
Final Report: Exploration and 
Exploitation in Structured Environments 

Michael D. Lee and Mark Steyvers 
Department of Cognitive Sciences 

University of California, Irvine 

Abstract 

This is the final report for the three-year AFOSR sponsored research 
project "Exploration and exploitation in structured environments" 
(FA9550-09-1-0082), with Michael Lee and Mark Steyvers as Co-PIs. 

Executive Summary 

In bandit problems, a decision-maker chooses repeatedly between a set of al- 
ternatives. They get feedback after every decision, either recording a reward or a 
failure. They also know that each alternative has some fixed unknown probability of 
providing a reward when it is chosen. The goal of the decision-maker is to obtain the 
maximum number of rewards over all the trials they complete. 

Bandit problems provide an interesting formal setting for studying the balance 
between exploration and exploitation in decision-making. In early trials, it makes 
sense to explore different alternatives, searching for those with the highest reward 
rates. In later trials, it makes sense to exploit those alternatives known to be good, 
by choosing them repeatedly. How exactly this balance between exploration and 
exploitation should be managed, and should be influenced by factors such as the dis- 
tribution of reward rates, the total number of trials, and so on, raises basic questions 
about adaptation, planning, and learning in intelligent systems. 

This research project completed a series of inter-related lines of bandit problem 
research that improved our understanding of human and optimal sequential decision- 
in.iking using bandit problems, covering the following topics: 

Heuristic models. We have developed a new heuristic model of human decision- 
making, relying on the idea that people switch between latent states of exploration 
and exploitation. This model performs well in accounting for both optimal and human 
performance, when compared to standard heuristics from the reinforcement learning 
literature. We also show how inferring the psychologically meaningful parameters for 
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the new heuristic provides a simple and interpretable account of optimal decision- 
making, human decision-making, and the relationship between the two. 

Individual differences. In a range of different bandit problem experiments, we 
have observed a significant range of individual differences in decision-making. In one 
large study with 451 participants, we also collected various measures of cognitive 
abilities and personality variables, and found some interesting correlations between 
these characteristics, and how people managed to exploration vs exploitation trade-off 
in solving bandit problems. We also considered a non-parametric Bayesian modeling 
approach to the individual differences. 

Contaminant processes. Individual differences raise the challenge of filtering 
out participants who used overly-simple and uninteresting cognitive processes. We 
report on a latent mixture model that identifies these people, using a wide range 
of candidate models of contaminant behavior, and show how their removal affects 
parameter inference for the substantive decision-making models. 

Adaptation to change. We studied how people learn and adapt in bandit prob- 
lems where the environment changes, and report on particle filtering models of this 
behavior. 

Wisdom of crowds. By aggregating over the behavior of many participants to 
infer model parameters, we explored the possibility of a "wisdom of the crowds" 
effect for bandit, problems, whereby group behavior outperforms all or the majority 
of individuals. 

Design optimization. We applied design optimization methods from statistics 
to the problem of creating optimal bandit problems to distinguish competing models, 
and report on the insights provided by the application of these methods. 

In this report, we summarize the main research achievements and highlights, 
giving references to the published papers for each topic that provide full details. 

Heuristic Models 

• Lee, M.D., Zhang, S.,Munro. M.X.. & Steyvers, M. (2009). Using heuristic 
models to understand human and optimal decision-making on bandit problems. In 
Proceedings of the Ninth International Conference on Cognitive Modeling. 
• Lee, M.D., Zhang, S-, Munro, M.N., & Steyvers, M. (accepted, pending minor 
revisions). Psychological models of human and optimal performance on bandit 
problems. Cognitive Systems Research. 
• Zhang, S., Lee, M.I.).. & Munro. M.N. (2009). Human and optimal exploration 
and exploitation in bandit problems. In Proceedings of the Ninth International 
Conference on Cognitive Modeling. 



