
!
!

CREATING NETWORK ATTACK PRIORITY LISTS BY ANALYZING EMAIL
TRAFFIC WITH PREDEFINED PROFILES

THESIS

Eric J. Merritt

AFIT/GCO/ENG/12-19

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
!
!

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

!
!

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

!
!

AFIT/GCO/ENG/12-19

CREATING NETWORK ATTACK PRIORITY LISTS BY ANALYZING EMAIL
TRAFFIC WITH PREDEFINED PROFILES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Eric J. Merritt, BS

September 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCO/ENG/ 12- J 9

CREATING NETWORK ATTACK PRIORITY LISTS BY ANALYZING EMAIL
TRAFFIC WITH PREDEFINED PROFILES

Eric J . Merritt, BS

Approved:

Maj Thomas E. Dube, PhD (Member)

5~ /2-
Da e

3o ~ ... <:::::> "".:l~l ·:t
Date

5S~ 12..
Date

iv!
!

AFIT/GCO/ENG/12-19

Abstract

! Networks can be vast and complicated entities consisting of both servers and

workstations that contain information sought by attackers. Searching for specific data in

a large network can be a time consuming process. Vast amounts of data either passes

through or is stored by various servers on the network. However, intermediate work

products are often kept solely on workstations. Potential high value targets can be

passively identified by comparing user email traffic against predefined profiles. This

method provides a potentially smaller footprint on target systems, less human interaction,

and increased efficiency of attackers. Collecting user email traffic and comparing each

word in an email to a predefined profile, or a list of key words of interest to the attacker,

can provide a prioritized list of systems containing the most relevant information.

This research uses two experiments. The functionality experiment uses randomly

generated emails and profiles, demonstrating MAPS (Merritt’s Adaptive Profiling

System) ability to accurately identify matches. The utility experiment uses the Enron

email corpus and meaningful profiles generated by onelook.com. This experiment

further demonstrating MAPS ability to accurately identify matches with non-random

input. A meaningful profile is a list of words bearing a semantic relationship to a topic of

interest to the attacker.

Results for the functionality experiment show MAPS can parse randomly

generated emails and identify matches with an accuracy of 99 percent or above. The

utility experiment using an email corpus with meaningful profiles, show slightly lower

v!
!!

accuracies of 95 percent or above. Based upon the match results, network attack priority

lists are generated. A network attack priority list is an ordered list of systems, where the

potentially highest value systems exhibit the greatest fit to the profile. An attacker then

uses the list when searching for target information on the network to prioritize the

systems most likely to contain useful data.

vi!
!

Acknowledgments

I would like to express my sincere appreciation for the many people who

contributed to this research. Thanks to John Hagen, for not getting upset at my constant

interruptions of his second thesis; Cyber Ryan Merritt, for answering my unending

questions throughout the process; my family for their constant encouragement to “just

keep at it” and to both Major Dube and Major Butts for their inspiration in conceiving

this research concept. Finally, thanks to my many friends who completed their thesis

before mine, that was the biggest inspiration of all.

 Eric J. Merritt

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

vii!
!

Table of Contents

Abstract .. iv

Acknowledgments .. vi

Table of Contents .. vii

List of Figures .. xi

List of Tables ... xiii

1. Introduction ... 1

1.1 Research Motivation ... 1

1.1.1 Attacker Limitations .. 1

1.1.2 Networks .. 2

1.2 Research Objectives .. 2

1.3 Approach ... 3

1.4 Research Assumptions .. 4

1.5 Thesis Overview ... 4

2. Literature Review .. 6

2.1 Overview ... 6

2.2 Profiling .. 6

2.2.1 Profiling Overview ... 6

2.2.2 User Profiling Methods .. 7

2.2.3 Information Profiles ... 10

2.3 Network Attack Priority List .. 12

2.4 Attack Model .. 13

viii!
!

2.4.1 Attack Phases ... 13

2.4.2 Enterprise Network .. 15

2.5 Finding the Data .. 16

2.5.1 Definition of Active Method and Passive Method .. 17

2.5.2 Data-at-Rest ... 18

2.5.3 Data-in-Transit ... 21

2.6 Harvesting the Data ... 25

2.7 Data Exfiltration Preparation .. 26

2.7.1 Native Protocols ... 29

2.8 Summary ... 31

3. Methodology ... 32

3.1 Introduction ... 32

3.1.1 Research Motivation .. 32

3.1.2 Chapter Overview .. 33

3.2 Design Constraints .. 33

3.3 MAPS Design ... 34

3.3.1 Development Environments ... 35

3.3.2 Tool Development ... 36

3.3.3 Design Decisions ... 38

3.4 Test Environments and Experimental Design ... 43

3.4.1 Database Setup ... 43

3.4.2 Virtual Network Setup ... 46

3.4.3 Experimental Overview ... 48

ix!
!

3.4.4 Functionality Experiment ... 49

3.4.5 Utility Experiment ... 55

3.5 Summary ... 59

4. Results and Analysis ... 60

4.1 Overview ... 60

4.2 Functionality Experiment .. 60

4.2.1 Validation Overview .. 60

4.2.2 Results & Analysis ... 63

4.3 Utility Experiment .. 65

4.3.1 Validation Overview .. 65

4.3.2 Results & Analysis ... 65

4.4 Network Attack Priority Lists ... 67

4.4.1 Building Network Attack Priority Lists ... 67

4.4.2 Email User Identification ... 70

4.5 Summary ... 71

5. Conclusions and Recommendations ... 72

5.1 Overview ... 72

5.2 Significance of Research ... 72

5.3 Recommendations for Future Research .. 72

5.4 Summary ... 73

Appendix A: Functionality Experiment Results ... 75

Appendix B: Experiment Confidence Intervals .. 76

x!
!!

Appendix C: Utility Experiment Profiles ... 77

Bibliography ... 79

xi!
!

 List of Figures

Figure Page

2.1 Random and Meaningful Profile Excerpts .. 11

2.2 Network Attack Priority List .. 12!

2.3 Active and Passive Fingerprinting [Bar10] ... 18!

2.4 Data Export Functionality [PIM11] .. 29!

3.1 MAPS Process Flow ... 39!

3.2 Begin Child 1 .. 39!

3.3 Watch Folder Code ... 40!

3.4 Begin Child 2 .. 40!

3.5 Begin Child 3 .. 40!

3.6 C2 Contact Timer .. 41!

3.7 C2 Send Results Loop ... 41!

3.8 Write Results ... 42!

3.9 MAPS Configuration Settings .. 43!

3.10 C2 MySQL Database Schema .. 44!

3.11 MySQL Query for External IP Address .. 44!

3.12 MySQL Query for Internal/External IP Combination .. 45!

3.13 MySQL Query for Email Address .. 45!

3.14 MySQL Query for Profile Word ID's ... 45!

3.15 MySQL Query for Match ID .. 46!

3.16 Virtual Network Layout .. 48!

3.17 C2 Server Setup .. 50!

xii!
!

3.18 MAPS Client Folder Structure .. 51!

4.1 Export Matches MySQL Query .. 61!

4.2 Functionality Experiment Validation File Arrays ... 61!

4.3 Grep Pattern Match String .. 61!

4.4 System Grep Command .. 62!

4.5 Network Attack Priority List MySQL Query ... 67!

4.6 Identify Top Email Matches ... 70!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

xiii!
!

List of Tables

Table Page

2.1 Anatomy of an Attack [TuS03] ... 14!

3.1 Functionality Experiment - Email Generation ... 53!

4.1 Functionality Experiment Confidence Intervals ... 63!

4.2 Utility Experiment Validation ... 66!

4.3 Utility Experiment - Run One Repetitions .. 66!

4.4 Utility Experiment Network Attack Priority Lists - Top 2 Results 68!

4.5 Utility Experiment - Run One Results .. 69!

4.6 Utility Experiment - Run One Breakdown by Top 4 Users .. 70!

!
!
!
!
!
!
!
!
!
!

! 1!

1. Introduction

1.1 Research Motivation

 In a typical computer attack scenario, entry is gained to a network via a node

accessible from the Internet. After gaining access, the attacker scans through the network

looking for the target information. Attackers search for clues that provide them with the

location of the data that they seek, such as systems hosting databases, web servers, and

domain controller services. These systems often contain information the attacker is

interested in harvesting. The intruder may also attempt to remain in place on a

compromised server, capturing data being transmitted across the network such as

unencrypted emails, web traffic, and other types of network traffic. Despite the

information gathering capability of an attacker’s presence on a compromised server,

workstations can also provide valuable information to attackers.

1.1.1 Attacker Limitations

Attackers face several problems by limiting their presence to servers. These

limitations include: (1) information the attacker seeks may be encrypted on a

workstation; (2) documents users create can be stored exclusively on their workstation;

and (3) web traffic is encrypted between the workstation and the destination server,

which prevents anyone with a presence on the server from intercepting the

communications. Without knowing what information is contained by which system, the

attacker must gain access to all systems on the network.

! 2!

1.1.2 Networks

In many enterprise networks, the majority of the workstations applications are

similarly configured and cloned from a single configured copy of an operating system.

Therefore, profiling a specific workstation and the identity of the user of the workstation

is a difficult task for attackers. Compounding the difficulty of finding the target

containing the information being sought, it is paramount that the attacker is able to

remain stealthy while performing reconnaissance [ScW00].

1.1.2.1 Workstations

By establishing a presence on workstations throughout the network the attacker is

able to harvest information such as user credentials, encrypted email traffic, web

browsing data, and local documents that are currently being accessed or edited by a user.

Gaining access to each system on the network and searching each system for the target

information can be extremely time consuming and labor intensive process. Generating a

priority listing of the systems most likely to contain the target information increases the

efficiency of the attackers while lowering the potential of detection by the network

defenders.

1.2 Research Objectives

The goal of this research is to investigate passive methods of identifying potential

high value targets by comparing user email traffic against predefined profiles. The

following steps are derived in pursuit of this goal:

! 3!

1. Collect email traffic on a windows workstation and compare the emails to a

predefined profile sending the matches to the C2 server.

2. Verify the ability to successfully identify and report matches from a random

profile with a random set of emails.

3. Verify the research goal by loading semantically-related profiles and utilizing the

Enron email corpus [Enr03] to determine if a network attack priority listing can

be derived.

This method provides a potentially smaller footprint on target systems, less human

interaction, and increased efficiency of attackers.

1.3 Approach

 The research goal is accomplished by monitoring for emails being sent from a

notional email application. The text of the emails are compared against a pre-determined

profile and matches are recorded along with the sender’s email address by MAPS

(Merritt’s Adaptive Profiling System). These matches are sent to the C2 server, which

adds the matches to a database. The attacker can then query the database to obtain the

email address, internal and external IP address, the MAC address of each system, as well

as the matches they contain. A random profile and random emails are generated from a

word list and parsed by MAPS to verify its ability to detect matches. Finally, the email

corpus is sanitized, removing extraneous data from the emails. This research focuses on

the email author’s address and the body of the message. MAPS parses the corpus and

compares the text to profiles generated by a dictionary website to verify MAPS abilities

to identify matches with semantically related profiles and an email corpus. From these

! 4!

matches, network attack priority listings can be derived. The resulting prioritized list

informs the attacker concerning which victim systems appear to contain the most relevant

information.

1.4 Research Assumptions

This research accepts several assumptions in order to accomplish the research

goal. These assumptions are as follows:

• The attacker has remote access to victim systems without the knowledge of the

user using a form of undetected malware.

• Each system on the target network is able to send data to the C2 server using

Transmission Control Protocol (TCP)/Internet Protocol (IP).

• Any and all applications are installed necessary to the execution of MAPS.

• The English language is the only language that MAPS is capable of parsing.

• All emails are written using ASCII characters only, and no punctuation is used in

the emails with the exception of the @ sign in email addresses. The Enron email

corpus is sanitized of all punctuation in the message bodies.

1.5 Thesis Overview

 The remaining structure of this document is as follows. Chapter two contains

background information including a discussion of profiling techniques, a standard attack

model, and a discussion of state-of-the-art methods for finding and retrieving data on a

network. Chapter three contains the detailed methodology utilized to implement the

! 5!

various applications, which intercept, analyze, and transmit the results to the C2 server.

The methodology also includes details on the experimental setup used to validate the

research concept. Chapter four discusses the validation process for MAPS as well as the

experimental results. Finally, Chapter five summarizes the research, the methodology,

suggested future work, and the results making some final conclusions about the research.

! 6!

2. Literature Review

2.1 Overview

 This chapter provides background and overviews of topics related to this research.

Section 2.2 provides three methodologies for creating profiles describing users. Section

2.3 defines a network attack priority list for this research, and Section 2.4 describes an

overview of the standard attack model. Section 2.5 presents methods for finding

information on a system. Section 2.6 describes techniques for harvesting data from

applications. Section 2.7 presents several means of exfiltrating information from

compromised systems, and Section 2.8 presents a summary of the chapter.

2.2 Profiling

 Considerable research for modeling user behavior has been done. These models

are based on various inputs such as server access logs, caches from applications, and

browsing histories. Profiling users is a difficult task. A user has the ability to maintain

multiple priorities and work flows simultaneously, which can change at any moment.

