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Abstract. In signal acquisition, Toeplitz and circulant matrices are widely used as sensing operators. They correspond

to discrete convolutions and are easily or even naturally realized in various applications. For compressive sensing, recent work

has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory, by computer simulations, as

well as through physical optical experiments. Motivated by recent work [7], we propose models to learn a circulant sensing

matrix/operator for one and higher dimensional signals. Given the dictionary of the signal(s) to be sensed, the learned circulant

sensing matrix/operator is more effective than a randomly generated circulant sensing matrix/operator, and even slightly so

than a Gaussian random sensing matrix. In addition, by exploiting the circulant structure, we improve the learning from the

patch scale in [7] to the much large image scale. Furthermore, we test learning the circulant sensing matrix/operator and the

nonparametric dictionary altogether and obtain even better performance. We demonstrate these results using both synthetic

sparse signals and real images.
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1. Introduction. Compressive sensing (CS) ([6, 5]) acquires a compressible signal from a small number

of linear projections. Let x̄ denote an n-dimensional real or complex vector that is sparse under a certain

basis Ψ, i.e., one can write x̄ = Ψθ̄ with a sparse θ̄. Let b := Φx̄ represent a set of m linear projections of x̄.

The basis pursuit problem

BP: min
θ
‖θ‖1 s.t. ΦΨθ = b, (1.1)

as well as several other methods, has been known to return a sparse vector θ and thus recover x = Φθ under

certain conditions on the sensing matrix Φ and basis Ψ.

In many CS applications, the acquisition of the linear projections Φx̄ requires a physical implementation.

In most cases, the use of an i.i.d. Gaussian random matrix Φ is either impossible or overly expensive. This

motivates the study of easily implementable CS matrices. Two types of such matrices are the Toeplitz and

circulant matrices, which have been shown to be almost as effective as the Gaussian random matrix for CS

encoding/decoding. Toeplitz and circulant matrices have the forms

T =


tn tn−1 · · · t1

tn+1 tn · · · t2
. . .

. . .
. . .

t2n−1 t2n−2 · · · tn

 and C =


tn tn−1 · · · t1

t1 tn · · · t2
. . .

. . .
. . .

tn−1 tn−2 · · · tn

 , (1.2)

respectively. When matrix T satisfies the additional property that ti = tn+i,∀i, it becomes a circulant

matrix C. Since a (partial1) Toeplitz matrix has very similar theoretical and computational properties to

a (partial) circulant matrix of the same size, our discussions below are based exclusively on the circulant

matrix. Using Toeplitz, rather than circulant, matrices will incur some insignificant computation overhead

to the methods proposed in this paper.

1.1. Circulant Compressive Sensing. In various physical domains, it is easy to realize Cx̄ since it is

equivalent to the discrete convolution c∗x̄ for a certain vector c; hence, if P is a row-selection (downsampling)
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operator, PCx̄ becomes circulant CS measurements of x̄. Using either Toeplitz or circulant matrices, Tropp

et al.[24] describes a random filter for acquiring a signal x̄; Haupt et al.[10] describes a channel estimation

problem to identify a vector x̄ (called impulse responses) that characterizes a discrete linear time–invariant

(LTI) system; Meng et al.[18, 19] applies it to high-resolution OFDM channel estimation. Random con-

volutions can also be applied in some imaging systems in which convolutions either naturally arise or can

be physically realized [3, 12, 16, 15, 23]. Furthermore, random convolutions can be realized by an optical

correlator [23]. Since any matrix C in (1.2) can be diagonalized by a Fourier transform, i.e., obeying

C = FDF ∗, (1.3)

where F is the discrete Fourier matrix of the same size as C and D is a diagonal matrix, implementing Cx̄

is equivalent to implementing FDF ∗x̄, which can be realized through optical lens and a static spatial light

modulator (SLM). Recently, the use of Toeplitz and circulant matrices has been proposed for compressive

MR imaging by Liang et al.[13]. A good review can be found in [26].

There are rich theoretical results on circulant matrices for CS. In [2], Toeplitz measurement matrices are

constructed with i.i.d. random entries of ±1 or {−1, 0, 1}; their downsampling effectively selects the first m

rows; and the number of measurements needed for stable `1 recovery is shown to be m ≥ O(k3·log n/k), where

k is the signal sparsity. [11] selects the first m rows of a Toeplitz matrix with i.i.d. Bernoulli or Gaussian

entries for sparse channel estimation. Their scheme requires m ≥ O(k2 · log n) for stable `1 recovery. The

work [19] establishes stable recovery under the condition m ≥ O(k2 log(n/k)). In [23], random convolution

with either random downsampling or random demodulation is proposed and studied. It is shown that the

resulting measurement matrix is incoherent with any given sparse basis with high probability and `1 recovery

is stable given m ≥ O(k · log n+ log3 n). Recent results in [22] show that several random circulant matrices

satisfy the restricted isometry property (RIP) in expectation given m ≥ O(max{s3/2 log3/2 n, k log2 k log2 n})
with arbitrary downsampling. We note that all these results are based on random circulant matrices, so they

do not apply to optimized circulant matrices in this paper. We demonstrate that learned circulant matrices

achieve even better performance.

The use of circulant sensing matrices also allows faster signal and image recovery. Practical algorithms

(e.g., [25, 27, 28, 31, 29]) for CS are based on performing operations including multiplications involving with

Φ and Φ∗. For partial circulant matrix Φ = PC, Φx and Φ∗y each can be quickly computed by two fast

Fourier transforms (FFTs) and simple component-wise operations. This is much cheaper than multiplying

a general matrix with a vector. For image recovery, a splitting algorithm taking advantages of the circulant

structure has been proposed in [30] and shows both satisfactory recovery quality and speed. These fast

algorithms apply to the learned circulant matrices in this paper.

1.2. Learning Dictionaries and Sensing Matrices. In CS, signal and image reconstructions are

based on how they are sparsely represented. The sparse representation involves a choice of dictionary, a

set of elementary signals (or atoms) used to sparsely decompose the underlying signal or image. There

are analytic dictionaries and learned dictionaries. Examples of analytic dictionaries include the discrete

cosine basis, various wavelets bases, as well as tight frames. Some of them are orthogonal while others

are over-complete. Their analytic properties have been studied, and they feature fast implementations;

hence, they have found wide applications. Properly learned (as opposed to analytic) bases can give rise

to even sparser representations of signals and, in particular, images, so they can give better encoding and

decoding performance than the analytic dictionaries; see [21, 9, 20] for examples and explanations. Although

most theoretical results of CS recovery do not apply to learned dictionaries and optimized sensing matrices,

one useful tool is the so-called mutual coherence between a dictionary Ψ and a sensing matrix Φ: with
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D := ΦΨ = [d1, . . . , dK ], it is defined as [14]

µ(D) := max
i 6=j,1≤i,j≤K

|d∗i dj |
‖di‖2‖dj‖2

. (1.4)

A smaller µ(D) tends to allow more Ψ-sparse signals x̄ to be successfully recovered from measurements

Φx̄ via various CS algorithms. Hence, Elad [8] seeks means to reduce µ(D). He considers the Gram

matrix G = D∗D and proposes to reduce µt(D) := (
∑
i 6=j,1≤i,j≤K(gij > t) · |gij |)/(

∑
i 6=j,1≤i,j≤K(|gij | > t)).