Lee, Zhang, Munro, and Steyvers (in press) provide a consolidated overview on 
work developing and comparing a set of heuristic models of people's decision-making 
on bandit problems. The work developed a new heuristic, called r-switch, based 
on lai Itching between exploration and exploitation, and compared it with the 
benchmark win-stay lose-shirt, e-greedy, c-decreasing and e-first algorithms from the 
reinforcement learning literature (e.g., Sutton k, Barto, 1998). 

The key to deriving the new r-switch heuristic came from a modeling analysis 
involves the pattern of change between latent exploration and exploitation states in a 
\< TV general latent-state model. This analysis is reported in detail by Zhang, Lee, and 
Munro (2009), and is summarized in Figure 1. This figure shows whether the model 
is an exploration or exploitation state as it accounts for both the human and optimal 
data, over six experimental conditions. The experimental conditions are organized 
into the panels, with rows corresponding plentiful, neutral and scarce environments, 
and the columns corresponding to the 8- and 16-trial problems. Each bar graph 
shows the probability of an exploitation state for each trial, beginning at the third 
trial (since it is not possible to encounter the explore-exploit situation until at least 
two choices have been made). The larger bar graph, with darker blue bars, in each 
panel is for the optimal decision-making data. The 10 smaller bar graphs, with lighter 
green bars, corresponds to the 10 subjects within that condition. 

most striking feature of the pattern of results in Figure 1 is that, to a good 
approximation, once the optimal or human decision-maker first switches from explo- 
ration to exploitation, they do not switch back. There are some exceptions—both 
participants RW and BM, for example, sometimes switch from exploitation back to 
exploration briefly, before returning to exploitation—but, overall, there i^ n-markable 
consistency. Most participants, in most conditions, begin with complete exploration, 
and transition at a single trial to complete exploitation, which they maintain for all 
of the subsequent trials. This general finding remarkable, given the completely un- 
constrained nature of the model in terms of exploration and exploitation states. All 
possible sequences of these states over trials are given equal prior probability, and all 
could be inferred if the decision data warranted. 

Figure 2 examines the ability of the r-switch model coming from this analysis 
in account for human decision-making, relative to the machine learning benchmarks, 
and shows the posterior predictive average agreement of each model to individual 
participant. Participants are shown as bars against each of the models. We conduct 
analysis at the level of individual participants to allow for the possibility of individual 
differences. This intuition seems to be borne out. For the first 8 of the 10 participants 
(shown in darker blue), the r-switch models provides the greatest level of agreement. 
For the last 2 of the 10 participants (shown in lighter yellow), this result is not 
observed, but it is clear that none of the models is able to model these participants 
well. One possibility is that these participants may have changed decision-making 
strategies during completing the 50 problems, and this prevents any single model 
from providing a good account of their performance. 
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Figure 1. Each bar graph shows the inferred probabilities of the exploitation state over the 
trials in a bandit problem. Each of the six panels corresponds to an experimental condition, 
varying in terms of the plentiful, neutral or scarce environment, or the use of 8 or 16 trials. 
Within each panel, the large blue (darker) bar graph shows the exploitation probability for 
the optimal decision-process, while the 10 smaller green (lighter) bar graphs correspond to 
the 10 participants. 



Decreasing Switch 

Figure 2. Posterior predictive average agreement of the heuristic models with each indi- 
vidual participant. Two 'outlier' participants, not modeled well by any of the heuristics, 
are highlighted in lighter yellow. 

Overall, however, our results show that, for the large majority of participants 
well described by any model, the r-switch model is the best. In fact, Figure 2 suggests 

I he ability of the model to model human decision-making follows the same order- 
ing as their ability to mimic optimal decision-making. WSLS is the worst, followed 
by the three reinforcement learning models, which are approximately the same, and 
then slightly improved by the new 7-first model. 