Several research efforts have had success in identifying and predicting a user’s

preferences and actions. Applications for user profiling ranges from tailoring advertising

campaigns and personalizing shopping experiences to detecting rogue users and

malicious activity [RBC07].

2.2.1 Profiling Overview

In order to analyze a flow of information, user profiling methods predefine

actions, such as browsing to a web page, creating a file, or requesting resources. These

! 7!

definitions vary based on the user profiling methodology. The analysis of actions are

incorporated into a profile of the users and accumulating more actions increases the

profiles accuracy.

Three methods for accomplishing this are presented in order to give a broad

overview of current methodologies. These three methods present varying methods of

predefining information for profiling.

2.2.2 User Profiling Methods

2.2.2.1 Activity Ontology

The first method purports that the modeling of an individual user’s behavior is

performed by recording and analyzing their activities in a browser [Rob10]. This

information allows for the tracking of a user no matter where they are on a network via

their online behavior. Accomplishing this happens in two phases. The first phase

includes the construction of what Dr. Robinson refers to as an “activity ontology” to

describe in tree form the performance of any particular activity. An activity ontology

contains top level nodes representing a breadth of topics from games and sports to world

and religion. The top level nodes contain subcategory layers describing the breadth of

the topic. Each of these nodes contains associations which relate that node to other

activities in the ontology as well as a “see also” category, containing human edited

relationships to other nodes. In the second phase, collection of data from the user in the

form of both online and offline data occurs. The composition of online data is URLs,

search terms, and page content, while offline data contains bookmarks, cookies, history,

and text-based files. The performance of the following six step iterative process on the

data generates behavioral profiles.

! 8!

1. Identify meaningful attributes. This involves identifying attributes which describe

a particular group or an individual. These attributes can vary widely and can

include occupation, hobbies, and interests.

2. Search activity ontology categories. Using the attributes discovered in Step 1, the

activity ontology is queried to determine which activities are associated with what

attribute that describe an individual or group.

3. Search activity ontology descriptions. Activity descriptions provide associations

to other activities in the ontology. These relate to the attributes identified in Step

1 and the activities discovered in Step 2. In this manner, less obvious activities

associated with the attributes are discovered.

4. Identify pertinent “See also” categories. Human identified “See also” categories

aid in discovering related categories that may not be intuitive, but are contextually

related. Steps 2 through 4 require manual consideration for choosing appropriate

activities.

5. Instantiate profile. With the activities chosen, a representative user is chosen that

meets the profile activities identified in the previous steps.

6. Refine. The profile generated from the previous steps may provide results that are

too narrow or too broad for the purposes required. This step involves analysis of

the generated profile in order to modify the profile until it sufficiently describes

the individual or group.

! 9!

 Once this behavioral fingerprint has been identified, it can be searched for in a

constantly changing network in which the user could be connecting via hotspots, using

different workstations, or using mobile network connections [Rob10].

2.2.2.2 Sequence Modeling

The sequence modeling profiling method relies on the theory that “sequences play

a crucial role in human skill learning and reasoning”. An approach called Evolving

Agent Behavior Classification based on Distributions of relevant events (EvABCD)

concentrates on modeling sequences as a behavioral profile of a user [IAL09]. This

research considers user behavior to be sequences of UNIX commands issued to a

computer via a command–line interface. EvABCD has two goals:

1. Creating and updating user profiles from the commands the users type in a

UNIX shell.

2. Classifying a new sequence of commands into the pre-defined profiles.

With this behavioral profile the researchers are able to use an evolving system

approach to continuously update a user’s profile. The system evolves by considering past

sequences entered by the user as well as adding in new sequences. A library containing

different expected behaviors is created and evolves, influenced by changing user

behavior. This adaptive method utilizes an incremental learning algorithm and can be

used to detect abnormalities in user behavior for purposes of detecting masqueraders

[IAL09].

! 10!

2.2.2.3 Job History

Yet another method creates user profiles by monitoring the job history of each

user that accesses a system [OBB06]. Jobs are requests for processing by a user on a

computer center. User models are generated from information obtained during system

use by using an evolutionary algorithm that evolves a few generations after each job is

completed. The system measures requested resources against actual used resources for a

job and utilizes these results as benchmarks. A job queue holds all of the jobs sent by the

user while the evolutionary algorithm predicts the actual resources needed to complete all

the jobs. Once the system has monitored many interactions, the models are better

adapted for the particular user, which allows for the scheduler to be more efficient. The

user model can be used in place of the requested resources from the user and also to

monitor when the usage of that system by the user has changed.

2.2.3 Information Profiles

 The techniques discussed in Section 2.2.2 provide an overview of how user

profiles can be generated to describe ever-changing interactions between users and

computers. These three methods attempt to build a profile of the user via their past and

present activity in order to determine any deviation from it. This research is concerned

with pre-defining information in order to identify it when it is present in communication.

User profiling typically contains methods for pre-defining information for identification

purposes. It is conceivable that these techniques can be adapted to profile information

being sought.

For this research, profiles are a list of words that describe a particular topic.

Figure!2.1 shows excerpts from two profiles used in this research. The left profile is a

! 11!

random profile and the right profile is a meaningful profile. Some of the methods

described in this section can be used to generate profiles. For this research profiles are

generated by two methods: 1) random selection from a wordlist and 2) utilizing a

dictionary website with a search word to generate meaningful profiles. A meaningful

profile is a list of words that have a semantic relationship to the chosen topic.

! !
goforit
john316
sleepy
claude
iloveyou2
africa
basil
number9
overkill
james1
columbia
randy1
freedom
fireball
scorpio
gray
good
dusty
3010
beanie
micro
dylan
beaches
power
alicia
monty

account
activity
advertising
affair
affairs
agency
bank
banking
brokerage
business
byplay
carrier
clientele
commerce
commercial
company
competition
concern
construction
corp
corporation
custom
deal
enterprise
establishment
firm

Figure 2.1: Random and Meaningful Profile Excerpts

!

! 12!

2.3 Network Attack Priority List

 A network priority list is an ordered list of systems. The order is determined by

the system with the most matches to the profile; the rest of the systems are listed in

descending order. Network attack priority listings are useful when looking for specific

information on a network. A profile defines the information the attacker seeks. For

example, Figure!2.2 presents a sample network attack priority listing with the name,

number of matches, and identifying information for each system. The attacker attacks

Victim5 first, followed by Victim4, then each subsequent system on the list. This

continues until either the information is found, or all systems have been attacked. This

list guides the attacker and alleviates the need to guess which system contains the

information being sought.

!
Figure 2.2: Network Attack Priority List

!

! 13!

2.4 Attack Model

 In the typical advanced attack scenario, an attacker must gain access to a network

via some front-facing node accessible from the Internet [SkL06]. In order to infiltrate the

network the attacker needs to avoid alerting the network defenders to an ongoing attack.

Network defenders are considered to be any human, system, or application that is present

on the network that can perform defensive actions when an unauthorized access attempt

is made.

2.4.1 Attack Phases

The attacker accomplishes network infiltration by following a standard attack

model consisting of five phases [TuS03]. These five phases are shown in Table!2.1,

including steps that are included in each of the phases.

Once the attacker has a target in mind, phase one is to discover as much

information about the entity that controls that target as they possibly can, gathering lists

of systems accessible to the attacker. Phase two is to perform network scans on these

targets to identify vulnerabilities that can be exploited to gain a foothold on the network.

Phase three exploits the vulnerabilities discovered to gain access to the perimeter

systems, which typically include any system that requires access to the Internet including

systems such as the DNS name servers, web servers, or any system that provides an

interaction between the Internet and intranet of an entity. Once access is gained to the

network, phase four is to maintain access to that system by installing some sort of

persistent application that will allow the attacker to gain access to the system at any point

in the future. Once the first four phases have been accomplished the attacker wants to

ensure that they have left the smallest possible detectable presence on the exploited

! 14!

machine. In phase five the attacker cleans up any system access logs and hides any tools

that are left on the system for maintaining access. Hiding the tools in place on the system

and maintaining access is often accomplished by implanting a rootkit on the system

[SkL06]. After the completion of this attack model, the attacker has a pivot point, which

allows the attacker to use that system to attack other systems residing on the internal

network.

Table 2.1: Anatomy of an Attack [TuS03]

Phase # Phase Name Objective Technique

1

Footprint Target address range and
naming acquisition and
information gathering are
essential to a “surgical” attack;
The key here is not to miss any
details.

Search engines,
WHOIS database,
Web interface to WHOIS,
DNS zone transfer

2

Scanning Target address range, naming
acquisition and information
gathering are essential to a
surgical attack. It is very
important not to miss any
details.

Ping sweep,
Port scan

Enumeration Bulk target assessment and
identification of listening
services focusing on the most
promising avenues of entry.

List user accounts,
List file shares,
Identify applications

3

Gaining Access Enough data has been gathered
at this point to make an
informed attempt to access the
target.

Password eavesdropping,
File share brute forcing,
Password file grabbing,
Buffer overflows.

Escalating Privilege If only user level access was
gained in the last step, the
attacker will now seek to gain
complete control of the
system.

Password cracking,
Known exploits

4

Acquisition The information-gathering
process begins again to
identify mechanisms to gain
access to trusted systems.

Evaluate trusts,
Search for passwords

5

Cover Tracks Once total ownership of the
target is secured, hiding this
fact from the system
administrators becomes
paramount.

Clearing log files,
Hiding tools.

Back Doors Trapdoors will be laid in
various parts of the system to
ensure that privileged access is
easily regained at the whim of
the intruder

Create rogue user accounts,
Schedule batch jobs, Infect
startup files, plant remote
control services, install
monitoring mechanisms,
replace apps with trojans

!
!

! 15!

2.4.2 Enterprise Network

! Once access to the network is achieved the attacker can now begin the process of

locating targets, which can be a daunting task. The United States Air Force (USAF)

network contains over a half a million desktops and servers across the world [Lan07].

Enterprise level networks on this scale can be difficult to manage, which has prompted

these types of larger enterprise networks to adopt solutions such as the Standard

Desktop/Server Configuration (SDC). The SDC is a single image that is vetted and

deployed throughout the entire USAF network with common software pre-installed such

as an antivirus product, Microsoft Office suite and Adobe Acrobat Reader [Lop06]. This

approach has many implications for both the attacker attempting to locate target

information across the network and the ability of the network defense team to prevent

them. !

2.4.2.1 SDC Attacker Advantages

The SDC provides advantages and disadvantages for both the attacker and the

defender. Information about the target network is extremely valuable to attackers and the

most innocuous release of data can be aggregated with other harmless data. While these

pieces of information alone might have been harmless, together they can provide

attackers with key information needed to penetrate a secure network. With the SDC an

attacker can download the image, explore, and identify potential vulnerabilities that can

be exploited to gain access to the system. This has the potential of saving the attacker

many hours and giving them a focused plan of attack for penetrating the entire network

[MSK09].

! 16!

2.4.2.2 SDC Defender Advantages

Despite these dangers, by using the SDC the defenders also save many hours and

make attacks much more difficult to execute. The SDC images are more secure as a

result of only allowing approved commercial software to be present on the system,

lowering the privilege level of the average user, and developing the image to secure

standards set by various agencies in the security industry including the Department of

Defense, National Security Agency, Microsoft, etc. [Lan07].

2.4.2.3 SDC Potential Vulnerability

While this increased security makes it more difficult for the attacker to find and

exploit a vulnerability, the entire network becomes more susceptible to zero day exploits

that affect software installed on the SDC. Since the configuration is standard throughout

a large network, a zero day exploit effective against the SDC can have catastrophic

effects, allowing malware to quickly spread throughout the network.

2.5 Finding the Data

 Now that the attacker has access to resources on the network, the goal becomes

finding the target information. This must be done without alerting the network defenders

to the presence of an attacker on the network. There are two types of methods that are

available: active methods and passive methods. An attacker is not restricted to using one

method or the other, and they will often use a combination of both. Within a network,

data is represented as either data-at-rest or data-in-transit. These two types of

representation require different methods of interception and retrieval. The following

sections delineate active and passive methods of finding targeted data-in-motion and

data-in-transit.

! 17!

2.5.1 Definition of Active Method and Passive Method

 Before looking at the methods used to target data, it is necessary to define exactly

what is meant by an active method and a passive method. Active methods for finding

data include any method that uses stimuli to cause the system to respond in a manner that

allows the attacker to gain knowledge of the information contained in or passing through

the system. Conversely, passive methods are methods that only observe the flow of data

in a system and gain knowledge of information the system contains without applying

stimuli to the system that contains it.

2.5.1.1 Active and Passive Network Fingerprinting

Fingerprinting a network with either active or passive methods can be achieved in

a similar manner. Figure!2.3 graphically demonstrates the differences between actively

and passively fingerprinting a network. When attempting to map a network, a passive

network scan can be just as effective as an active network scan with the added benefit of

being almost completely invisible to the network administrators [Bar10]. Both active and

passive scans can identify open ports and services, map connections and identify

operating systems of nodes on the network. However, the increased amount of time

required to complete a passive scan is a factor when deciding which scan to use.