His work demonstrates improved recovery quality with learned (non-circulant) sensing matrices Φ, and it

has motivated the subsequent work [7]. Work [7] is not based on minimizing µ(D) but instead pursuing

(ΦΨ)∗(ΦΨ) ≈ I, where I denotes the identity matrix. The results of [7] are even better since µ(D) is a

worst-case characteristic whereas (ΦΨ)∗(ΦΨ) ≈ I is more toward improving the overall performance. Also,

the latter is easier to compute.

1.3. Contributions. We are motivated by [7] and propose numerical methods to minimize ‖(ΦΨ)∗(ΦΨ)−
I‖F , where Φ is either a full or partial circulant matrix. Like [7], we also learn Φ and Ψ together, performing

the so-called the coupled learning of Φ and Ψ. While results of [7] are limited to one dimensional case, we

take advantages of the circulant structure and deal with more than one dimension, enabling the learned

circulant sensing for signals such as images and videos. Current atoms are patches, e.g., of size 8 × 8. We

further address the patch-scale limitation of [7], namely, the sensing matrix size n must equal the dictionary

atom size; namely, if the dictionary for a 512 × 512 image is formed by 8 × 8 patches, the sensing matrix

generated in [7] has only 64 = 8×8 columns and applies to vectors of length 64, instead of 512×512. Hence,

the learned sensing matrix cannot be applied to the entire image. We remove this limitation and perform

image-scale learning by generating circulant sensing operators applicable to the entire signals or images.

Our approaches are tested on synthetic 1D signals, as well as the images in the Berkeley segmentation

dataset [17]. The learned circulant sensing matrix gives better recoverability over both random circulant

and Gaussian random matrices. For real image tests, the coupled learning approach achieves even better

recovery performance.

1.4. Notation. We let (·)> and (·)∗ denote transpose and conjugate transpose, respectively. conj(·)
stands for the conjugate operator. Define A • B =

∑
i,j AijBij and 〈A,B〉 =

∑
i,j conj(Aij)Bij for any two

matrices A,B of the same dimension. vec(A) is a vector formed by stacking all the columns of A, and diag(·)
is defined in the same way as MATLAB function diag, which either extracts the diagonal entries of a given

matrix to form a vector or, given a vector, forms a diagonal matrix with the vector’s entries. In addition, �
and � denote component-wise multiplication and division, respectively.

The rest of this paper is organized as follows. Section 2 overviews one and two dimensional circulant

correlations. A two-step procedure to optimize a partial circulant sensing matrix/operator is described in

Section 3. Section 4 describes how the involved optimization problems are solved. Numerical results are

presented in Section 5.

2. Overview of Circulant Correlations. Given a kernel v ∈ Cn, the circulant correlation x ? v for

a vector x ∈ Cn is defined as

(x ? v)k =

n∑
i=1

xivki , for k = 1, . . . , n, (2.1)

where ki = mod(n + i − k, n) + 1. Let c = [vn, vn−1, . . . , v1]>. Then x ? v is equivalent to the convolution

x ∗ c, which is defined as

(x ∗ c)k =

n∑
i=1

xicki , for k = 1, . . . , n,
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where ki = mod(n+ k − i− 1, n) + 1.

We next introduce three methods to compute x ? v. First, introducing the n × n cyclic permutation

matrix

Pn =



0 0 · · · 0 1

1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0


, (2.2)

we can write formula (2.1) as

(x ? v)k = x>P k−1
n v, for k = 1, . . . , n.

Multiplying Pn from the left circularly down-shifts by a row and multiplying P>n from the right circularly

right-shifts a column. For example, given v = [1, 2, 3]> and x = [−1, 0, 1]>, y = x ? v equals

y1 = x>P 0
3 v =− 1 · 1 + 0 · 2 + 1 · 3 = 2,

y2 = x>P3v =− 1 · 3 + 0 · 1 + 1 · 2 = −1,

y3 = x>P 2
3 v =− 1 · 2 + 0 · 3 + 1 · 1 = −1.

Secondly, we can compute x ? v via the matrix-vector multiplication Cx with the circulant matrix

C =


v1 v2 · · · vn

vn v1 · · · vn−1

. . .
. . .

. . .

v2 v3 · · · v1

 . (2.3)

Thirdly, x ? v can be quickly computed by two fast Fourier transforms and some component-wise multipli-

cations as described in the following lemma, which is a restatement of the convolution theorem.

Lemma 2.1. Any circulant matrix C in (2.3) can be written as C = FDF ∗, where F is the n×n unitary

discrete Fourier transformation matrix and D = diag(d) where d =
√
nFv.

Remark 2.1. The matrix C is real-valued if d is conjugate symmetric, namely, di = conj(di′) for every

i and i′ = mod(n− i+1, n)+1. Imposing conjugate symmetry leads to real-valued C and reduces the freedom

of d to nearly half.

2D circulant correlation inherits the nice properties of 1D circulant correlation. Given a kernel M ∈
Cn1×n2 , the 2D circulant correlation Y = X ?M for a given matrix X ∈ Cn1×n2 is defined by

(X ?M)ts =
∑
i,j

XijMtisj , for 1 ≤ t ≤ n1, 1 ≤ s ≤ n2, (2.4)

where ti = mod(n1 + i− t, n1) + 1 and sj = mod(n2 + j − s, n2) + 1.

Similar to 1D circulant, X ?M can be computed in three ways. First, with cyclic permutation matrices

Pn1
and Pn2

, formula (2.4) can be written as

(X ?M)ts = X • (P t−1
n1

M(P>n2
)s−1), for 1 ≤ t ≤ n1, 1 ≤ s ≤ n2.

For instance, if

X =

[
1 −1 0

−2 0 1

]
and M =

[
1 2 3

4 5 6

]
,
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then Y = X ?M has components

Y11 =

[
1 −1 0

−2 0 1

]
•

[
1 2 3

4 5 6

]
= −3, Y21 =

[
1 −1 0

−2 0 1

]
•

[
4 5 6

1 2 3

]
= 0,

Y12 =

[
1 −1 0

−2 0 1

]
•

[
3 1 2

6 4 5

]
= −5, Y22 =

[
1 −1 0

−2 0 1

]
•

[
6 4 5

3 1 2

]
= −2,

Y13 =

[
1 −1 0

−2 0 1

]
•

[
2 3 1

5 6 4

]
= −7, Y23 =

[
1 −1 0

−2 0 1

]
•

[
5 6 4

2 3 1

]
= −4.