The key overall finding from this project is that the r-switch model is a useful 
addition to current models of finite-horizon two-arm bandit problem decision-making. 
Across the three environments and two trial sizes we studied, it consistently proved 
better able to mimic optimal decision-making than classic rivals from the statistics 
and machine learning literatures. It also provided a good account of human decision- 
making, for the majority of the participants in our study. To this end, the model 
comparisons we have done have theoretical implications for understanding the nature 
and limitations of human decision-making. Our work also illustrated a useful general 
approach to studying decision-making using simple heuristic cognitive models. Three 
basic challenges in studying any real-world decision-making problem are to charac- 
terize how people solve the problem, characterize the optimal approach to solving 
the problem, and then characterize the relationship between the human and optimal 
approach. Our results show how the use of simple heuristic models, using psycho- 
logically interpretable decision processes, and based on psychologically interpretable 
parameters, can aid in all three of these challenges. 



In terms of applied Defense outcomes, one potential practical application of our 
new r-switch model is to any real-world problem where a short series of decisions have 
to made be made with limited feedback, and with limited computational resources. 
The r-switch model is extremely simple to implement and fast to compute, and 
may be a useful surrogate for the optimal recursive decision process in some niche 
applications. A second, quite different, potential practical application, relates to 
training. The ability to interpret optimal and human decision-making using one or 
two psychologically meaningful parameters could help instruction in training people 
to make better decisions. 

Individual Differences 

• Lee, M.D., Zhang, S., Munro, M.N., & Steyvers, M. (accepted, pending minor 
revisions). Psychological models of human and optimal performance on bandit 
problems. Cognitive Systems Research. 
• Steyvers, M.. Lee, M.D., & Wagenmakers, E.-J. (2009). A Bayesian analysis of 
human decision-making on bandit problems. Journal of Mathematical Psychology, 
53, 168-179. 
• Zeigenfuse, M.D., & Lee, M.D. (2009). Bayesian nonparametric modeling of 
individual differences: A case study using decision-making on bandit problems. In 
N. Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker (Eds.), Proceedings of the 
31st Annual Conference of the Cognitive Science Society, pp. 1412-1115. Austin, 
TX: Cognitive Science Society. 

Steyvers, Lee, and Wagenmakers (2009) applied four models to data from 451 
human participants, using the Bayes Factor to choose which model provided the best 
account of each individual. The four models were a simple guessing model, a version of 
the class win-stay lose-shift model, a model based on the observed success rate of each 
alternative, and the optimal model calculated using standard dynamic programming 
methods (e.g., Kaebling, Littman, &: Moore, 1996). 

The results are summarized in Figure 3. The left panel shows the distribution 
of the log Bayes Factor measure. The right panel shows the break-down of the par- 
ticipants into the proportions who best supported each of the four models. There is 
clear evidence of individual differences in Figure 3, with a significant proportion of 
participants being most consistent with all three of the optimal, success ratio, and 
win-stay lose-shift models. Interestingly, about half of our participants were most 
consistent with the psychologically simple win-stay lose-shift strategy, while the re- 
mainder were fairly evenly divided between the more sophisticated success ratio and 
optimal models. Very few participants provided evidence for the guessing model, 
consistent with these participants being 'contaminants', who did not try to do the 
task. 

One interpretation of these results is that subsets of participants use successively 
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Figure 3. The distribution of the logBF (log Bayes Factor) measures over the participant 
data (left panel), and the sub-division into the proportions best supported by each of the 
four models (right panel). 

more sophisticated decision-making strategies. The win-stay lose-shift decision model 
does not involve any form of memory, but simple reacts to the presence or absence of 
reward on the previous trial. The success ratio model involves comparing the entire 
reward history of each alternative over the course of the game, and so does require 
memory, but is not cxpli« itive to the finite horizon of the bandit problem. The 
optimal model is sensitive to the finite horizon, and to the entire reward history, and 
so involves trading off exploration and exploitation. Figure 3 suggests that sizeable 
subsets of participants fell at each of these three levels of psychological sophistication. 