! 18!

!

Figure 2.3: Active and Passive Fingerprinting [Bar10]

!

2.5.1.2 Discovering System Data

There are active and passive methods that can be utilized when attempting to

discover data that resides in or passes through a system. The major difference between

passive methods of searching data and passive fingerprinting of the network is that the

passive data targeting technique requires the attacker to first establish a presence on each

system before he can begin monitoring what data flows through that system. These

definitions are used in the following sections to categorize the techniques used by

attacker to find and exfiltrated data from target networks.

2.5.2 Data-at-Rest

 Data-at-rest refers to data that is stored on the computer or an attached storage

device [Ide10]. Data can be stored in many different containers including databases,

email systems, file shares, and storage area networks [Sha07]. The data stored in these

! 19!

containers can be in many different file formats, ranging from text files to configuration

files, as well as a large number of proprietary file types.

2.5.2.1 Active Methods

Active methods of finding data-at-rest often involve the attacker actively

searching for the data via a remote terminal. Methods for accomplishing this task include

the standard built-in search utilities on the operating system and using domain tools such

as DameWare [Dam12].

 Most operating systems have a built-in search utility for finding files and folders.

The Windows 7 search feature is designed to index external hard drives, networked PC’s,

libraries, as well as the files on the system itself [Win11]. The operating system uses a

program called the Windows Search Service to analyze a document and index

information such as the file contents, filename, and file options [Pro11]. While this index

does not contain every file, it does index many of the most common file types that the

user would commonly search for. An attacker can utilize this index just like any other

user on the system via batch scripts designed to search on the command line or manually

accessing the search features built into the operating system. Attackers can also make

use of other tool sets such as WinSCP [Win12], FAR Manager [Far12], and various other

file managers to provide limited scripting and easily available capabilities while

accessing a system remotely.

 The domain controller is often a primary target for an attacker looking for

information and control of a network. The domain controller contains information about

users on every system attached to the domain it controls as well as authenticating users to

domain resources [Sea00]. Windows domain controllers have a program that is used to

! 20!

manage their domain called the Microsoft Management Console (MMC). However, for

an attacker this may not contain all the functionality needed to search the network for the

target data. Tools such as DameWare can be installed on the domain controller by the

attacker to extend the functionality of the MMC by adding collections of Microsoft

administration tools, a remote control program, and powerful export functionality

[Ntu11]. With these additional tools and access to the domain controller, the attacker is

free to search remotely throughout the entire domain for the target information.

2.5.2.2 Passive Methods

Passive methods for accessing data-at-rest include infecting a system, which

either contains the target data, or has access to the target data, with malware. Keyloggers

are programs that can be inserted into different areas of the system to log keystrokes that

the user enters into the system [HoB06]. Modern keyloggers can also contain the ability

to take screen captures of the target system during use to both capture information which

is not typed in as well as information entered in via other methods of input [PeI09]. Once

the attacker is able to insert the keylogger into the system, the attacker need only wait for

the user to access the desired information. Then it is just a matter of the attacker

impersonating that user and logging into whatever storage media the data is contained in

with the stolen credentials of the user [GBC06].

Other passive means of monitoring what the user accesses on the system falls

under a custom Trojan category. Trojan malware hijacks legitimate applications in order

to trick the user into allowing access to systems. These custom Trojans can be

specifically tailored to the applications that deal with the data being targeted by the

! 21!

attacker. These Trojans lie dormant in the system, waiting for a specific application or

file to be launched allowing the attacker access to information on the system.

2.5.3 Data-in-Transit

 Data-in-transit can be viewed in several different ways, data moving across

untrusted networks such as the Internet and data in transit within an intranet. In addition

to this, data-in-transit refers to data that is being processed by the system [Sha07]. Data

moving across the Internet is not of interest to this research because this research focuses

on activities within the local area networks. In this paper, data that is moving across the

intranet and data being processed by the system are both considered to be data-in-transit.

This type of data targeting and retrieval can be much more difficult than targeting data-at-

rest.

2.5.3.1 Active Methods

Active methods for targeting data-in-transit are some of the most advanced pieces

of malware that are currently in use. The design of these specimens requires extensive

knowledge of the inner workings and organization of the targeted data, the applications

used to encrypt and send the data as well as the operating system that interacts with both.

While there are more than just the techniques listed below, the following list represents

some of the more dangerous methods attackers can use to intercept data-in-transit:

! 22!

• Pervasive memory scraping

• Memory parsing malware

• Network injection

• Web form modification

 Pervasive memory scraping is one of the most dangerous attack techniques of

2011 according to the SANS institute as well as several other top security threat lists

[Mes11]. Many organizations have employed encryption techniques throughout their

network to protect data using technologies such as VPNs, SSL, and full disk encryption.

These protections protect the data when they are properly employed, but the system must

still unencrypt the information in order to be able to process the data [Mil11]. Since the

Windows operating system does not always immediately overwrite the memory segments

used, the memory scraping malware is able to obtain data that still exists in volatile

memory even after the program that was processing that data has terminated [Hel11].

 A similar type of active data gathering technique uses malware present on the

system to find and dump the memory of applications that are associated with the data that

the attacker is searching for. Once this application is identified, the malware dumps the

address space associated with that process. A custom memory parsing application can

then be employed to dissect the memory dump looking for the target data. This process

can be repeated as often as necessary for the malware to intercept the data that is being

processed by the targeted application [PSI10]. Attackers can also install debugging tools

on the targeted system. This gives them another avenue for both dumping memory

spaces to disk and also parsing volatile memory during runtime [Vis08]. Stealthier

! 23!

versions of memory parsing malware inject a memory-parsing module directly into the

target process. This eliminates the need for a second process to be running on the system

making it more difficult for someone to notice the rogue process. The module can be

injected into the process’ address space, allowing the malware to search for the target

data [VSP10].

 An attacker can perform network injection attacks by performing an ARP cache

poisoning attack. This technique allows an attacker to remap MAC-IP associations on a

network to send packets to the attackers system instead of the intended system such as the

gateway. The attacker can then view traffic that was not intended for his system [SkL06]

before forwarding it on to the destination without the sender ever knowing the traffic was

intercepted. The first benefit to the attacker is that this will allow him to monitor all

unencrypted traffic between the client device and any device with which it is trying to

communicate. Additional benefits include the ability to modify the data in transit, which

allows the attacker to perform a technique called session hijacking or session injection.

In a Trustwave penetration test an expert was able to inject their own commands into an

existing SQL session between the client and a SQL database [PIM11]. This allowed the

attacker the ability to perform tasks such as creating administrative accounts allowing

access to the entire database.

 An alternate method for gathering data is targeting it at the source. Many

corporations, businesses, and other entities utilize a web interface for data entry into

databases and various other storage methods. Attackers are able to utilize advanced SQL

attacks in order to obtain system-level access to the web interface. With this level of

access the attacker is able to modify the contents of the web page to allow for the

! 24!

harvesting of data that is submitted to it [PIM11]. By intercepting the information before

it is encrypted and stored, an attacker can receive valuable information without having to

break strong data protection schemes by effectively bypassing encryption.

2.5.3.2 Passive Methods

Passive methods for gathering data typically have a much smaller digital footprint

on a system once that system has been infiltrated. Since the malware is waiting and

watching the data flow without actually affecting it, malware using passive methods can

be very difficult to discover. Two methods of passive data gathering are a kernel-level

variation of the memory parsing malware discussed above and network traffic sniffers.

 The passive version of memory parsing malware operates a bit different than what

is described above. Instead of dumping the memory address space of the targeted

process, the malware attacks the kernel of the operating system. A kernel-level driver is

inserted into the system, which allows the malware to intercept particular system function

calls in order to intercept data that is being written to, and read from, the file system.

With this access the attacker can search for the target data each time the system either

reads from or writes to a file [VSP10].

 Sniffing of network traffic is an extremely effective way of discovering sensitive

information on both a network and an individual system. An attacker that is able to

install a network sniffer on a network and perform an ARP cache poisoning attack will

have access to all unencrypted traffic traversing the network. Tools such as Dsniff

[Dsn12], Ettercap [Ett12], and Wireshark [Wir12] can be used to listen to protocols on

the network and harvest credentials and target information that is traversing the network

[SkL06].

! 25!

Attackers can perform sniffing on the system with keyloggers that are able to

intercept the keystrokes entered by the user as they enter data into the system. This

information can be used to view user credentials or even be aggregated and parsed in

order to find the target data being entered by the user [PIM11].

2.6 Harvesting the Data

 Once the target data has been located on the system or the network using one of

the techniques above, the next task is to harvest that data in preparation for exfiltration

back to the attacker or a command and control server. Which methods are used by the

attacker are directly impacted by where the target data is located, what is required to

extract the data from memory, and how the data is to be exfiltrated from the target system

to the attacker C2 server.

 Attackers that utilize one of the memory-parsing malware family techniques can

extract the information in several different ways. The attacker can dump the target

memory to the disk and then execute a custom parser to look for the target data in the

dump. This method has the drawback of using a separate executable to perform each

task, which increases the footprint on the target system [PSI10] as well as creating

possibly large dump files on the infiltrated computer’s hard drive. Other types of

targeted malware attacks create their own file on the target system and append any newly

found information to the end of the file [VSP10]. Alternatively, some malware never

writes any information to disk, instead only keeping the output in volatile memory

[PIM11].

! 26!

 2.7 Data Exfiltration Preparation

 Persistent attacks often use a file on disk to hold the information the malware is

aggregating for the attacker. The attacker has a vested interest in preventing that file

from being found prior to the attacker retrieving the information. There are a variety of

methods that the attacker can use to make the file unnoticeable, or even if it is found,

unreadable. While the attackers may leave the file as an ASCII text file it is much more

likely that the attacker will attempt some sort of obfuscation technique to hide their

output file [PSI10]. This is accomplished by using various techniques such as encoding,

encryption, and steganography.

Encoding is a bitwise operation performing an exclusive or (XOR) between each

bit of each character and a secret key, resulting in a “0” or a “1”. This operation is run

for every bit in the data file resulting in an obfuscated file. This file can only be returned

to human readable language by performing the reverse operation with the key [Hus11].

As an anti-forensic capability some malware authors include an encryption algorithm and

key with the malware. The malware then encrypts any information written to the output

file with the key, requiring anyone wanting to analyze that file to know both the

algorithm and key in order to read it [PSI10].

Another more involved method of data hiding is known as steganography. This is

the “practice of hiding a message within a larger one in such a way that others cannot

discern the presence or contents of the hidden message” [Wes10]. In standard practice

this involves hiding data inside a multimedia format such as a picture or music file. This

is accomplished by replacing strategic bits of the host file with bits of the data to be

hidden [SkL06]. These methods, among others, help the attacker to hide the data on the

! 27!

system while waiting for exfiltration as well as making it easier to bypass perimeter

security devices when the actual data exfiltration occurs. This stealthy method comes at

a hefty performance price in terms of real data throughput.

While the previous techniques make it difficult for users and automated systems

to understand the contents of the attacker’s output file, the mere fact of a file’s existence

increases the chances of someone noticing the penetration of the system. Often attackers

turn to file hiding to keep anyone from noticing that the file exists on the system. By

default Windows Explorer does not show files that contain the System and Hidden file

attributes. By adding these attributes to the output file, the file itself will not be shown to

the user if they have not changed the default options for folders [VSP10]. This does not

protect the file from being scanned by automated systems but it will prevent a large

percentage of users from noticing the file. The location of the output file in the file

directory can also aid in preventing users from noticing additional files added by the

attacker. While there are no restrictions to where the malware could hide the output file,

a couple of the most common file paths are:

• C:\Windows\system32

• C:\Temp

• C:\Documents and Settings\profilename\Local Settings\Temp [Hus11]

These folders often contain many file types, folders, and executables that are

unfamiliar to the average user, making it difficult for them to spot files that should not be

there. To further confuse the user, the output file can be changed to an unassociated file

! 28!

type. Since no application has been registered to open that file, anyone attempting to

view the contents will be met with an unknown file type error. Since most files in the

system32 folder have the date of the system install, adding a new file to that folder will

often stand out from the other files. A method known as time stomping involves

changing various fields in the $STANDARD_INFORMATION Attribute in order to

modify the creation and modification date shown by Windows Explorer [LAH11].

Malware authors will often mix and match many of these previously discussed techniques

to both prevent users from discovering their output files and prevent forensic analysts

from discovering the data that was exfiltrated from their networks after the breach has

been discovered. The final preparation step of the attacker is often to compress the data

that is ready to be exfiltrated thereby reducing the amount of traffic that will be leaving

the network. The target data is now ready to be exfiltrated back to the attacker.

 At this point the attacker has found the information he sought, extracted it from

wherever it resided, written that output to disk, and prevented anyone from finding that

output. The last remaining task is to retrieve the target data. Often systems such as web

proxies and firewall rules exist at the perimeter of networks in order to control the types

of ingress and egress traffic allowed [Coy11]. However there are many ways into and out

of a network and it is impossible to secure them all without impeding the legitimate flow

of information [GBC06]. The attacker has nearly accomplished his goal and maintaining

stealth is still of paramount importance.