Secondly, Y = X ?M can be computed by matrix-vector multiplications via vec(Y ) = C2vec(X), where

C2 =
[
vec(M1,1), vec(M2,1), . . . , vec(Mn1,1), . . . , vec(M1,s), . . . , vec(Mn1,s), . . . , vec(Mn1,n2)

]>
, (2.5)

with the notation M t,s := P t−1
n1

M(P>n2
)s−1 for 1 ≤ t ≤ n1 and 1 ≤ s ≤ n2. It is not difficult to verify that

C2 is a block-circulant matrix. For the above example, we have

C2 =



1 4 2 5 3 6

4 1 5 2 6 3

3 6 1 4 2 5

6 3 4 1 5 2

2 5 3 6 1 4

5 2 6 3 4 1


and C2vec(X) =



1 4 2 5 3 6

4 1 5 2 6 3

3 6 1 4 2 5

6 3 4 1 5 2

2 5 3 6 1 4

5 2 6 3 4 1


·



1

−2

−1

0

0

1


=



−3

0

−5

−2

−7

−4


= vec(Y ).

Thirdly, we can quickly compute X ?M through two fast 2D Fourier transforms and some component-wise

multiplications according to the following lemma, which is a restatement of the 2D convolution theorem.

Lemma 2.2. Given kernel M ∈ Cn1×n2 , define 2D circulant operator C2 on Cn1×n2 by C2(X) = X ?M

for X ∈ Cn1×n2 . Then C2 can be represented as C2 = F2VF∗2 , where F2 is the orthogonal 2D discrete Fourier

transformation operator on Cn1×n2 , F∗2 is the adjoint operator of F2 as well as its inverse operator, and V
is an operator on Cn1×n2 defined by V(X) = V �X for any X ∈ Cn1×n2 with V =

√
n1n2F2(M).

Remark 2.2. The block-circulant matrix C2 corresponding to C2 is real valued if V is conjugate sym-

metric, namely, Vij = Vi′j′ for every pair of i, j and i′ = mod(n1−i+1, n1)+1, j′ = mod(n2−j+1, n2)+1.

3. Learning Circulant Sensing Matrix/Operator. In this section, we illustrate how to learn the 1D

kernel v in formula (2.1) and the 2D kernel M in formula (2.4), as well as their corresponding downsampling

operators P (row selection) and PΩ (sample selection); hence, we form a partial circulant sensing matrix

PC ∈ Cm×n and a partial 2D circulant sensing operator PΩC2, respectively. Here, P selects m out of the n

rows from C, and PΩ collects the entries in Ω ⊂ {1, . . . , n1} × {1, . . . , n2} and forms a column vector. For

example,

X =

1 2 3

4 5 6

7 8 9

 and Ω = {(1, 2), (2, 1), (3, 1), (2, 3)},

lead to PΩ(X) = [4, 7, 2, 6]>.

3.1. Learning 1D circulant kernel and downsampler. Let Ψ ∈ Cn×K be a given dictionary such

that the underlying signal x̄ = Ψθ̄, where θ̄ is a (nearly) sparse vector. Following [7], we would like to design

a partial circulant sensing matrix Φ = PC such that Ψ∗Φ∗ΦΨ ≈ I, where C is an n × n circulant matrix

and P is an m × n downsampling matrix. To construct a partial circulant matrix Φ, we shall determine P

and C. We first learn the circulant matrix C and then the downsampler P .

5



According to Lemma 2.1, C = FDF ∗ where the diagonal matrix D = diag(d) with entries d =
√
nFv

and v is the kernel of C. Therefore, learning C is equivalent to choosing the best kernel v or vector d. Our

approach is based on solving

min
C
‖Ψ∗C∗CΨ− I‖F , (3.1)

so that Ψ∗C∗CΨ ≈ I. From F ∗F = I, we have

Ψ∗C∗CΨ = Ψ∗FD∗F ∗FDF ∗Ψ = Ψ∗Fdiag(d∗)diag(d)F ∗Ψ.

Introduce B := F ∗ΨΨ∗F , which satisfies B∗ = B. Let B̄ := [|Bij |2]. Given Ψ, matrices B and B̄ are

constant matrices. Let

x := (|d1|2, |d2|2, . . . , |dn|2)> ≥ 0, (3.2)

which are unknowns to be determined. We have diag(d∗)diag(d) = diag(x) and

1

2
‖Ψ∗C∗CΨ− I‖2F =

1

2
‖Ψ∗Fdiag(d∗)diag(d)F ∗Ψ− I‖2F

=
1

2
tr(Ψ∗Fdiag(x)Bdiag(x)F ∗Ψ)− tr(Ψ∗Fdiag(x)F ∗Ψ) +

n

2

=
1

2
tr(diag(x)Bdiag(x)B)− tr(diag(x)B) +

n

2

=
1

2
x> diag(Bdiag(x)B)− x>diag(B) +

n

2

=
1

2
x>B̄x− x>diag(B) +

n

2
.

Hence, we reduce (3.1) to

min
x≥0

1

2
x>B̄x− x>diag(B). (3.3)

Problem (3.3) is a convex quadratic program and can be reformulated as a non-negative least-squares prob-

lem.

Given a solution x = xopt to (3.3), any d obeying (3.2) gives C = Fdiag(d)F ∗ as a solution to (3.1).

Since only |di|, i = 1, . . . , n, are specified, the phases of di are still subject to determine. Generally, phases

encode the location of the information in a signal. Since such location is unknown at the time of sensing,

we choose to generate the phase of every di uniformly at random. Models (3.1) and (3.3) lead to significant

improvement in sensing efficiency as we shall demonstrate by numerical examples in Section 5.

Remark 3.1. The above procedure generates a complex-valued C. To obtain a real-valued C, one shall

add constraints xi = xn−i+2 for i = 2, . . . , n in the problem (3.3) and then generate a conjugate symmetric

d from the solution xopt.

We also tested an alternative model:

min
C

1

2
‖CΨ− I‖2F . (3.4)

which is equivalent to

min
d∈Cn

1

2
d∗Ad− 1

2
d> diag(F ∗ΨF )− 1

2
conj(d> diag(F ∗ΨF )), (3.5)

where A is a diagonal matrix with diagonal entries given by vector diag(F ∗ΨΨ∗F ). Since (3.5) is component-

wise separable in di, it is easy to derive its closed-form solution

dopt = conj(diag(F ∗ΨF ))� diag(F ∗ΨΨ∗F ). (3.6)

6



However, our numerical experience suggests that this solution (and thus model (3.4)) is not as effective as

that of (3.1).