Contaminant Processes 

• Zeigenfuse, M.D., &; Lee, M.D. (in press). A general latent-assignment approach 
for modeling psychological contaminants. Journal of Mathematical Psychology. 

One interesting issue in studying human performance on bandit problems in- 
volves the potential use of different decision-making strategies. There are many 
psychologically plausible heuristic approaches coming from the game theory and re- 
inforcement learning literatures (e.g.   Sutton & Barto. 1998), as well as heuristics 



developed in the cognitive sciences (e.g. Zhang et al., 2009), and there is some em- 
pirical evidence that different people use different heuristics in the same experiment 
(Steyvers et al., 2009). Some of these heuristics are quite sophisticated, and represent 
what might be viewed as intelligent or effective approaches. Others are very simple, 
and clearly sub-optimal. 

This contrast raises the issue of exactly what constitutes "contaminant" behav- 
ior in a bandit problem experiment. If the focus is on understanding the relatively 
sophisticated models by, for example, inferring model parameters from behavioral 
data, then the simple heuristic approaches can be viewed as contaminating. 

Zeigenfuse and Lee (in press) conducted an analysis using ';Win-Stay Lose- 
Shift" (WSLS) as the substantive model (Robbins, 1952). WSLS assumes that if, 
after choosing an alternative, the decision-maker is rewarded, they will choose the 
same alternative on the next trial with some (high) probability 7. Alternatively, if 
the decision-maker is not rewarded, WSLS assumes they will only choose the same 
alternative on the next trial with some (small) probability 1 — 7. 

While extremely simple, the WSLS often provides a reasonable account of peo- 
ple's decision-making. For example, Steyvers et al. (2009) collected data from 451 
participants on a series of bandit problems, and presented a series of model com- 
parisons showing that the majority of these participants decisions consistent with 
WSLS. We use an abbreviated version of the same data set—using a subset of partic- 
ipants chosen to make clear the contaminant modeling principles this example aims 
to explain—including 47 participants. As with the full data set, all participants 
completed a set of 20 bandit problems, each involving four alternatives and 15 trials. 

Zeigenfuse and Lee (in press) also considered two plausible strategies a non- 
motivated participant might use to complete the task. One, called the 'random' 
strategy, involved simply chosing an alternative at random on every trial. The other 
non-motivated strategy was called 'same', and involved the participant choosing the 
same alternative on almost every trial, regardless of the observed pattern of reward. 

Zeigenfuse and Lee (in press) applied the three models—the substantive WSLS, 
and the contaminant random and same heuristics—to the Steyvers et al. (2009) 
data in four separate analyses, all using Bayesian latent mixture modeling to identify 
contaminants. In the first, they simply applied the WSLS model. In the second 
analysis, they applied WSLS, but also introduced the random model as a contaminant 
model, using the latent assignment approach. In the third analysis they applied WSLS 
with the same model as the contaminant model. In the fourth analysis, they used 
both the random and same models as contaminants, allowing the behavior of each 
participant to be explained by any one of these three accounts. 

The left panel of Figure 4 shows how the participants were assigned to the three 
models. Each point corresponds to a participant, and the type of marker indicates 
whether they were classified as following the WSLS, random or same model. The 
axes in which the points are displayed correspond to two summary measures of their 
decision-making, chosen because they capture much of the variance involved in par- 
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Figure 4- Analysis of bandit problem behavior. The left panel shows the 47 participants, 
and their assignment to the WSLS, random and same models. The right panel shows the 
posterior distribution of the WSLS rate 7 for four analyses, including no cont; mod- 
eling, t lie random contaminant model, the same contaminant model, or both contaminant 
models. 

titioning the participants among the models. The x-axis shows the proportion of 
trials following no reward that a different alternative was chosen on the next trial. 
The y-axis shows the proportion of trials following a reward the same alternative was 
chosen on the next trial. 