!
!

! 29!

2.7.1 Native Protocols

While some malware comes equipped with it’s own exfiltration technique, Figure!

2.4 shows that the majority of malware uses existing protocols and applications already

present on the target system [PIM11].

Figure 2.4: Data Export Functionality [PIM11]

!
There are several applications that exist natively on the Windows operating

system that can be used to export data off the system. Some of the protocols that these

applications use are the following:

• HTTP (Hyper Text Transfer Protocol)

• FTP (File Transfer Protocol)

• SMTP (Simple Mail Transfer Protocol)

! 30!

Most networks carry a significant amount of Hypertext Transfer Protocol (HTTP)

traffic, making it easier to hide malicious HTTP traffic. It takes a significant amount of

processing power to analyze every packet traversing a corporate network, and almost

every network allows outbound HTTP traffic [PIM11]. This is also where the data

exfiltration preparation has some added benefits. By utilizing one of techniques

discussed above it is a difficult task, or even impossible when dealing with encryption, to

analyze the traffic that is egressing the network [Gho10] in real-time. In addition many

networks do not incorporate Secure Socket Layer (SSL) monitoring so attackers can

easily use Hypertext Transfer Protocol Secure (HTTPS) in order to provide built in end-

to-end encryption to export their captured data [PIM11]. SSL monitoring works by

having a web proxy for SSL communication which hosts a certificate installed on

network systems. When a workstation attempts to make an HTTPS connection with a

web server the connection is first made to the proxy, which can analyze the traffic. The

web proxy will then make a connection to the destination server for legitimate traffic and

alert on bad traffic. This allows the web proxy to act as an authorized man-in-the-middle.

FTP is a protocol still in use on many networks, is included in the Microsoft

Windows operating system [Per10], and is easy to set up and use to transfer files. These

characteristics make it an extremely attractive option for exfiltrating data off the system.

SMTP (Simple Mail Transfer Protocol) is another application often used by

attackers to export data [PIM11]. Attackers can either install their own malicious SMTP

server or activate the application already installed on Windows operating systems. This

allows the attackers to simply email the extracted data to the address of their choosing.

While there are many additional ways that attackers can exfiltrate data out of a network,

! 31!

including custom applications, variations on the above applications, and many covert

channel techniques, these are often not necessary.

2.8 Summary

 This chapter presents overviews and background information on topics related to

user profiling, standard attack methodology, active and passive methods for finding

information on a system, and exfiltrating data from a network. Attackers are always

attempting to find new methods for maintaining access without alerting network

defenders to their presence while exfiltrating data out of the network.

! 32!

3. Methodology

3.1 Introduction

 This chapter describes the implementation of MAPS and the various support tools

used for validation. From an attacker’s perspective, performing reconnaissance on

networks is a time consuming and labor intensive operation. Using profiles and

automation finding target information on larger networks becomes less difficult. This

limits the amount of human interaction with the target network, reducing the chances of

detection by network defenders.

3.1.1 Research Motivation

 Attackers are often interested in what users discuss electronically via chat and

email. This information can be stored on workstations and servers across the network.

As the reliance of organizations upon their computer network increases so does the need

for the attackers to be able to effectively and easily perform reconnaissance upon those

networks. According to the National Public Radio, the U.S. government recognizes that

it needs between twenty and thirty thousand computer security specialists in order to both

perform operations and defend its networks [Gje10]. Only an estimated one thousand

with the required skills currently exist. Motivation for creating tools such as MAPS is the

usage of computer security attack experts in a more appropriate manner, allowing tasks

that cannot be automated to be assigned to humans.

! 33!

3.1.2 Chapter Overview

 Section 3.2 considers various approaches to accomplishing the research goal. An

overview of the implementation is then discussed in Section 3.3, which includes a

description of the development environments, tool development decisions, and design

decisions. Section 3.4 describes the test environment and the experimental setup in

detail, and finally, the summary of the chapter is given in Section 3.5.

3.2 Design Constraints

 There are many approaches that can be leveraged to accomplish the goal of

determining a ranking of computer systems on a network. This ranking is referred to in

this research as a network attack priority list that can be used by attackers to determine

the preferred order for finding target information. This research considers the following

subset of approaches to be viable options for accomplishing the stated goal:

• Web traffic: Web traffic can provide detailed information about the system’s

users. However, much more information must be known about each site visited

in order to glean any useful information that can be compared to a predefined

profile.

• System input logging: The monitoring of input from a user on a system can

provide a picture of actions a user performs on a system. However, this type of

data gathering would result in a large amount of data that would require

complicated monitoring and correlation of input and system access logs to

determine user actions.

! 34!

• Email traffic: This type of traffic is mostly text based and can be easily parsed

while providing insight into the system user’s communication with other users.

In addition, email is a prevalent choice for coordinating group activities. This

approach is chosen for the proof of concept.

While many approaches can provide a similar proof of concept, the availability of

an email corpus provided a readily available source of input to properly demonstrate the

utility of MAPS.

3.3 MAPS Design

 This section discusses the implementation of the research tool design known as

MAPS, as well as the applications used to support MAPS. This tool intercepts emails

from the user in order to determine if the word appears in a profile generated by the

attacker. Startmaps.exe is placed on the system by the exploitation of a notional

vulnerability setting up the folder structure required by MAPS. Once the folders are

created, startmaps.exe performs a Domain Name System (DNS) query to obtain the

Internet Protocol (IP) address of the C2 server and downloads the most recent version of

MAPS and the profile. These files are placed in the pre-designated locations in the

previously created folder structure.

MAPS is then launched without any windows visible to the user, reading in the

profile and waiting for any write operations to occur on the email output file. When a

write occurs, MAPS reads the contents of the file, stores the contents in a buffer, and

parses the text. The body of the email is compared to the profile, looking for any

matches. If no matches are found, then nothing is recorded and MAPS returns to

! 35!

monitoring the file for another message to parse. If matches are found, MAPS records

the sender’s email address and a list of the matched profile words. Collection of the to:

field is useful to build associations of users concerned with the topics of interest. These

results are recorded in a results file, and MAPS waits for another message to parse.

MAPS asynchronously communicates with the C2 server according to a timer that

is configured at compile time by the attacker. When the timer expires, MAPS sends the

file containing the matches to the C2 server. MAPS also collects several identifying

characteristics of each system it is executing on, including the Media Access Control

(MAC) address, IP address assigned by the network Dynamic Host Control Protocol, and

the system username. The C2 server parses the message from each MAPS client storing

the unique identifying information pertaining to each system in a database.

The attacker is able to analyze the information from a number of clients to build a

network attack priority list based upon the matches found. A network attack priority list

is an ordered list of systems. The order is determined by the system with the most

matches to the profile; the rest of the systems are listed in descending order. An attacker

then uses the list when searching for target data on a network.

3.3.1 Development Environments

This research uses three development environments to develop the tools and

scripts employed:

• MAPS client development environment

• MAPS server development

• Script development environment

! 36!

The development system for MAPS client is a machine containing 2 Intel Xeon

R2400 quad core processors, 24GB of RAM, 500GB of hard drive space, and running

Windows 7 64-bit Enterprise SP1 operating system with the latest updates (at the time of

development). The development of MAPS requires the use of a windows compiler;

Visual Studio 2010 is used for this purpose.

 The second build system is a Virtual Machine (VM) running 1 processor, 8GB of

RAM, 20GB of hard drive space, and BackTrack 5 distribution of the Linux operating

system. This VM is running on the physical system describe above. The VM setting are

chosen as basic settings and have very little impact on the development process. Two

utilities are added to the standard BackTrack 5 install:

• Gcc: gcc is the GNU compiler used to compile GNU/Linux executables

• Gdb: gdb is a GNU debugger used to dynamically find and fix programming

errors and bugs in the program

The final development environment setup is a system running a 2.53GHz Intel

Core i5 processor with 4 cores, 4GB of RAM, 500GB of hard drive space, and Mac OS X

version 10.7.4. Only Ruby version 1.9.3 is added to the system in order to begin

development of the scripts.

3.3.2 Tool Development

3.3.2.1 MAPS Client

The client portion of MAPS is developed as a 32-bit application targeted to

execute on the Windows 7 operating system. While there are myriad operating systems

! 37!

that workstations can potentially employ, as of September 2011 the Windows operating

system had a market share of over 86 percent [Net12]. Therefore, it is reasonable to

assume that the majority of workstations are operating a version of the Windows

operating system. With this in mind, a 32-bit binary is developed in order to provide the

greatest cross compatibility between various types of Windows operating systems.

Windows 7 is the most current version of Windows at the time of this research.

3.3.2.2. MAPS Server

The server portion of MAPS is developed as a Linux application designed to run

on BackTrack 5. BackTrack 5 is a security-oriented Linux distribution that contains a

majority of applications pre-installed, decreasing initial setup time and complexity. The

presence of a MySQL database setup, python install containing the SimpleHTTPServer

script, and the majority of the prerequisites for installing the gcc compiler made this a

convenient option as the C2 server for the attacker.

3.3.2.3 Programming Languages

Programming languages utilized throughout development include the C

programming language as well as the Ruby scripting language. C is used in the

development of the MAPS client and server components as well as the helper application.

C is the primary development language due primarily to the author’s familiarity, as well

as well-documented Windows API calls allowing for difficult tasks to be performed

easily. The Ruby scripting language is used in the two scripts that are associated with the

email data set. Ruby’s choice as a scripting language stemmed from its built in string and

regex handling capabilities. Since the scripts are only required to run once, the speed of

the program’s execution is not a factor, allowing for an interpreted language to be used.

! 38!

3.3.3 Design Decisions

 This section discusses the particular design decisions for this research. These

design decisions include:

• MAPS as a multi-threaded application

• MAPS performs asynchronous communication

• MAPS communication method

3.3.3.1 Multi-threaded Application

MAPS has three primary tasks it must perform to accomplish the goal of

successfully intercepting user email traffic. First, it must constantly watch for any

changes to the file containing the output from the Thunderbird modifications. This file

contains the content of the user’s email and the address of the user. Secondly, MAPS

must analyze a large number of incoming emails simultaneously; finally, MAPS needs to

be able to contact the C2 server at intervals set by the attacker. To do this, MAPS makes

use of the process.h standard C library. Figure!3.1 illustrates the MAPS process flow

discussed throughout this section.

! 39!

!

Figure 3.1: MAPS Process Flow

In order to accomplish the three tasks listed above, the main function, referred to

as the parent thread, creates two threads.

 The first thread, referred to as child 1, calls the function waitForFileWrite, which

expects no arguments and is shown in Figure!3.2.

_beginthread(waitForFileWrite, 0, NULL);

 Figure 3.2: Begin Child 1

 The waitForFileWrite function utilizes the Windows API call

FindFirstChangeNotification with three arguments, shown in Figure!3.3. The path of the

folder to be watched, a flag indicating if any subfolders within that folder should also be

monitored, and a filter specifying which change notification satisfies the function.

! 40!

h = FindFirstChangeNotification(wWatchFolder, 0, FILE_NOTIFY_CHANGE_LAST_WRITE);

Figure 3.3: Watch Folder Code

!
 Child 1 tells the operating system to signal when there is any change to the last

write-time of files within the watched directory [Msd2]. This function causes child 1 to

wait until such an even occurs. Upon continuing, child 1 then opens the file and ingests

the contents into a dynamically allocated buffer called email. Figure!3.4 shows a new

thread, child 2 is spawned in order to parse the contents of email. This new thread begins

in the function checkFile.

_beginthread(checkFile, 0, (void *)email);

Figure 3.4: Begin Child 2

!
checkFile then performs the task of parsing the text of the email and determining if

any matches occur. Child 1 returns to waiting for changes to occur in the watch

directory. In this manner, the parsing of the emails contents, which can be time

consuming, does not interfere with the MAPS function of waiting for emails to be written

to the output file.

 Figure!3.5 shows the parent thread creating the second thread, referred to as child

3. Child 3 calls the function callC2, which is expecting no arguments.

handle = (HANDLE) _beginthread(callC2, 0, NULL);

Figure 3.5: Begin Child 3

!
 This thread call is executed repeatedly within a while loop throughout the

execution of MAPS. The loop employs a sleep timer that causes the parent thread to

! 41!

sleep for a time period specified by the attacker during compilation. This timer is defined

in the source code shown in Figure!3.6.

#define C2_INTERVAL 300000 //phone home interval - 1000/second

Figure 3.6: C2 Contact Timer

!
This interval causes the parent thread to sleep for 300 seconds before spawning

the child 2 thread again.

 while(1)
 {
 Sleep(C2_INTERVAL);
 handle = (HANDLE) _beginthread(callC2, 0, NULL);
 WaitForSingleObject(handle,INFINITE);
 }

Figure 3.7: C2 Send Results Loop

The WaitForSingleObject API call, shown in Figure!3.7, takes in the handle to the

thread being called and causes the parent thread to wait indefinitely, or until child 2

finishes executing. callC2 performs the task of reading the matches from results.txt,

contacting the C2 server, and sending the match information. !