After the circulant matrix C is determined, we now optimize P , and thus fully determine Φ. A simple

yet effective solution is the random selection, that is, let P select m out of the n rows of C uniformly at

random. This tends to work well on signals without dominating frequencies.

We can also choose to minimize ‖Ψ∗Φ∗ΦΨ − I‖F so that Ψ∗Φ∗ΦΨ ≈ I. Let pi be the binary variable

indicating the selection of element i, i.e.,

pi =

1, matrix P selects row i,

0, otherwise.
(3.7)

Since Φ = PC, we shall solve

min
P

1

2
‖Ψ∗C∗(P ∗P )CΨ− I‖2F =

∥∥∥∥∥
n∑
i=1

pi(qiq
∗
i )− I

∥∥∥∥∥
2

F

(3.8)

where qi is the i-th column of Ψ∗C∗. Model (3.8) is equivalent to the binary quadratic program

min
p
‖[vec(q1q

∗
1), · · · , vec(qnq

∗
n)]p− vec(I)‖22 , subject to

∑
i

pi = m and pi ∈ {0, 1}, ∀i. (3.9)

Here, [vec(q1q
∗
1), · · · , vec(qnq

∗
n)] is a matrix of n2 rows and n columns. By simple calculation, we can write

(3.9) into the following equivalent problem

min
p
p>Hp− 2f>p, subject to

∑
i

pi = m and pi ∈ {0, 1}, ∀i, (3.10)

where H = [|Gij |2], f = diag(G) and G = CΨΨ∗C∗. Problem (3.10) is NP-hard in general and can be solved

to a moderate size by solvers such as Gurobi [4].

3.2. Learning 2D circulant kernel and downsampler. 2D circulant operator C2 is often used to

sense images and videos. Given a dictionary Ψ = [ψ1, ψ2, . . . , ψK ] where each ψi ∈ Cn1×n2 , we define a

linear operator Q on CK by Q(θ) =
∑K
i=1 θiψi for θ ∈ CK . An array X ∈ Cn1×n2 is sparse with respect to

the dictionary Ψ if it can be represented as X = Q(θ) with a sparse θ ∈ CK . Let PΩ be the downsampling

operator on Cn1×n2 defined at the beginning of this section. Then the basis pursuit problem to recover X

can be written as

min
θ
‖θ‖1, subject to PΩC2Q(θ) = b, (3.11)

where b = PΩC2(X) contains the measurements of X. To improve the recoverability of the `1 optimization

problem (3.11), we shall try to make (C2Q)∗C2Q close to the identity operator I on CK . The adjoint operator

of Q is defined as

Q∗(X) = [〈ψ1, X〉, 〈ψ2, X〉, . . . , 〈ψK , X〉]>, for any X ∈ Cn1×n2 .

Hence, for any θ ∈ CK ,

(C2Q)∗C2Q(θ) =

[
〈C2(ψ1),

K∑
i=1

θiC2(ψi)〉, 〈C2(ψ2),

K∑
i=1

θiC2(ψi)〉, . . . , 〈C2(ψK),

K∑
i=1

θiC2(ψi)〉

]>
,

and making (C2Q)∗C2Q ≈ I is equivalent to making 〈C2(ψj),
∑K
i=1 θiC2(ψi)〉 ≈ θj for 1 ≤ j ≤ K. Toward

this goal, we solve

min
G
‖G− I‖2F , subject to Gts = 〈C2(ψt), C2(ψs)〉, (3.12)
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which can simplified as follows. According to Lemma 2.2, we have

〈C2(ψt), C2(ψs)〉 = 〈F2VF∗2 (ψt),F2VF∗2 (ψs)〉 = 〈VF∗2 (ψt),VF∗2 (ψs)〉 = 〈V∗VF∗2 (ψt),F∗2 (ψs)〉.

Let U = conj(V )� V and define U := V∗V, where V∗ is the adjoint operator of V. We have U(X) = U �X
for any X ∈ Cn1×n2 . Let u = vec(U) and Y = [y1, y2, . . . , yK ] with ys = vec(F∗2 (ψs)) for s = 1, 2, . . . ,K.

Then

Gts = 〈V∗VF∗2 (ψt),F∗2 (ψs)〉 = (u� yt)∗ys = u∗(conj(yt)� ys).

Hence,

‖G‖2F =
∑
t,s

conj (Gts) ·Gts

=
∑
t,s

conj
(
u∗(conj(yt)� ys)

)
·
(
u∗(conj(yt)� ys)

)
=
∑
t,s

u∗
(
(conj(yt)� ys)(conj(yt)� ys)

)∗
u

=
∑
t,s

u∗
(
conj(yt(yt)∗)(ys(ys)∗)

)
u = u∗Au,

where A :=
∑
t,s conj(yt(yt)∗)(ys(ys)∗) = conj(Y Y ∗)� (Y Y ∗). In addition,

tr(G) = tr(G∗) =
∑
t

u∗(conj(yt)� yt) = (diag(Y Y ∗))∗u = f∗u,

with f := diag(Y Y ∗). Therefore, problem (3.12) is equivalent to the convex quadratic program

min
u≥0

1

2
u>Au− f>u (3.13)

in the same form of (3.3), where we have used real transpose instead of conjugate transpose since f, u and

A are all real.

Given a solution u = uopt of (3.13), we can obtain matrix U via u = vec(U). Any V satisfying

U = conj(V )� V defines C2 = F2VF∗2 as a solution to (3.12). Like done in Section 3.1 for 1D circulant, we

choose to generate the phase of each entry Vts uniformly at random.

Remark 3.2. The above procedure gives a complex-valued C2. To obtain a real-valued C2, we can

add constraints u(n1−1)j+i = u(n1−1)j′+i′ for every pair of i, j and i′ = mod(n1 − i + 1, n1) + 1, j′ =

mod(n2 − j + 1, n2) + 1 to (3.13), and then generate a conjugate symmetric V from the solution uopt.

