metamaterial would have a modulation in the refractive index that is about one order of 

magnitude higher than the level demonstrated in this work. There are a few different ways to enhance 

the performance. The first factor to improve is the volume fraction U  
of the NRs condensed by the 

gradient electric field. Our experiments reached U  = 0.02. To obtain 0n  , according to Equation (22), 

one needs to increase U  by one order of magnitude. This appears to be achievable, if one considers 

the close packing of NRs with not very thick (a few nanometers) aggregation-preventing coatings. 

Furthermore, the efficiency can be increased by replacing Au with other materials, such as silver (Ag). 

As shown in reference [12], for Ag NRs, the filling factor producing a zero refractive index is only 

0.125, which is within the reach of the proposed dielectrophoretic approach. Depending on the 

wavelength of the intended application, other materials might be more efficient, as discussed by 

Boltasseva and Atwater [38]. The shape of NRs can also be modified to maximize the modulation of 

the optical properties. For example, as shown by Park et al. [39], the metallic NRs dispersed in 

dielectric fluids (water) can be reversibly assembled either side-to-side or head-to-head, which would 

control the position of the plasmonic resonances and increase U . Using a liquid crystal (thermotropic 

or lyotropic) instead of the isotropic fluid as a dispersive medium can also help in optimizing the 

proposed reconfigurable metamaterial and enrich the means of structural control. 

One of the problems in the development of metamaterials is substantial losses due to absorption. 

The problem can be addressed by adding gain materials such as fluorescent dyes [40,41]. This 

approach should be fully compatible with the proposed metamaterial, as the fluorescent dyes are 

solvable in dielectric fluids, either water-like, or oil-like. 

The main attractive feature of the proposed approach to use metal nanoparticles in dielectric fluids 

subject to the gradient electric field is in the opportunity to control the optical properties from point to 

point in space and time. We considered only a radial configuration of the AC electric field. A 

dielectrophoretic force can also be created in other electrode geometries [27] and by variations in the 

field phase [20]. It would be of interest to supplement the dielectrophoretic mechanism with effects 

such as electrophoresis [20]. The electrophoretic force depends on the electric charge on the 

nanoparticle and is typically linear in the magnitude of the field [20]. A specific case of the 

electrophoretic effect, called an “induced charge electrophoresis’ [42], is also known for  

non-symmetric particles. All these mechanisms should add new dimensions to the proposed 

reconfigurable metamaterials, as they would allow one a better control of nanoparticles. Note that the 

radial pattern of NRs described in this work is not the only one of interest. For example, simply 

reversing the concentration gradient of NRs in radial geometry would allow one to switch the 

metamaterial from the “cloaking” regime to “optical black hole” collector of light [4].  To conclude, 

two light wave-manipulation devices were proposed with LCMM--light beam bends and cloak 

invisibility, which demonstrated that LCMM offers a way to control light. It was explained how a 

reasonable design of beam bends can be realized with LCMM by using light trajectory simulation 

method. Moreover, an optical cloaking device based on LCMM with spatially distorted optic axis was 

presented. The simulation results showed effective invisibility of the central metal electrode.  
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The main attractive feature of the proposed LCMM is that the liquid crystal can align the metallic 

NRs in the confined geometry. By changing the surface anchoring direction or applying an electric 

field, LC together with NRs can be realigned, which enriches the reconfigurable states of the LCMM 

in the confined geometry. We considered only zero-pretilt surface anchoring condition in the 

cylindrical capillary structure. Different director configurations of LCMM in other confined structure 

can also be created with pretilt anchoring condition[56], and by variations of electric field[57]. These 

studies are currently in progress. 
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