3.3.3.2 Asynchronous Communication

The asynchronous communication used in MAPS allows the attacker to control

two things. First, the attacker can control when the matches are communicated back to

the C2 server. If the attacker has knowledge of the target network, the attacker is able to

customize the time of day communication occurs with the C2 server. The attacker can

either hide during busy network traffic times or communicate when network defenders

will not notice. The second benefit of this asynchronous communication method is the

! 42!

ability of the attacker to configure MAPS network noise level based upon the need to

remain unnoticed on the network. Exfiltrating the data with longer intervals makes

MAPS less likely to be noticed by a network defense team. Overall, sending

transmissions on a modifiable timer back to the C2 server allows the attacker to configure

the tool for the target network.

3.3.3.3 C2 Communication Method

When the C2_INTERVAL expires, MAPS enters the callC2 function in order to set up

a communication link with the C2 server. Once inside this function, MAPS determines if

any matches have been recorded, shown in Figure!3.8. If results.txt contains no matches,

then the function exits and waits for the C2_INTERVAL to expire. This prevents extraneous

communication from occurring that could be detected by the network defenders.

 pFile = fopen (resultPath , "rb"); //open the result.txt file
 if (pFile==NULL)
 _endthread(); //if the file fails to open, exit thread

 fseek (pFile , 0 , SEEK_END); //set position indicator to end of file
 lSize = ftell (pFile); //get value of position indicator; gives file size
 rewind (pFile); //set position indicator to beginning of file

 fclose(pFile); //close results.txt file
 if(lSize == 0)
 {
 _endthread(); //if the file is empty, exit the thread
 }

Figure 3.8: Write Results

 If MAPS is unable to open the file or if the file is empty, the thread exits. Once

MAPS determines that matches need to be exfiltrated, MAPS checks the configuration

setting for the hostname of the C2 server shown in Figure!3.9.

! 43!

char* DNSNAME = "thisIsNotMalware.com";
char* C2IP = NULL;

Figure 3.9: MAPS Configuration Settings

!
 The C2 server’s hostname is thisIsNotMalware.com. callC2 calls another function,

queryC2 and perform a DNS query for the hostname to obtain the IP address of the C2

server. The attacker can change the IP address associated with the hostname from

anywhere without making any changes to MAPS. This flexibility allows the attacker to

configure MAPS to target the defenses of a network and prevent a single IP address from

showing up repeatedly in network communication logs.

3.4 Test Environments and Experimental Design

 In order to test MAPS, VMs residing on a virtual network are employed. Virtual

machines allow for each test to be run from the same system state, reducing the

differences in the system that might occur between tests. Utilizing a virtual network also

allows for the experiment to be run without interfering network traffic or network noise

from non-pertinent systems on the network.

3.4.1 Database Setup

 A MySQL database is employed on the C2 server to record the information sent

from the clients. Figure!3.10 shows the schema for the database.

! 44!

!

Figure 3.10: C2 MySQL Database Schema

!
 Each message sent from the client to the C2 server contains a MAC address,

internal IP address, system username, email username, match words, and the number of

occurrences of that match word. The server itself also records the IP address of the

incoming connection from the client. First, the server queries the externalIP table to

establish if this IP address has communicated with the C2 server before, determining if

this is a new system. This query is shown in Figure!3.11.

 sprintf(command, "SELECT externalipID FROM externalIP WHERE ip = '%s';", ip);
 if (mysql_query(conn, command)) {
 fprintf(stderr, "%s\n", mysql_error(conn));
 exit(1); }

Figure 3.11: MySQL Query for External IP Address

!
The externalipID is returned if a record exists. Otherwise, the new value is

inserted into the externalIP table and the new externalipID is returned. The server then

! 45!

queries the system table to determine if the internal IP and external IP combination exists.

This is shown in Figure!3.12.

 sprintf(command, "SELECT ipID FROM system WHERE ip = '%s' AND externalID = %d;",
 input[0], externalID);
 if (mysql_query(conn, command)) {
 fprintf(stderr, "%s\n", mysql_error(conn));
 exit(1); }

Figure 3.12: MySQL Query for Internal/External IP Combination

!
If it exists, the ipID of that system is returned. Otherwise, a new entry is inserted

in the system table, and the new ipID is returned. Figure!3.13 shows the server querying

the emailAddress table to determine if the email address exists in the database.

 sprintf(command, "SELECT emailID FROM emailAddress WHERE fromAddress = '%s';",
 input[loop]);
 if (mysql_query(conn, command)) {
 fprintf(stderr, "%s\n", mysql_error(conn));
 exit(1); }

Figure 3.13: MySQL Query for Email Address

!
The emailID is returned if a record is found. Otherwise, a new entry is added to

the emailAddress table and the new emailID is returned. The server loops through each

match word sent from the client, querying the profileWords table to get the profileID’s of

each match. This is shown in Figure!3.14.

for(i = 0; i < numMatches; i++)
{
 memset(command, '\0', commandMem);
 sprintf(command, "SELECT profileID FROM profileWords WHERE word='%s';",
 matches[i]);
 if (mysql_query(conn, command)) {
 fprintf(stderr, "%s\n", mysql_error(conn));
 exit(1); }

 }

Figure 3.14: MySQL Query for Profile Word ID's

! 46!

!
Figure!3.15 shows the query of the match table with the identifiers to determine if

a matchID exists for this combination.

 sprintf(command, "SELECT matchID FROM matches WHERE profileID=%d AND emailID=%d AND
 ipID=%d;", profileID, emailID, internalID);
 if (mysql_query(conn, command)) {
 fprintf(stderr, "%s\n", mysql_error(conn));
 exit(1); }

Figure 3.15: MySQL Query for Match ID

!
If it exists, the numMatches count is updated with the new matches. Otherwise, a

new matches entry is added to the database with the profile word, email address, and the

new system identifiers.

3.4.2 Virtual Network Setup

 Virtualization takes place on a single host system described in Section 3.3.1. The

virtualization software installed is VMware Workstation version 8.0.1. The virtual

network is a Host-only private network, which uses the host as the gateway for all nodes

in the network. Two operating systems are utilized. The first operating system installed

is the BackTrack 5 operating system described in Section 3.3.1. The second operating

system which is duplicated depending upon the experimental need, is running Windows 7

64-bit Enterprise SP1 operating system with 1 processor, 1GB of RAM, and 30GB of

hard drive space.

3.4.2.1 VM IP addresses

Each operating system is statically assigned an IP address. This prevents IP

conflicts from occurring with the DHCP assignment when reverting a VM to a snapshot.

Two IP addresses are recorded during the running of the experiments:

! 47!

• MAPS client records the IP address of the network interface on the system and

sends it to the C2 server when matches are reported. The C2 server parses the

message storing client IP address in the internalIP table of the database.

• During transmission, the C2 server records the IP address of the incoming

connection. The IP address is stored in the externalIP table of the database.

Discrepancies between these two IP addresses cause a new system identifier to be

added to the database instead of adding matches to the currently existing system

identifier. Figure!3.16 shows the network diagram for the virtual network. The gateway

is a virtual network interface on the host operating system.

Both the external and internal IP addresses are stored in the database allowing the

attacker to properly identify a system on a network that is employing Network Address

Translation (NAT). NAT permits a network to use private IP address space, allowing

multiple computers to use the same Internet facing IP address. With both the internal and

external IP addresses, the attacker is able to identify a system behind a router employing

NAT.

! 48!

 Figure 3.16: Virtual Network Layout

!

3.4.3 Experimental Overview

 The experiments are designed to show both the functionality and utility of the

concept to create network attack priority list. A successful proof of concept is one that

accurately reports matches that exist in both the email and the profile. In order to

validate MAPS, two different experiments are run.

3.4.3.1 Functionality Experiment

The functionality experiment utilizes a word list to randomly generate both emails

and profile lists. The purpose of this experiment is to demonstrate the functionality of

! 49!

MAPS and it’s ability to properly collect emails, parse them for content, compare them to

the profile, and exfiltrate the matches and system identifiers to the C2 server.

3.4.3.2 Utility Experiment

The utility experiment uses an email corpus while the profiles are generated from

the online dictionary site having no predetermined relationship to the email dataset. The

purpose of this experiment is to determine MAPS ability to work with non-contrived

input.

3.4.3.3 Experiment VMs

Two types of VMs are used for both the functionality and the utility experiment:

C2 server and victim machine. The BackTrack 5 operating system is used as the C2

server and Windows 7 64-bit Enterprise SP1 operating systems serves as a victim

machine. There is one C2 server and the victim machines are duplicated as required for

the experiment (i.e., if there are 3 victims running they are labeled as Victim1, Victim2,

and Victim3). ApateDNS [Man12], an application that allows for all DNS queries to

return a single IP address, is running on all victim machines and the IP address of the C2

server is returned for all DNS queries. The C2 server is running the python script

SimpleHTTPServer hosting maps.exe and profile.txt for all experiments.

3.4.4 Functionality Experiment

The functionality experiment uses the word list packaged with John the Ripper

[Ope12] password cracker, edited to remove inappropriate language, consisting of 3075

words. This list is further referred to as the master profile.

! 50!

3.4.4.1 C2 Server Setup

! Figure!3.17 demonstrates the C2 server setup that is described in this section.

!

Figure 3.17: C2 Server Setup

!
!

The tool createProfile is run on the C2 server and accepts, as a command line

argument, the number of unique words to use for the profile. The specified number of

words is pseudo-randomly selected from the master profile, using a properly seeded srand

function from the standard C library to create a profile. Once a profile is generated, the

C2 server hosts maps.exe and profile.txt by executing the SimpleHTTPServer python

script on port 31337. The C2server program is executed with the name of the database to

create, reads in the profile.txt, creates the database, and begins listening for connections

on port 4001.

! 51!

3.4.4.2 C2 Client Setup

Figure!3.18 shows the folder structure created when startMaps.exe executes.

Figure!3.18:!MAPS!Client!Folder!Structure!

Next, startMaps.exe performs a DNS query on the hardcoded hostname

thisisnotmalware.com to determine the IP address of C2 server. After successfully

receiving an IP address, maps.exe and profile.txt are downloaded to the appropriate

folders on the victim machine. StartMaps.exe finishes execution by launching maps.exe

as a background application with no window interface shown to the user. When MAPS

begins its execution, profile.txt is read into memory and stored as an array. MAPS then

begins monitoring the input.txt for emails.

3.4.4.3 Functionality Experiment Data

With MAPS running on Victim1, executing generateEmails.exe produces the

emails for the experiment. GenerateEmails.exe requires three arguments:

! 52!

1. The number of emails to be generated.

2. The amount of time generateEmails.exe should sleep in milliseconds between

generation of emails.

3. The number of words to randomly choose for the body of the email.

 GenerateEmails.exe then stores the master profile list in an array and begins

generating emails and writing them to the input folder in

C:\Users\Victim1\Desktop\MALWARE\input\input.txt. The number and length of the

emails are specified by the first and third arguments of generateEmails.exe. Once the

email is written to input.txt, a copy of the email is written to the text file email.txt inside

the log folder. The copy of the email is utilized in the validation process. After the email

is written to both text files, generateEmails.exe executes the sleep command for the

number of milliseconds specified by the second argument value of generateEmails.exe.

After generateEmails.exe finishes generating the number of emails specified at execution,

the experiment continues until MAPS reaches the next communication interval with the

C2 server. At this point the run is concluded and the results are evaluated.

3.4.4.4 Workload

In order to validate MAPS ability to successfully identify and report matches,

three different user types are defined with each user type consisting of three factors.

Table!3.1 lists the factors for each user.

!
!
!

! 53!

Table 3.1: Functionality Experiment - Email Generation

User Type
Total # of Emails to

Generate

Sleep Timer

(ms)

Email Length

(Words)

Minimal 100 1000 10

Average 300 500 30

Extreme 500 0 50

The numbers chosen for each user is based upon both domain and design

knowledge for this research. While it is important to choose numbers that properly

validate MAPS, the ability of MAPS to correctly identify the matches is of primary

importance. The extreme user numbers represent well above what MAPS would see in a

deployed environment. A profile size of fifty is chosen for all repetitions, and a new

random profile is generated for each repetition. This size is chosen based upon previous

tests demonstrating that fifty profile words provides sufficient matches to show that

MAPS is capable of identifying matches. While it is apparent that a minimal user would

not send one hundred emails a second in a production environment, the difference

between the Minimal user and the Extreme user are of more interest to this research. The

number chosen for the Extreme user of five hundred emails with no delay between email

generation is meant to represent a much higher work load then would be expected in a

real environment. The sleep timer is set to zero in the Extreme user case, showing that

MAPS is capable of ingesting emails as quickly as they can be generated. The Average

user variables are chosen to demonstrate numbers halfway between the Minimal user and

the Extreme user.

! 54!

 Each user type and its associated variables are considered to be its own test. Each

test is then repeated five times. Five repetitions are chosen in order to provide confidence

that the accuracies obtained by the experiment are repeatable. At the end of each

repetition the logging data associated with that test and repetition combination is saved.

The guest operating system for the victim client machine is reset to the beginning

experiment system state to prevent any changes that occur during the repetition from

affecting subsequent tests. A duplicate database on the C2 server containing match

information is created with the name of the test and repetition number (i.e., Minimal_r1

represents the database name for the first repetition of the Minimal user test).