Given C2, we can choose Ω uniformly at random or optimize PΩ toward (PΩC2Q)∗(PΩC2Q) ≈ I, which

can be achieved by solving

min
G
‖G− I‖2F , subject to Gts = 〈PΩC2(ψt),PΩC2(ψs)〉. (3.14)

Let n = n1n2 and DΩ ∈ Cn×n be a diagonal matrix with diagonal entries defined by

(DΩ)kijkij =

1, if (i, j) ∈ Ω,

0, otherwise,
for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, (3.15)

where kij = i + (j − 1)n1. Then 〈DΩvec(X), DΩvec(Y )〉 = 〈PΩX,PΩY 〉 for any X,Y ∈ Cn1×n2 . Letting

yt = vec(C2(ψt)) for t = 1, . . . ,K, we have

Gts = 〈PΩC2(ψt),PΩC2(ψs)〉 = 〈DΩy
t, DΩy

s〉 = (yt)∗DΩy
s.
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Let Y =
∑
s y

s(ys)∗. Then

‖G‖2F =
∑
t,s

conj(Gts) ·Gts =
∑
t,s

(
(yt)∗DΩy

s
)
·
(
(ys)∗DΩy

t
)

=
∑
t

(yt)∗(DΩY DΩ)yt =
∑
t

tr
(
DΩY DΩy

t(yt)∗
)

= tr(DΩY DΩY )

=
∑
i

(DΩY DΩY )ii =
∑
i,j

(DΩY )ij · (DΩY )ji =
∑
i,j

(DΩ)ii · Yij · (DΩ)jj · Yji

=
∑
i,j

(DΩ)ii · Yij · conj(Yij) · (DΩ)jj = p>Hp,

where H = [|Yij |2] and p = diag(DΩ). In addition,

tr(G) =
∑
t

Gtt =
∑
t

(yt)∗DΩy
t =

∑
t

tr(DΩy
t(yt)∗) = tr(DΩY ) = f>p,

where f = diag(Y ). Hence, (3.14) is equivalent to

min
p

1

2
p>Hp− f>p, subject to

∑
k

pk = |Ω| and pk ∈ {0, 1}, ∀k. (3.16)

4. Algorithm and Implementation. With a given dictionary Ψ, Algorithm 1 outlines our approach

for optimizing a partial circulant matrix Φ.

Algorithm 1

1. Solve (3.3) for x, generate randomly-phased d from x via (3.2), and then form C = Fdiag(d)F ∗.

2. Solve (3.10) for p or randomly generate p and then form P from p via (3.7).

3. Generate Φ = PC.

For 2D, an optimized partial circulant operator PΩC2 can be obtained in a similar way. At Step 1 of

Algorithm 1, we use the MATLAB function quadprog to solve (3.3) with its default settings. At Step 2,

we use the commercial code Gurobi [4] with MATLAB interface [32] to solve the binary program (3.10). In

our test, the maximum number of iterations was set to 2000. Usually, Gurobi terminated at the maximum

number of iterations with the best solution obtained. Hence, (3.10) was only approximately solved.

We used both synthetic and real data for test. For synthetic data, Ψ was Gaussian randomly generated

basis or discrete Fourier basis, and Φ was learned by Algorithm 1. For real data, Ψ was learned in either

an uncoupled way or a coupled way. In the uncoupled test, we first learned Ψ from a set of training data

X = [X1, . . . , XL] ∈ Cn×L using KSVD [1] to solve

min
Ψ,Θ
‖X −ΨΘ‖2F , subject to ‖Θi‖0 ≤ S, ∀i (4.1)

for a given sparsity level S, where Θ = [Θ1, . . . ,ΘL] and ‖Θi‖0 denotes the number of non-zeros of Θi. Then

we learned Φ by Algorithm 1. In the coupled test, we simultaneously learned a pair of Ψ and Φ in a way

similar to [7]. Specifically, during each loop of the coupled algorithm, we first compute Φ via Algorithm 1

with a fixed Ψ, then update Θ by solving

minα‖X −ΨΘ‖2F + ‖ΦX − ΦΨΘ‖2F , subject to ‖Θi‖0 ≤ S (4.2)

with respect to Θ, where α > 0 is a weight parameter, and finally update Ψ and Θ via solving (4.2) with

respect to Ψ and the current nonzero entries of Θ jointly.
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Table 5.1

List of tested sensing matrices and 2D operators∗

name type real/complex kernel downsampler dimension

rand-circ circulant complex random random 1D

real-rand-circ circulant real random random 1D

Gaussian Gaussian complex —— random 1D

real-Gaussian Gaussian real —— random 1D

opt-circ circulant complex optimized random 1D

real-opt-circ circulant real optimized random 1D

opt-circ-and-P circulant complex optimized optimized 1D

real-opt-circ-and-P circulant real optimized optimized 1D

opt-plus-rand-circ circulant complex optimized+random† random 1D

coupled-plus-rand-circ circulant complex optimized+random random 1D

rand-2D-circ circulant complex random random 2D

opt-plus-rand-2D-circ circulant complex optimized+random random 2D

∗The kernel v for real random 1D circulant was generated by MATLAB command randn(n,1) and that for complex ran-

dom 1D circulant by randn(n,1)+1i*randn(n,1); real Gaussian was generated by randn(m,n) and complex Gaussian by

randn(m,n)+1i*randn(m,n); the kernel M for real random 2D circulant was generated by randn(n1,n2) and that for com-

plex random 2D circulant by randn(n1,n2)+1i*randn(n1,n2);

†60% of the normalized optimized circulant plus 40% of a normalized real random circulant.

After obtaining Ψ and Φ, we used YALL1 [28] (version 1.4) to recover the sparse signal θ̄ via solving

min
θ
‖θ‖1 +

1

ρ
‖ΦΨθ − b‖22, (4.3)

where b = ΦΨθ̄ + η was the measurement contaminated by Gaussian noise η ∼ N (0, σI) and ρ ≥ 0 was a

parameter corresponding to σ. Throughout our tests, σ was known, and the parameter ρ was set to σ. If

ρ = 0, problem (4.3) reduces to

min
θ
‖θ‖1, subject to ΦΨθ = b. (4.4)

The stopping tolerance for YALL1 was set to 10−5 for noiseless case and 10−3 for noise case, unless specified

otherwise. The maximum number of iterations was set to 104.

5. Numerical Simulations. We compared the performance of optimized circulant sensing matri-

ces/operators to that of random ones on both synthetic data and real-world data. In addition, we tested a

pair of circulant sensing matrix Φ and dictionary Ψ learned together on real-world data. The tested sensing

matrices and 2D operators are listed in Table 5.1. To be fair, except for the coupled learned circulant matrix

coupled-plus-rand-circ, all sensing matrices or 2D operators were generated and tested with the same set of

synthetic or learned dictionaries.

Throughout our tests, all columns of Ψ and Φ were normalized to have the unit 2-norm. The normal-

ization of Ψ is only for convenience while that of Φ is critical, for otherwise the recovery by YALL1 or other

solvers may become unstable. Similarly, we normalized all partial 2D circulant operators. We next introduce

an efficient way to normalize 1D matrix PC and 2D operator PΩC2.

5.1. Normalization of 1D matrix PC and 2D operator PΩC2. Let C be defined in (2.3) and

c = [v1, vn, vn−1, . . . , v2]> be its first column. It is easy to verify that the jth column of C is Cj =

[cn−j+2, cn−j+3, . . . , cn, c1, . . . , cn−j+1]>. Let ` = [`1, . . . , `n]> with `j being the Euclidean norm of the jth
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column of PC. Recalling (3.7), we have

`2j = ‖PCj‖22 = p1c
2
n−j+2 + p2c

2
n−j+3 + . . . pj−1c

2
n + pjc

2
1 + . . . pnc

2
n−j+1 =

n∑
i=1

pic
2
sij , for 1 ≤ j ≤ n,

where sij = mod(n + i − j, n) + 1. Hence, `j =
√∑n

i=1 pic
2
sij , for j = 1, . . . , n, and PC(diag(`))−1 has

columns with the unit 2-norm.