3.4.4.5 Functionality Experiment Evaluation Technique

In order to validate MAPS ability to successfully identify and report matches from

a random profile with a random set of emails, several logs are collected on the Victim

machine:

• GenerateEmails.exe writes each randomly generated email to a text file called

emails.txt along with the number associated with the order the email is

generated.

• Throughout the execution of maps.exe, actions that are taken by MAPS are

recorded in log.txt which include:

o Each email that is parsed along with the associated number of that

email.

o Each time the call home timer expires, the message that is sent back to

the C2 server is recorded.

! 55!

o Errors that occur during MAPS execution are recorded.

• The C2 server adds the match words, number of match occurrences, as well as

system and user identifying information to the database.

Validation for the functionality experiment is a two-step process:

1. Compare the number of emails reported by MAPS in log.txt against the number of

emails generated by generateEmails.exe. This is to ensure that all the emails

generated are parsed by MAPS.

2. Utilize the tool grep to determine the number of profile words that are present in

the log.txt and email.txt. These numbers are then compared with the match

numbers existing in the database on the C2 server to validate that the matches are

properly found and communicated.

 This experiment is designed to show functionality of this proof of concept. The

resulting accuracies are analyzed using a 95 percent confidence interval (CI).

3.4.5 Utility Experiment

 The utility experiment focuses on the validation of MAPS capability to produce a

network attack priority list by utilizing a real email data set and profiles that are

meaningful. For the purposes of this research, meaningful profiles are considered to be a

list of words that bear a semantic relationship with one another. The profiles that are

chosen for this experiment have no pre-existing relationship with the email data set and

no correlation is performed to determine which profiles should be used. Other than the

! 56!

emails and profiles used, the experimental setup for the utility experiment is identical to

the set up for functionality experiment.

A snapshot of the VM is taken at this point with all applications ready to be

executed on the system. This snapshot is entitled Begin. After the chosen profile is

uploaded to the C2 server, startmaps.exe is executed on the victim machine in order to set

up the working environment for maps.exe. Profile.txt as well as maps.exe is downloaded

from the C2 server. Maps.exe is then executed without any graphic interface or

command line on the victim machine, ingesting the downloaded profile.

3.4.5.1 Utility Experiment Profiles

In order to properly validate MAPS’ ability to work with meaningful data, outside

sources of the profiles are employed. The profiles in this experiment are chosen from the

Onelook dictionary website [One12]. Profiles are generated by searching for a master

word. Onelook.com consults 100,000+ dictionaries to return a list of words bearing

semantic relationships to one another. For the purposes of this research, the list of words

returned including the master search word, are considered to be a meaningful profile.

Five different profiles are generated for the utility experiment with the following search

terms:

1. Business

2. Fraud

3. Love

4. Vacation

5. Family

! 57!

 These topics are chosen for their likelihood to be discussed in a corporation’s

email system. The top one hundred and fifty terms are taken from the results; terms with

multiple words, symbols, and not commonly used words are human edited until fifty

words remain with semantically related definitions. For reproducibility, Appendix C

includes all five profiles.

3.4.5.2 Email Data Set

The email data set in use for this experiment is a research data set from Enron

[Enr03] email servers containing approximately a half a million emails organized by the

name of the user. The Federal Energy Regulatory Commission made this data set public

during their investigation. The set contains an email folder for one hundred and fifty

different users. The utility experiment consists of ten victim machines that are labeled

Victim1 through Victim10. Each victim machine contains the emails from one randomly

selected user. The Ruby script parseEmail.rb is written to parse the content of each

email, pulling out data that is useful to this research. This information includes the from

address of the user sending the email and the body of the email, which is further edited

removing any punctuation, symbols, and additional whitespace. The remaining header

and meta information is not processed. The script is run on each user file individually to

create a file for each victim as well as run on all email folders collectively to produce the

ex2output file, containing the parsed emails for all ten users. As a result of this

processing, various emails are missing information in either the from field or the body.

These emails are excluded from the experiment.

! 58!

3.4.5.3 Utility Experiment Execution

With maps.exe running on the victim system, writeEmails.rb writes each email to

input.txt. The experiment is run with the five different profiles discussed in Section

3.4.4.1. As each repetition completes, the results are stored in a unique database on the

C2 server bearing the name of the experiment and repetition number (i.e., ex2r1 for the

first repetition of the utility experiment). The victim VMs are reset to the beginning

snapshot and the next profile is loaded onto the C2 server.

3.4.5.4 Utility Experiment Evaluation Technique

Validation of the utility experiment consists of determining the percentage of matches

that MAPS is able to successfully identify. There are several factors that potentially limit

MAPS ability to identify a match; a subset of possible issues are listed below:

• Software discrepancies. Many software bugs have been discovered and remedied

during the design process. However, due to time limitations bugs may still exist

that affect the results when utilizing the Enron dataset.

• Regex is used to edit the 500,000 emails in the Enron data set. With this size of

data set, it is possible that some symbols may not have been adequately sanitized

from the emails. This can cause issues with matching.

• Virtual Networking. With virtual networking in use, it is difficult to troubleshoot

packet transmission within the internal software of VMware.

 Logs that are generated from this experiment exist in the form of database records

containing the match information generated throughout the repetition and the logs

! 59!

generated by MAPS as discussed in Section 3.4.3.5. The grep utility is employed to

search the email data set for each profile words. Matches that are discovered by the grep

utility that are not present in the C2 database or matches in the database that are not

discovered by grep are considered to be misses. Conversely, any matches that exist in the

C2 database and are revealed by grep are considered to be accurate. Overall accuracy is

calculated by:

 !""#$%"& = ! !"#$!!!"#!!"#$!!"##$#!"#$!!!"# !!!!! (3.1)

!
! A 95 percent CI is used in order to interpret the results of the utility experiment.

Once the results of the experiment have been analyzed, network attack priority lists are

created from the results.

3.5 Summary

 This chapter discussed in detail the overall design and design considerations for

the research tool MAPS to be able to identify matches to profiles and create a network

attack priority list. The steps for setting up the development environment in order to

develop MAPS and associated helper applications and scripts are discussed in detail.

Finally, the testing environment and testing details as well as the validation process of the

results are presented.

! 60!

4. Results and Analysis

4.1 Overview

This chapter provides detailed results and analysis for the experiments outlined in

Section 3.4. Section 4.2 and Section 4.3 give detailed analysis of the functionality

experiment and utility experiment respectively. Section 4.4 examines characteristics of

generating network attack priority lists. A summary of the chapter is presented in Section

4.6.

4.2 Functionality Experiment

The focus of the functionality experiment is to demonstrate MAPS ability to find,

record, and report matches to the profile.

4.2.1 Validation Overview

Validation for the functionality experiment is accomplished using the Linux

utilities grep version 2.5.1 and wc. Each time generateEmails.exe creates an email and

writes it to the input.txt file, it also creates another copy of that email and stores it in the

\Desktop\log\email.txt file as well. This email.txt file is considered to be the master list of

emails for each repetition of the functionality experiment.

4.2.1.1 Validation Scripts

The script exportMatches.rb is executed on the C2 server and executes the code in

Figure!4.1 to export the database containing the matches found by MAPS into a text file.

! 61!

 res = dbh.query "SELECT profileWords.word, SUM(numMatches) as total FROM matches
 INNER JOIN profileWords ON matches.profileID=profileWords.profileID
 GROUP BY word;")
 res.each do |row|
 outFile.printf "%s\n%d\n", row[0], row[1]

 end

Figure 4.1: Export Matches MySQL Query

!
Each match word and its corresponding number of matches found are outputted

on consecutive lines for the entire database. A text file, denoted by the name of the

database the results are pulled from, is written to the matchFiles folder for each database.

The script ex1Validate.rb automates the validation process for all repetitions of the

functionality experiment simultaneously. This script uses the grep utility to search

email.txt for each profile word and records the number of times it appears in all randomly

generated emails. The profile words and the matchFile for the current repetition are each

read into the arrays shown in Figure!4.2.

matchFileArray = IO.readlines matchFile
profileArray = IO.readlines profile

Figure 4.2: Functionality Experiment Validation File Arrays

!

4.2.1.2 Grep String

Grep is then used with each index of the profileArray array in conjunction with

the wc utility to count each occurrence. Building the command issued to the system is

shown in Figure!4.3.

command = "grep -E -o '[|#?]" + profileWord.chomp + " ' " + emailLogPath + " | wc -l"

Figure 4.3: Grep Pattern Match String

!

! 62!

The –E flag tells grep to interpret the pattern between the single quotes using

extended regex, and the –o flag causes grep to only show the part of the line that matches

the pattern. The output of grep is then piped into the wc utility with the –l flag which

causes the number of lines to be counted. Extended grep is used because basic grep

output only outputs the lines containing any matches to the pattern. This causes multiple

pattern matches on one line to be counted as one occurrence. The usage of wc as well as

the –o flag with extended grep returns an accurate count of multiple matches on a single

line. The regex pattern matches either a single space or 0 or 1 occurrences of the #

symbol followed by the profile word and ending with a single space. The command

variable is then issued as a system command, shown in Figure!4.4.

count = `#{command}`

Figure 4.4: System Grep Command

!
The variable count receives the return value when command is issued to the system.

count is a count of the profile words match occurrences.

4.2.1.3 Match Criteria

Each profile word in profileArray is then searched for in the matchFileArray array.

When a match is found count is compared to the count in matchFileArray. If the number of

occurrences match then a hit is recorded for each occurrence. Two cases are considered

to be misses.

• The profile word is found by grep but is not found by MAPS client. A miss for

each grep count of the profile word is counted.

! 63!

• Grep and MAPS find a different number of occurrences of a profile word. The

difference between the grep count and the MAPS count are recorded as misses

(i.e., the profile word ‘business’ is found by grep to have occurred 47 times and

MAPS 32 times. This is recorded as 32 hits and 15 misses).

In the event that MAPS either records more occurrences than grep or records a

profile word match that grep does not, manual verification is required. Grep is expected

to find all occurrences of the profile word, therefore if MAPS finds more matches than

grep, it is likely that an error has occurred. Accuracy is determined by Equation 3.1.

4.2.2 Results & Analysis

The functionality experiment consists of five repetitions for each of the three user

types resulting in fifteen runs. The 95 percent CI is calculated for each of the three users,

and the results are shown in Table!4.1. Due to domain knowledge and knowing the

accuracies cannot be over 100 percent, the intervals are capped at 100.

Table 4.1: Functionality Experiment Confidence Intervals

User Mean Accuracy 95 percent C.I. Interval

Minimal 100 ±0 [100]

Average 99.87 ± 0.36 [99.510, 100]

Extreme 99.898 ± 0.173 [99.725, 100]

! 64!

4.2.2.1 Validation Error

In the fifteen runs of the functionality experiment, there are three cases that

MAPS produced one more match than grep: Average_r1, Extreme_r4, and Extreme_r5.

These cases require manual verification to determine the cause of the additional match

found by MAPS. In each case, MAPS correctly identified the matches that are present in

the email. Grep does not support positive look-aheads, which allows regex to match a

character followed by another character without consuming the second character.

Because of this, the case when two of the same match words follow each other can not be

detected. For example, if the match word is “tomorrow”, the phrase “tomorrow

tomorrow” is not detected. The regex consumes the space between the two words and

therefore the second tomorrow does not contain a space followed by the word followed

by the space. This results in the pattern not matching the string.

4.2.2.2 Manual Verification

Due to the data set limit of 3075 words, the larger the number of words generated

the more likely the case of two of the same word occurring. This explains why it occurs

twice in the extreme data set, while not occurring at all in the minimal data set. Despite

these discrepancies in validation, the 95 percent CI demonstrates that with random data

sets, further runs would result in well over 99 percent accuracy. This experiment

successfully demonstrates that even at different user levels MAPS is able to successfully

identify the profiles and report the matches back to the C2 server with a verifiable

accuracy above 99 percent.

! 65!

4.3 Utility Experiment

The utility experiment uses an email corpus and meaningful profiles to

demonstrate MAPS’ ability to accurately identify matches with non-contrived input.

4.3.1 Validation Overview

Validating the utility experiment requires confirming the communication between

the MAPS client applications on the ten victim machines and the C2 server. The

validation of this data takes place in a similar manner to that of the functionality

experiment with the following difference. All ten email files have been consolidated into

one single file: ex2output. Grep is used on this file just like the functionality experiment

with grep matches being considered the correct number of matches. The same grep

string, match criteria, and accuracy formula is applied to the results of the utility

experiment.

4.3.2 Results & Analysis

The utility experiment consists of 5 different profiles applied to 10 different

victim clients. Each victim client contains a unique set of emails to be written. This

results in 5 runs of the experiment. Table!4.2 describes the results of the utility

experiment.

!
!
!
!
!

! 66!

Table 4.2: Utility Experiment Validation

Run Grep Hits MAPS Hits Misses Accuracy

1 56004 54652 1352 97.586

2 1389 1326 63 95.464

3 9628 9484 144 98.504

4 17508 17236 272 98.445

5 24472 23756 716 97.074

4.3.2.1 Data Verification

All five runs of the utility experiment show accuracies above 95 percent. In order

to provide confidence in these accuracies, the first run is repeated three times. The

results for all three repetitions of run one are shown in Table!4.3.

Table 4.3: Utility Experiment - Run One Repetitions

Repetition Grep Hits MAPS Hits Misses Accuracy

1 56004 54652 1352 97.586

2 56004 54655 1349 97.591

3 56004 54655 1349 97.591

A 95 percent CI is calculated for the three repetitions. The mean accuracy for the

repetitions is 97.589, and the 95 percent CI is 97.586 to 97.591. This shows the mean of

additional repetitions for this run should fall between 97.586 percent and 97.591 percent.

These repetitions verify that MAPS is able to repeatedly identify a high percentage of

! 67!

matches in the Enron email corpus. Along with the functionality experiment, these

results confirm that with a email corpus and meaningful profiles, MAPS is able to

effectively match the profiles and report them to the C2 server.

4.4 Network Attack Priority Lists

Network attack priority lists are generated for the systems in the utility

experiment. In order to create the network attack priority lists for each run, the matches

stored in the C2 database are used.

4.4.1 Building Network Attack Priority Lists

In order to build the network attack priority list, the MySQL query in Figure 4.5 is

issued to each run’s database:

SELECT system.uname AS User_Name, system.ip AS Internal_IP,

SUM(matches.numMatches) AS Matches FROM system INNER JOIN matches ON

system.ipID=matches.ipID GROUP BY matches.ipID ORDER BY Matches DESC;

 Figure 4.5: Network Attack Priority List MySQL Query

!
This query selects relevant information from the database for identifying each

system, such as the system username and internal IP address. For each system in the run,

the total number of matches are summed together and displayed in the Matches column.

The Matches column is sorted in the table from most matches to least matches. Using

this query, the network attack priority lists are generated. This list shows the attacker

what order to attack systems on the network.

! 68!

The top two systems for each run of the utility experiment are listed below in

Table!4.4 along with the IP address and the number of matches associated with each

system.

Table 4.4: Utility Experiment Network Attack Priority Lists - Top 2 Results

Run Profile Search Word System IP Address Matches

1 Business
Victim5 192.168.87.15 23551

Victim4 192.168.87.14 11975

2 Fraud
Victim5 192.168.87.15 633

Victim4 192.168.87.14 309

3 Love
Victim4 192.168.87.14 1879

Victim5 192.168.87.15 1720

4 Vacation
Victim4 192.168.87.14 4935

Victim5 192.168.87.15 4161

5 Family
Victim5 192.168.87.15 9487

Victim4 192.168.87.14 5974

Victim4 and Victim5 have the highest number of matches for all the runs in the

utility experiment. This is related to the fact that they have significantly more words in

their respective email files than the other victims. In order to obtain matches on

uncorrelated data, profiles describing common topics of discussion are chosen. This

results in more matches occurring in the emails that contain more words. Since each

profile word is considered to be significant, the total number of matches per topic

! 69!

determines the network attack priority list. Refining the profiles could provide a more

robust network attack priority list. However, profile generation is beyond the scope of

this research.

Table!4.5 shows the network attack priority list for the first run of the utility

experiment.

Table 4.5: Utility Experiment – Business Profile

User_Name Internal_IP Matches

Victim 5 192.168.87.15 23551

Victim 4 192.168.87.14 11975

Victim 1 192.168.87.11 4293

Victim 2 192.168.87.12 2848

Victim 9 192.168.87.19 2709

Victim 10 192.168.87.20 2534

Victim 8 192.168.87.18 2459

Victim 3 192.168.87.13 1959

Victim 6 192.168.87.16 1477

Victim 7 192.168.87.17 855

 As shown in Table!4.5, Victim5 clearly has the most matches to the business

profile out of the ten systems used for run one of the utility experiment. This data

provides a basic means of identifying a system on the network that has users that are

discussing topics via email relating to business.

! 70!

4.4.2 Email User Identification

Issuing a further database query results in more detailed information about the

users on the system being obtained. Looking at the first run of the utility experiment in

Table!4.5, Victim5 has the most hits. By issuing the query in Figure!4.6, a list of email

addresses associated with Victim5 and the number of matches for each user is displayed.

SELECT emailAddress.fromAddress AS Email, SUM(matches.numMatches) AS Matches FROM matches

INNER JOIN emailAddress ON matches.emailID=emailAddress.emailID INNER JOIN system ON

matches.ipID=system.ipID WHERE matches.ipID=5 GROUP BY matches.emailID ORDER BY Matches;

Figure 4.6: Identify Top Email Matches

!
 While this query results in one hundred and thirty-three email address matches,

the top four results are likely of the most interest to an attacker looking for matches on

the business profile.

Table 4.6: Utility Experiment – Business Profile Breakdown by Top 4 Users

Email Address Matches

Sarah.palmer@enron.com 15020

m..schmidt@enron.com 3834

Karen.denne@enron.com 1338

Courtney.votaw@enron.com 1313

 Table!4.6 shows that 21,505 matches out of the 23,551 matches come from 4

users, with the sarah.palmer@enron.com email address clearly having the majority of the

! 71!

matches. The attackers can focus their efforts on these users, saving valuable hours and

providing a clear starting point to begin harvesting information.

4.5 Summary

 This chapter provides details on the results, validation, and analysis of both

experiments performed and discussed in Section 3.5. Final results show MAPS ability to

identify a high percentage of matches with both a random data set and real world input.

With MAPS functionality demonstrated, the utility of MAPS is shown by further

querying the match database to determine which systems contribute the most matches for

each system. The systems rank from most matches to least matches, giving the attacker a

network attack priority list to plan a computer network attack. In addition to the network

attack priority list, further analysis of the results show the ability to determine which

email users contribute the most to the profile matches. Experimentation successfully

demonstrates both the functionality and utility of MAPS.

! 72!

5. Conclusions and Recommendations

5.1 Overview

 This chapter concludes the research presented in this thesis. The following

sections discuss the application of this research, future works, and a summary of the

thesis.

5.2 Significance of Research

 People have grown accustomed to communicating electronically for many

different reasons. With limited resources and technical proficiencies available, it is

important to utilize skills in the most efficient manner as possible. This research

highlights a manner in which automation can be employed to focus limited resources in

other areas. The use of profiles to describe information can be created by non-technical

analysts, while attackers can more efficiently attack the network. This research shows

that information profiles aid in the targeting of computers on a network without human

interaction on the systems.

 This research successfully demonstrates that a ranking of computer targets by

comparing real time user email traffic from the perspective of the users workstation

against pre-determined profiles can be implemented.

5.3 Recommendations for Future Research

 This thesis is a small part in the research to increase the efficiency of attackers on

computer networks. Some proposed modifications to the implementation are as follows:

! 73!

• Increasing the complexity of the profiles utilized to determine activity on the

system. While this research did not focus on how the profiles are generated, the

utilization of more specific profiles will eliminate many false positives and

negatives. For this research to be employed in an actual attack operation, profiles

would need to be more specific to the type of information that is being sought.

• A much higher presence will be necessary on the target system. In order to truly

have situational awareness of what is occurring on the system, it is necessary to

have more information then what can be obtained via email alone. Activities such

as web browsing, document creation, remote access logs, etc. can indicate the

information residing on the workstation.

• A more robust means of parsing the content. This research focuses on text-based

content that could be compared to a text based profile. With multiple means of

gathering data, research on content parsing to produce meaningful results is

necessary. In addition, the parser must properly handle errors.

• Increased stealth components. While MAPS employs some basic customization

options for the network being attacked, stealth components would be required for

a deployable tool. Rootkits, covert transmission mediums, and a decreased

executable size reduces the likelihood of discovery.

5.4 Summary

 This research identifies means with which an attacker can increase the efficiency

of operations against computer information systems, without having to increase their

technical work force. This is achieved by defining and implementing the following steps:

!

! 74!

1. Collect email traffic on a windows workstation and compare the emails to a

predefined profile sending the matches to the C2 server. MAPS software is

implemented using the C programming language and runs on the Windows

operating system.

2. Verify the ability to successfully identify and report matches from a random

profile with a random set of emails. Grepping the contents of the email output

files and comparing these results against the C2 database determines MAPS

ability to identify matches.

3. Verify the research goal by loading semantically-related profiles and utilizing the

Enron email corpus [Enr03] to determine if a network attack priority listing can

be derived. Profiles generated by searching onelook.com for topics are run

against the email data set from the Enron corporation. Validation takes place by

demonstrating that MAPS is able to correctly identify 90 percent of the matches

and MySQL queries are used to present the information via a network attack

priority list.

This research succeeded in realizing the goals and demonstrates a foundation for

automating the collection of information from a system for the purpose of determining

the topics of discussion of the users on the system.

! 75!

Appendix A: Functionality Experiment Results

!
Run Grep hits MAPS Hits Misses Accuracy

Minimal_r1 13 13 0 100

Minimal_r2 11 11 0 100

Minimal_r3 12 12 0 100

Minimal_r4 14 14 0 100

Minimal_r5 10 10 0 100

Average_r1 154 155 1 99.351

Average_r2 152 152 0 100

Average_r3 137 137 0 100

Average_r4 161 161 0 100

Average_r5 146 146 0 100

Extreme_r1 365 365 0 100

Extreme_r2 385 385 0 100

Extreme_r3 374 374 0 100

Extreme_r4 394 395 1 99.746

Extreme_r5 392 393 1 99.745

!

! 76!

Appendix B: Experiment Confidence Intervals

!
Functionality!Experiment:!n=5!
!

Run! Mean! SD! SE! CI! Range!
Minimal! 100! 0! 0! 0! 100!

Average! 99.8702! 0.29024162! 0.1298! 0.36038257! 99.5!–!100.2!
Extreme! 99.8982! 0.13939584! 0.06233971! 0.1730828! 99.7!–!100.1!

!
!
Utility!Experiment!Run!1:!n=3!
!

Mean! SD! SE! CI! Range!
.97589! 3.0927EL05! 1.7856EL05! 7.6828EL05! 0.97581L0.97597!

! 77!

Appendix C: Utility Experiment Profiles

!

Run!1! Run!2! Run!3! Run!4! Run!5!
Business! Fraud! Love! Vacation! Family!
account!
activity!

advertising!
affair!
affairs!
agency!
bank!

banking!
brokerage!
business!
byplay!
carrier!
clientele!
commerce!
commercial!
company!
competition!
concern!

construction!
corp!

corporation!
custom!
deal!

enterprise!
establishment!

firm!
house!

industrial!
industry!
maker!

management!
manager!

manufacturer!
manufacturing!
mercantile!
occupation!
office!
open!

bite!
charlatan!
cheat!

collateral!
colluder!

conveyance!
cross!
deceit!

deception!
defraud!

defraudment!
dishonesty!
dupery!
election!
extrinsic!
fake!
faker!
fiddle!
fleece!
foist!
fraud!

fraudless!
fraudulence!
fraudulent!

gyp!
hoax!
hustle!
imposter!
impostor!
ingannation!
intrinsic!
mulct!

namedropper!
pretender!
pseudo!
pull!
racket!
ringer!

adoration!
adore!
affection!
agape!
amorous!
ardor!

attachment!
attraction!
bang!
bed!

beloved!
bonk!
charity!
cherish!
crush!
dear!
dearest!
devotion!
dote!
enjoy!
feeling!
fornicate!
f***!
heart!
honey!
hump!

infatuation!
intrigue!
jazz!
know!
liking!
love!
loved!
loveless!
lovely!

lovemaking!
lover!
loves!

accomplished!
appeal!
away!
ball!
beach!
condos!
cottage!
country!
cruise!
dacha!
down!
ego!

eholiday!
fab!

fabulous!
furlough!
getaway!

honeymoon!
idyllic!
kiss!
leave!
leisure!
look!

midsummer!
mind!
month!
nag!
outing!
pass!
picnic!
plate!

playground!
rainy!
recess!
rental!
resort!
resorts!
rested!

ancestry!
baby!
blood!
blue!
brood!
category!
children!
clan!
class!

common!
descended!
descent!
domestic!
dynasty!
familial!
families!
family!
feline!

fellowship!
folk!

genealogy!
genera!
group!

heirloom!
home!

homefold!
hominid!
house!

household!
ilk!
kin!

kinfolk!
kinsfolk!

kinsperson!
line!

lineage!
marriage!
matriarch!

! 78!

operation!
organization!
partnership!
patronage!
practice!
publishing!
sector!
shop!
stage!
trade!
tycoon!
work!
!

scam!
sham!
shark!

surreptitious!
swindle!
trickery!
trickster!
trumpery!
unmasking!
victimize!
watcher!
wrench!

!

loving!
passion!
passionate!
patriotism!
philanthropy!
platonic!
romance!
romantic!
sc***!
strong!

unrequited!
worship!

!

sightsee!
sixthly!
spa!
spend!
subject!
then!
throw!
trips!

vacation!
vacationed!
vacationer!
vacationing!

!

menage!
name!

parentage!
parents!
patriarch!
people!
related!
sept!
shrew!
stock!

taxonomic!
tribe!
!