For PΩC2, recall (2.5) and (3.15). Then normalizing PΩC2 is equivalent to normalizing DΩC2. Let

n = n1n2 and ` = [`1, . . . , `n]> with `j being the Euclidean norm of the jth column of DΩC2. Note that for

1 ≤ t, τ ≤ n1 and 1 ≤ s, κ ≤ n2,

(C2)itsjτκ = M t,s
τκ = Mαtτβsκ

where its = t+(s−1)n1, jτκ = τ+(κ−1)n1 and αtτ = mod(n1 +τ− t, n1)+1, βsκ = mod(n2 +κ−s, n2)+1.

Hence, for each pair of (τ, κ), we can compute `j with j = τ + (κ− 1)n1 via

`j =

√∑
t,s

(DΩ)itsitsM
2
αtτβsκ

.

Therefore, we normalize DΩC2 to DΩC2(diag(`))−1 and PΩC2 to PΩC2L, where L(X) = X � L for any

X ∈ Cn1×n2 with L ∈ Cn1×n2 obtained from ` via ` = vec(L).

5.2. Synthetic data. We tested different optimized circulant sensing matrices Φ on synthetic data

along with two kinds of bases Ψ: the Gaussian random basis and the discrete Fourier basis. The per-

formance was compared to that of unoptimized random circulant, as well as random Gaussian, sensing

matrices. The Gaussian random basis was generated by MATLAB command randn(n) and then turned to

an orthogonal matrix by QR decomposition, and the Fourier basis was generated by MATLAB command

dftmtx(n)/sqrt(n). Both bases were 512 × 512, and the sensing matrices had the size 64 × 512, i.e., an

8x downsample. In this test, θ̄ was generated with k randomly located nonzero entries sampled from the

standard Gaussian distribution and then normalized to have the unit 2-norm. The stopping tolerance for

YALL1 was set to 5× 10−8. Figure 5.1 depicts the comparison results of sensing matrices: rand-circ, Gaus-

sian, opt-circ, opt-circ-and-P, as well as their real-valued counterparts. We call a recovery θ∗ successful if

the relative error ‖θ∗− θ̄‖2/‖θ̄‖2 was below 10−4. We calculated the success rate out of 50 independent trials

at every sparsity level k.

All the four subfigures of Figure 5.1 reveal that optimized circulant sensing matrices led to equally good

performance as random Gaussian matrices. For the random basis, random circulant matrices achieved sim-

ilar recovery success rate, while they performed extremely bad for the discrete Fourier basis. The reason

for the bad performace of random circulant matrices can be found in [30]. On the other hand, optimizing

the selection matrix P hardly made further improvement. We believe that unless the underlying signal has

dominant frequencies, optimizing the selection matrix P will not lead to consistent improvement. Therefore,

in the subsequent tests, we let P be random selection matrices. In addition, the improvement by optimiz-

ing circulant sensing matrices over randomly generated ones is similar for real and complex-valued. For

convenience, we use complex-valued sensing matrices/operators in the rest tests.

Although the tests above are based on synthetic signals that are exactly sparse, similar performance of

different sensing matrices was observed on those that are nearly sparse. Since real images are nearly sparse

(under certain dictionaries), we skip presenting the results of nearly sparse synthetic signals and proceed to

the real image tests.
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Fig. 5.1. Comparison results of two groups of sensing matrices: rand-circ, Gaussian, opt-circ, opt-circ-and-P, and their

real valued counterparts with Gaussian random basis (left) and Fourier basis (right).
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5.3. Image tests with circulant matrices. In this subsection, we present the performance of sensing

matrices rand-circ, Gaussian, opt-plus-rand-circ and coupled-plus-rand-circ of size 64× 256 on real images.2

The dictionaries for all of them were learned from the same training set. The first three sensing matrices

shared the same set of dictionaries learned by KSVD [1] with sparsity level S = 6, 8 in (4.1), and the last one

was learned simultaneously with its corresponding dictionary by the coupled method described in Section

4 with sparsity level S = 6, 8 and α = 1
32 in (4.2). This choice of α was recommended in [7]. All images

used in these tests were scaled to have the unit maximum pixel value. The training data consists of 20,000

8 × 8 patches, that are 100 randomly extracted patches from each of the 200 images in the training set of

the Berkeley segmentation dataset [17]. The 100 images in the testing set were used to measure the recovery

performance.

In the first set of tests, we uniformly randomly extracted non-overlapping 600 patches from the 100

test images to recover using their measurements obtained with the four sensing matrices. Figure 5.2 depicts

the mean squared error: MSE =
∑`
i=1 ‖xi − Ψθi‖22/(64`), for sparsity level S = 6, 8 and measurement size

m = 16, 24. Here, xi is the vector obtained by reshaping the ith selected patch, ` = 600 is the number of

tested patches, and θi was the YALL1 solution of

min
θ
‖θ‖1 +

1

σ
‖ΦΨθ − b‖22, (5.1)

where b = Φxi + η, η ∼ N (0, σI) is Gaussian noise and σ = σ̂‖Φxi‖∞/‖η‖∞ with σ̂ taking values

0, 0.01, 0.05, 0.10, 0.15. All results are the averages of 20 independent trials.

2We also tested opt-circ and coupled-circ, and found that they performed as well as opt-plus-rand-circ and coupled-plus-

rand-circ on average. However, they tend to cause the loss of small image features that may not be well described by the

dictionary.
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Fig. 5.2. Comparison results∗ of four different sensing matrices: rand-circ, Gaussian, opt-plus-rand-circ and coupled-

plus-rand-circ on Berkeley segmentation dataset for different KSVD sparsity levels S = 6, 8 and different sampled row numbers

m = 16, 24.
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(a) m = 16, S = 6
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(b) m = 24, S = 6
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(c) m = 16, S = 8
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(d) m = 24, S = 8

∗Some MSEs are out of the display range and they are larger than 0.02.

All the four pictures in Figure 5.2 reveal that both uncoupled and coupled learning approaches achieved

significantly better recovery over random circulant matrices, and they did even better than Gaussian random

matrices when m = 16. The coupled learning approach made slight improvement over the uncoupled one.

In the second set of tests, we chose two out of the 100 test images to recover using their measurements

obtained with the four different sensing matrices. The first image had the resolution of 481 × 321, and the

second one had the resolution of 321× 481. For convenience, we removed the last row and the last column

of both the two images and partitioned each images into 1,200 8 × 8 patches. Then we used YALL1 to

solve (5.1) for each patch with the dictionary Ψ learned by KSVD with the sparsity level S = 6. We used

peak-signal-to-noise-ratio (PSNR) and mean squared error (MSE) to measure the performance of recovery.