!

! 79!

Bibliography

[Bar10] S. Barish. “Passive Network Analysis”. 2010.

http://www.symantec.com/connect/articles/passive-network-analysis.
Retrieved 11 August 2012.

[Coy11] S. Coyne. “The Getaway: Methods and Defenses for Data Exfiltration”..

https://media.blackhat.com/bh-dc-
11/Coyne/BlackHat_DC_2011_Coyne_Gateway-wp.pdf. Retrieved 11
August 2012.

[Dam12] DameWare. http://www.dameware.com/. Retrieved 11 August 2012.

[Dsn12] Dsniff. http://monkey.org/~dugsong/dsniff/. Retrieved 11 August 2012.

[Enr03] Enron. http://www.cs.cmu.edu/~enron/. Retrieved 11 August 2012.

[Ett12] Ettercap. http://ettercap.sourceforge.net/. Retrieved 11 August 2012.

[Far12] Farmanager. http://www.farmanager.com/. Retrieved 11 August 2012.

[GBC06] A. Giani, V. Berk, G. Cybenko. “Data Exfiltration and Covert Channels”.

http://www.ists.dartmouth.edu/library/293.pdf. Retrieved 11 August
2012.

[Gho10] A. Ghosh. “The Reign of Zeus”.

https://www.invincea.com/blog/tag/exfiltrating-data/. Retrieved 11
August 2012.

[Gje10] T.Gjelten “Cyberwarrior Shortage Threatens U.S. Security”.

http://www.npr.org/templates/story/story.php?storyId=128574055.
Retrieved 11 August 2012.

[Hel11] Help Net Security. “Malware-driven pervasive memory scraping”.

http://www.net-
security.org/malware_news.php?id=1641&utm_source=feedburner&utm_
medium=feed&utm_campaign=Feed%3A+HelpNetSecurity+%28Help+N
et+Security%29. Retrieved 11 August 2012.

[HoB06] G. Hoglund, J. Butler. 2006. Subverting the Windows Kernel Rootkits.

Upper Saddle River, NJ: Addison-Wesley.

! 80!

[Hus11] B. Hussey. “Decoding Data Exfiltration – Reversing XOR Encryption”.

http://crucialsecurityblog.harris.com/category/malware-reverse-
engineering/. Retrieved 11 August 2012.

[IAL09] J. Iglesias, P. Angelov, A. Ledezma, A. Sanchis. 2012. “Creating

Evolving User Behavior Profiles Automatically”. IEEE. IEEE
Transactions on Knowledge and Data Engineering. Volume 24 Issue 5. pg
854-867.

[Ide10] Identity Finder. “Data Loss Prevention: Data-at-Rest vs. Data-in-Motion”.

http://www.identityfinder.com/us/Files/WhitePaper.pdf. Retrieved 11
August 2012.

[LAH11] M. Ligh, S. Adair, B. Hartstein, M. Richard. 2011. Malware Analyst’s

Cookbook and DVD: Tools and Techniques for Fighting Malicious Code.
Indianapolis, Indiana: Wiley Publishing Inc.

[Lan07] B. Lane, “The USAF Standard Desktop Configuration (SDC)”.

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1
&ved=0CCwQFjAA&url=http%3A%2F%2Fdownload.microsoft.com%2
Fdownload%2F5%2Fc%2F4%2F5c46c4a0-950f-40a9-9a8f-
9af4a2869bc2%2FWhitePaper_FDCC
AirForce.doc&ei=FPrMTuK9CefV0QGP3fUy&usg=AFQjCNFY0N382.
Retrieved 11 November 2011.

[Lop06] K. Lopez. “Standard Desktop Configuration keeps AFMC ahead of ‘bad

guys’”. http://www.afmc.af.mil/news/story.asp?id=123020383. Retrieved
11 August 2012.

[Man12] Mandiant. 2011. “Mandiant ApateDNS”.

http://www.mandiant.com/resources/download/research-tool-mandiant-
apatedns. Retrieved 11 August 2012.

[Mes11] E. Messmer. “Memory scraping malware goes after encrypted private

information”. http://www.networkworld.com/news/2011/022211-
pervasive-memory-malware.html. Retrieved 11 August 2012.

[Mil11] S. Miller. “Pervasive Memory Scraping a Growing Threat that Bypasses

Encryption”.
http://www.processor.com/articles//P3313/14p13/14p13.pdf?guid.
Retrieved 11 August 2012.

[Msd112] MSDN. http://msdn.microsoft.com/en-us/library/ms717422.aspx.

Retrieved 11 August 2012.

! 81!

[Msd212] MSDN. http://msdn.microsoft.com/en-

us/library/windows/desktop/aa364417(v=vs.85).aspx. Retrieved 11
August 2012.

[MSK09] S. McClure, J. Scambray, G. Kurtz. 2009. Hacking Exposed 6. New
York: McGraw-Hill Companies.

[Net12] Netmarketshare. http://www.netmarketshare.com/os-market-

share.aspx?qprid=9. Retrieved 11 August 2012.

[Ntu11] DameWare NT Utilities. “DameWare NT Utilities”.

http://dameware.info/products/dntu/. Retrieved 11 August 2012.

[OBB06] J. Onroy, J. Becerra, F. Bellas, R. Duro, F. López-Peña. 2006.

“Automatic Profiling and Behavior Prediction of Computer System
Users”. IEEE. IEEE International Workshop on Measurement Systems
for Homeland Security, Contraband Detection and Personal Safety. pgs.
62-66.

[One12] Onelook. http://www.onelook.com/. Retrieved 11 August 2012.

[Ope12] Openwall. http://www.openwall.com/john/. Retrieved 11 August 2012.

[PeI09] N. Percoco, J. Ilyas. “Malware Freakshow”. Defcon 17.

http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-
nicholas_percoco-jibran_ilyas-malware_freak_show.pdf. Retrieved 11
August 2012.

[Per10] N. Percoco. “Data Exfiltration: How Data Gets out”.

http://www.computerworld.com/s/article/9169978/Data_Exfiltration_How
_Data_Gets_Out?taxonomyId=83&pageNumber=2. Retrieved 11 August
2012.

[PIM11] N. Percoco, J. Ilyas, R. Merritt. “Global Security Report 2011”.

http://immersionltd.com/Immersion/documents/Trustwave_WP_Global_S
ecurity_Report_2011.pdf. Retrieved 11 August 2012.

[Pro11] Programming4us. “Windows 7: Indexing Your Computer for Faster

Searches (part 2) - Specifying Files Types to Include or Exclude”.
http://programming4.us/desktop/2346.aspx. Retrieved 11 August 2012.

! 82!

[PSI10] N. Percoco, C. Sheppard, J. Ilyas. “Evolution of Malware: Targeting

Credit Card Data in Memory”.
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5
&ved=0CD0QFjAE&url=http%3A%2F%2Fwww.trustwave.com%2Fdow
nloads%2Fwhitepapers%2FTrustwave_WP_Evolution_of_Malware_.pdf
&ei=U2jiTsjWFsXe0QGhhJT1BQ&usg=AFQjCNHCnEXUfhPbKE9aTn
C20Zp8LWKfKQ&sig2=AbCBFjB7ddpaFe89WfokMQ. Retrieved 11
August 2012.

[RBC07] D. Robinson, V. Berk, G. Cybenko. “Online Behavioral Analysis and

Modeling Methodology (OBAMM)”.
http://www.ists.dartmouth.edu/library/414.pdf. Retrieved on 11 August
2012.

[Rob10] D. Robinson. 2010. “Cyber-Based Behavioral Modeling”. Dissertation.

Dartmouth College. http://dms.sagepub.com/content/9/3/195.abstract.
Retrieved 11 August 2012.

[Sea00] Searchwindowsserver. “domain controller”.

http://searchwindowsserver.techtarget.com/definition/domain-controller.
Retrieved 11 August 2012.

[Sha07] D. Shackleford. “Regulations and Standards: Where Encryption Applies”.

http://www.sans.org/reading_room/analysts_program/encryption_Nov07.p
df. Retrieved 11 August 2012.

[SkL06] E. Skoudis, T. Liston. 2006. Counter Hack Reloaded 2nd Edition. Upper

Saddle River, NJ: Prentice Hall.

[TuS03] I. Tutănescu, E. Sofron. “Anatomy and Types of Attacks against

Computer Networks”. 2nd Roedunet International Conference 2003.
http://193.226.6.174/roedunet2003/site/conference/papers/TUTANESCU_
I-Anatomy_and_Types_of_Attacks_against_Computer_..pdf. Retrieved
11 August 2012.

[Vis08] Visa. “Visa Data Security Alert”.

http://usa.visa.com/download/merchants/debugging_software_memory.pd
f. Retrieved 11 August 2012.

[VSP10] S. Venter, C. Sheppard, N. Percoco. “POS Memory Parsing Malware

Briefing Attacks on Kernel Memory”.
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1
&ved=0CCEQFjAA&url=https%3A%2F%2Fwww.trustwave.com%2Fdo
wnloads%2Fspiderlabs%2FTrustwave_SpiderLabs_Briefing_POS_Malwa
re_Attacks_on_Kernel_Memory_June_2010.pdf&ei=mBb6TvHXF-

! 83!

Hf0QHylsHgAQ&usg=AFQjCNHy71IdbuVY7686wm3jBEsNLAlBAg&
sig2=IW7tcXh0_D8h9Bf5rzPylA. Retrieved 11 August 2012.

[Wes10] K. Westphal. “Steganography Revealed”.

http://www.symantec.com/connect/articles/steganography-revealed.
Retrieved 11 August 2012.

[Win11] Windows. “Windows Search”. http://windows.microsoft.com/en-

US/windows7/products/features/windows-search. Retrieved 11 August
2012.

[Win12] WinSCP. http://www.winscp.net/eng/download.php/. Retrieved 11

August 2012.

[Wir12] Wireshark. http://www.wireshark.org/. Retrieved 11 August 2012.

! 84!

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

13-09-2012
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2011 – September 2012
4. TITLE AND SUBTITLE

Creating Network Attack Priority Lists by Analyzing Email Traffic Using Predefined
Profiles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Merritt, Eric J., Civ, USAF

5d. PROJECT NUMBER
!

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENG)
2950 Hobson Way, Building 640
WPAFB OH 45433-8865!

8. PERFORMING ORGANIZATION
 REPORT NUMBER

!!!!AFIT/GCO/ENG/12-19

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
!

Intentionally!left!blank!

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
! Networks!can!be!vast!and!complicated!entities!consisting!of!both!servers!and!workstations!that!contain!information!sought!by!attackers.!!Searching!for!specific!data!in!a!large!network!
can!be!a!time!consuming!process.!!Vast!amounts!of!data!either!passes!through!or!is!stored!by!various!servers!on!the!network.!!However,!intermediate!work!products!are!often!kept!solely!on!
workstations.!!Potential!high!value!targets!can!be!passively!identified!by!comparing!user!email!traffic!against!predefined!profiles.!!This!method!provides!a!potentially!smaller!footprint!on!target!
systems,!less!human!interaction,!and!increased!efficiency!of!attackers.!!Collecting!user!email!traffic!and!comparing!each!word!in!an!email!to!a!predefined!profile,!or!a!list!of!key!words!of!interest!to!the!
attacker,!can!provide!a!prioritized!list!of!systems!containing!the!most!relevant!information.!!!
This!research!uses!two!experiments.!!The!functionality!experiment!uses!randomly!generated!emails!and!profiles,!demonstrating!MAPS!(Merritt’s!Adaptive!Profiling!System)!ability!to!accurately!
identify!matches.!!The!utility!experiment!uses!an!email!corpus!and!meaningful!profiles,!further!demonstrating!MAPS!ability!to!accurately!identify!matches!with!nonLrandom!input.!!A!meaningful!
profile!is!a!list!of!words!bearing!a!semantic!relationship!to!a!topic!of!interest!to!the!attacker.!
Results!for!the!functionality!experiment!show!MAPS!can!parse!randomly!generated!emails!and!identify!matches!with!an!accuracy!of!99!percent!or!above.!!The!utility!experiment!using!an!email!corpus!
with!meaningful!profiles,!show!slightly!lower!accuracies!of!95!percent!or!above.!!Based!upon!the!match!results,!network!attack!priority!lists!are!generated.!!A!network!attack!priority!list!is!an!ordered!
list!of!systems,!where!the!potentially!highest!value!systems!exhibit!the!greatest!fit!to!the!profile.!!An!attacker!then!uses!the!list!when!searching!for!target!information!on!the!network!to!prioritize!the!
systems!most!likely!to!contain!useful!data.!
15. SUBJECT TERMS
network attack, security, network reconnaissance, profile

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

!

18. NUMBER
 OF
 PAGES

98!

19a. NAME OF RESPONSIBLE PERSON
Dr.!Barry!Mullins,!Civ,!USAF!ADVISOR!

REPORT
U!

ABSTRACT
U!

c. THIS PAGE
U!

19b. TELEPHONE NUMBER (Include area code)
(937)!255!L!3636,!ext!7979!
barry.mullins@afit.edu!