Table 5.2 lists the average results of 20 independent trials for measurement size m = 16, 24 and noise level

σ̂ = 0, 0.01, 0.05, 0.10, 0.15. One set of the recovered images are shown in Figure 5.3. From the results, we

can see that both uncoupled and coupled learning approaches made significant improvement over random

circulant matrices, especially for m = 16. When σ̂ ≥ 0.10 or m = 16, the coupled learning approach did

even better than random Gaussian matrices. Coupled learned circulant matrices tend to do better than

Gaussian random ones when m is smaller. Although the best PSNRs were achieved with Gaussian random

matrices, the best visual results are those with the coupled learned circulant matrices. In addition, the

coupled approach did slightly better than the uncoupled one.
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Table 5.2

Comparison results of recovered images Castle and Gulf by YALL1 with four different sensing matrices: rand-circ, Gaus-

sian, opt-plus-rand-circ, coupled-plus-rand-circ

Castle rand-circ Gaussian opt-plus-rand-circ coupled-plus-rand-circ

m σ̂ PSNR MSE PSNR MSE PSNR MSE PSNR MSE

16 0.00 19.28 4.81e-002 25.60 2.92e-003 25.03 3.16e-003 25.31 2.96e-003

16 0.01 18.60 4.70e-002 24.39 3.83e-003 24.46 3.62e-003 24.76 3.36e-003

16 0.05 18.48 4.45e-002 24.09 4.08e-003 24.01 4.01e-003 24.36 3.68e-003

16 0.10 18.12 4.53e-002 23.17 5.08e-003 23.37 4.63e-003 23.70 4.28e-003

16 0.15 17.59 4.79e-002 22.26 6.25e-003 22.78 5.30e-003 23.08 4.93e-003

24 0.00 25.65 8.57e-003 28.76 1.33e-003 27.03 2.00e-003 27.43 1.82e-003

24 0.01 24.25 7.08e-003 27.29 1.88e-003 26.26 2.45e-003 26.67 2.18e-003

24 0.05 23.99 7.90e-003 26.63 2.19e-003 25.56 2.86e-003 25.97 2.56e-003

24 0.10 23.37 9.12e-003 25.51 2.82e-003 24.66 3.49e-003 25.08 3.13e-003

24 0.15 22.70 1.07e-002 24.41 3.65e-003 23.90 4.13e-003 24.30 3.74e-003

Gulf rand-circ Gaussian opt-plus-rand-circ coupled-plus-rand-circ

m σ̂ PSNR MSE PSNR MSE PSNR MSE PSNR MSE

16 0.00 19.53 4.28e-002 25.61 2.93e-003 25.13 3.11e-003 25.36 2.93e-003

16 0.01 18.96 4.15e-002 24.56 3.69e-003 24.63 3.48e-003 24.90 3.26e-003

16 0.05 18.81 3.93e-002 24.22 3.99e-003 24.22 3.83e-003 24.54 3.54e-003

16 0.10 18.51 4.05e-002 23.49 4.70e-003 23.59 4.42e-003 23.94 4.06e-003

16 0.15 18.13 4.20e-002 22.60 5.71e-003 23.00 5.05e-003 23.34 4.66e-003

24 0.00 25.96 7.67e-003 29.06 1.24e-003 27.38 1.85e-003 27.58 1.76e-003

24 0.01 24.60 6.69e-003 27.73 1.70e-003 26.68 2.22e-003 26.95 2.04e-003

24 0.05 24.33 7.23e-003 27.05 1.98e-003 26.01 2.59e-003 26.29 2.38e-003

24 0.10 23.63 8.46e-003 25.94 2.56e-003 25.08 3.18e-003 25.43 2.90e-003

24 0.15 23.12 9.54e-003 24.85 3.30e-003 24.27 3.80e-003 24.66 3.45e-003

5.4. Image tests with 2D circulant. For the tests in Section 5.3, each selected patch was reshaped

to a vector by stacking its columns. In this subsection, we compare rand-2D-circ and opt-plus-rand-2D-circ

to illustrate how to directly apply 2D circulant operator on the squared patches. The dictionary learned

by KSVD in Section 5.3 with the sparsity level S = 6 was used in this test. Note that each atom in the

dictionary becomes a squared patch as opposed to a vector. We used the same 600 patches and the same

two images as in Section 5.3 for this test. Instead of solving (5.1), now YALL1 was employed to solve

min
θ
‖θ‖1 +

1

σ
‖PΩC2LQ(θ)− b‖22, (5.2)

where PΩC2L denotes normalized partial 2D circulant operator, Q is defined in Section 3.2, b = PΩC2L(Xi)+

η with the same η and σ to those in Section 5.3, and Xi is the ith tested patch corresponding to the

reshaped vector xi in (5.1). Figure 5.4 plots the average MSEs of 20 independent trials with the number of

measurements m = 16, 24 and noise level σ̂ = 0, 0.01, 0.05, 0.10, 0.15, and Figure 5.5 plots one set of recovered

images Castle and Gulf by YALL1 with the number of measurements m = 24 and noise level σ̂ = 0.01. We

can see that similar results were obtained as in Section 5.3 where circulant sensing matrices were compared.

6. Image-scale recovery. In previous tests, we divided an image into a number of small patches and

recovered each patch from its linear measurements, since the learned circulant sensing matrices/operators

need to match those dictionary atoms in size. In practice, we often take measurements directly from the

entire image instead of its small patches. For image recovery to go from the patch scale to the image scale,

one approach is to make an image-scale dictionary under which the underlying image is sparse. In this

section, we introduce how to generate an image-scale dictionary based on patches, and we compare two
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Fig. 5.3. One set of recovered images Castle (upper four) and Gulf (lower four) by YALL1 with four different sensing

matrices: rand-circ, Gaussian, opt-plus-rand-circ, coupled-plus-rand-circ for noise level σ̂ = 0.01, KSVD sparsity level S = 6

and selected row number m = 24

rand-circ Gaussian opt-plus-rand-circ coupled-plus-rand-circ

PSNR=26.78 PSNR=28.30 PSNR=26.85 PSNR=27.86

rand-circ, PSNR=27.41 Gaussian, PSNR=28.90

opt-plus-rand-circ, PSNR=27.50 coupled-plus-rand-circ, PSNR=28.13

different partial 2D circulant operators based on the generated image-scale dictionary.

Note that fully random sensing operators are out of the game at the image scale since the number of free

entries of each is at least ten thousand times of the image resolution, making such an operator impossible

to fit in the memory of a typical workstation.

Let X̂ ∈ CN1×N2 be an image, and assume that each of its small patches x ∈ Cn1×n2 , where n1 < N1 and

n2 < N2, has a sparse representation under the dictionary Ψ0 = [ψ1, . . . , ψK ]. We want to recover X̂ from

the measurements b = G(X̂) + η, where G = PΩC2L is a normalized partial 2D circulant operator defined on

CN1×N2 and η is Gaussian noise.

First, we construct an image-scale dictionary Ψ from Ψ0. Let nr = bN1

n1
c, nc = bN2

n2
c, sr = N1−nrn1, sc =

N2 − ncn2, and N = nrnc + sign(sr)nc + sign(sc)nr + sign(srsc). For each atom ψk, we form N image-scale

atoms Ψk
1 ,Ψ

k
2 , . . . ,Ψ

k
N ∈ CN1×N2 as follows. For j = 1, . . . , nc and i = 1, . . . , nr, let t = (j− 1)nr + i and Ψk

t
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Fig. 5.4. Comparison results∗ of solutions by YALL1 with two different 2D circulant operators: rand-2D-circ and opt-

plus-rand-2D-circ from m = 16 (left) and m = 24 (right) measurements
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∗Some MSEs are out of the display range and larger than 0.02 or even 0.04.

Fig. 5.5. One set of recovered images Castle (left two) and Gulf (right two) by YALL1 using rand-2D-circ and opt-plus-

rand-2D-circ with m = 24 measurements and noise level σ̂ = 0.01

rand-2D-circ opt-plus-rand-2D-circ

PSNR = 25.37 PSNR = 27.70

rand-2D-circ, PSNR = 25.86

opt-plus-rand-2D-circ, PSNR = 27.96

be the matrix with all elements being zero except having ψk on the submatrix indexed by the (nr(i−1)+1)th

through (nri)th row and the (nc(j − 1) + 1)th through (ncj)th column. If sr 6= 0, let t = nrnc + j and Ψk
t

be the matrix with all elements being zero except having the last sr rows of ψk on the submatrix indexed

by the (nrn1 + 1)th through N1th row and the (nc(j − 1) + 1)th through (ncj)th column for j = 1, . . . , nc.

If sc 6= 0, nr more atoms are formed in a similar way using the last sc columns of ψk. If scsr 6= 0, we form

the last atom Ψk
N with all elements being zero except having the right-bottom sr × sc submatrix of ψk on

its right-bottom sr × sc submatrix. Note that any two atoms generated from ψk have no common non-zero

parts. The image X̂ has a sparse representation under Ψ since each patch of X̂ is sparse under Ψ0. Figure

6 illustrates how we form N image-scale atoms Ψ1,Ψ2, . . . ,ΨN from a small atom ψ.

Then, we can recover X̂ from the measurements b = G(X̂) + η by solving

min
θ
‖θ‖1 +

1

σ
‖GQ(θ)− b‖22, (6.1)
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Fig. 6.1. Form N image-scale atoms Ψ1,Ψ2, . . . ,ΨN from a small patch ψ.

Ψ1 Ψ2

. . .

Ψnr

. . . . . .

Ψnr(nc−1)+1

. . .

Ψnrnc

Ψnrnc+1

. . . . . .

Ψnrnc+nc Ψnrnc+nc+1

. . . . . .

Ψnrnc+nc+nr ΨN

Fig. 6.2. One set of recovered images Plane (left two) and Gulf (right two) by YALL1 with two different 2D circulant

operators: rand-2D-circ and opt-plus-rand-2D-circ for sample ratio SR = 0.30 and noise level σ̂ = 0.01

rand-2D-circ opt-plus-rand-2D-circ

PSNR = 29.59 PSNR = 30.51

rand-2D-circ opt-plus-rand-2D-circ

PSNR = 26.60 PSNR = 27.19

where Q is a 2D operator defined in the same way as in Section 3.2, η ∼ N (0, σI) is Gaussian noise and

σ = σ̂‖G(X̂)‖∞/‖η‖∞. At first glance, the recovery by solving (6.1) may take a lot of time since the

dictionary Ψ has so many atoms. However, the structure of these atoms enables even faster recovery than

that using patch-size dictionaries.

We compared rand-2D-circ and opt-plus-rand-2D-circ on two images. Both of them had the resolution

of 241 × 129, and they were obtained by cropping3 their larger originals Plane and Gulf in the testing set

of Berkeley segmentation dataset. The noise level σ̂ was set to 0, 0.01, 0.05, 0.10, 0.15 and the sample ratio

SR := |Ω|
N1N2

to 0.20, 0.30. Table 6.1 lists the average results of 20 independent trials, and Figure 6.2 plots

one set of recovered images Plane (left two) and Gulf (right two) for σ̂ = 0.01 and SR = 0.30. From the

table, we can see that the optimized circulant operators did significantly better than the random ones on

average.
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Table 6.1

Comparison results of recovered full-size images by YALL1 with two different 2D circulant operators: rand-2D-circ and

opt-plus-rand-2D-circ; SR=sample ratio

Plane rand-2D-circ opt-plus-rand-2D-circ Plane rand-2D-circ opt-plus-rand-2D-circ

SR σ̂ PSNR MSE PSNR MSE SR σ̂ PSNR MSE PSNR MSE

0.20 0.00 21.16 4.58e-002 26.68 2.18e-003 0.30 0.00 27.75 2.33e-002 30.17 9.63e-004

0.20 0.01 21.35 4.30e-002 26.60 2.21e-003 0.30 0.01 27.95 2.16e-002 30.13 9.73e-004

0.20 0.05 20.62 4.27e-002 25.16 3.07e-003 0.30 0.05 26.55 2.17e-002 27.95 1.61e-003

0.20 0.10 19.32 4.58e-002 23.13 4.92e-003 0.30 0.10 24.56 2.38e-002 25.43 2.90e-003

0.20 0.15 18.15 4.96e-002 21.56 7.06e-003 0.30 0.15 22.93 2.63e-002 23.58 4.47e-003

Gulf rand-2D-circ opt-plus-rand-2D-circ Gulf rand-2D-circ opt-plus-rand-2D-circ

SR σ̂ PSNR MSE PSNR MSE SR σ̂ PSNR MSE PSNR MSE

0.20 0.00 20.60 1.92e-002 24.50 3.57e-003 0.30 0.00 25.45 8.53e-003 27.10 1.95e-003

0.20 0.01 20.64 1.90e-002 24.42 3.63e-003 0.30 0.01 25.52 8.41e-003 27.11 1.94e-003

0.20 0.05 20.43 1.93e-002 24.05 3.95e-003 0.30 0.05 25.07 8.82e-003 26.49 2.24e-003

0.20 0.10 19.85 2.05e-002 23.20 4.80e-003 0.30 0.10 24.07 9.84e-003 25.24 3.00e-003

0.20 0.15 19.22 2.20e-002 22.32 5.89e-003 0.30 0.15 23.11 1.10e-002 24.11 3.90e-003
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