WSLS performance corresponds to high values on both measures, and so these 
participants are in the top-right corner. Random model performance corresponds 
to the point (0.75,0.25), since there are four alternatives. Same model performance 
correspond to the top-left corner of the graph. The left panel of Figure 4 sho^l & 
clear partitioning of participants into each of these regions, and that they are appro- 
priately assigned by the model. In other words, there are clear individual differences 
between participants in the decision strategy these use to solve bandit problems, and 
they appear to be well described by the WSLS, random and same models for these 
participa i 

The inferences about the 7 parameter of WSLS are shown, for all four analyses, 
in the right panel of Figure 4. The key point is that the inferred rate of winning 
and staying or losing and shifting changes significantly depending on the assumptions 
made about contaminant behavior in the participant pool. When no contamination is 
assumed, 7 is around 0.75. WHien both the same and random forms of contarnination 
are included in the analysis, the inferred 7 increases to almost 0.9.  Using just one 

her of the contaminant models gives different intermediate values. These results 
make clear that what is learned by applying a substantive cognitive model to behütt^ 
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ioral data can depend critically on the nature of possible contamination processes 
included in the analysis. 

i 
Adaptation to Change 

- K.M.. Steyvers, M., &: Lee, M.D. (2009). Modeling human performance in 
using particle filters. Journal of Problem Solving. 2, 33-53. 

Yi, Steyvers, and Lee (2009) investigated 'restless' bandit problems, where the 
distributions of reward rates for the alternatives change over time. This dynamic 
environment encourages the decision-maker to cycle between states of exploration 
and exploitation. In one environment we consider, the changes occured at discrete. 



but hidden, time points. In a second environment, changes occured gradually across 
Decision data were collected from people in each environment.   Individuals 

varied substantially in overall performance and the degree to which they switched 
bffepeen alternatives. 

Yi et al. (2009) modeled human performance in the restless bandit tasks with 
two particle filter models, one that can approximate the optimal solution to a discrete 
restless bandit problem, and another simpler particle filter that is more psychologi- 
cally plausible. The key result was that the simple particle filter was able to account 
for most of the individual differences. This result is summarized in Figure 5. which 
shows the range of human performance (black triangles) against the range of the 
optimal model (green or dark gray), and the psychologically-plausible sub-optimal 
model (lighter gray). The sub-optimal model propagates particles depending on just 
a simple estimated reward rate (i.e., a cognitively plausible summary of the full un- 
certainty about reward rates). It is clear that the additional variation in performance 
of tins sub-optimal model is required to describe the variation in behavior seen in 
people. 

Wisdom of Crowds 

• Zhang, S., k. Lee, M.D. (in press). Cognitive models and the wisdom of 
crowds: A case study using the bandit problem. In R. Catrambone. &: S. Ohls- 
son (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science 
Society. Austin, TX: Cognitive Science Son 

An enticing idea in the study of individual and group decision-making is the 
phenomenon known as the "wisdom of crowds". The idea is that, by aggregating the 
behavior of a group of people doing a challenging task, it is possible for group per- 
formance to match or exceed the performance of any of the individuals. Surowiecki 
(2004) provides an extensive survey of wisdom of crowds results over a diverse set of 
human endeavors and decision-making situations, ranging from guessing the weight of 
an ox at a county fair, to inferring the location of a missing submarine, to predicting 
the outcome of sporting events. While the exact conditions needed for group perfor- 
mance to exceed individual performance are not completely understood, it seems clear 
rhat crowds can be wise in any situation where people have some partial knowledge, 
and the gaps in their knowledge are subject to individual differences. Under these 
circumstances, aggregation of individual decisions can serve to amplify the common 
signal and reduce the idiosyncratic noise, leading to superior group performance. 

One challenge in producing wisdom of crowds effects arises when tasks are more 
complicated than estimating a single quantity, or predicting a simple outcome. Many 
interesting and real-world decision-making situations are inherently multidimensional 
or sequential. In these situations, it is often not possible to combine the raw behav- 
iors of people, because they are not commensurate. For example, imagine trying to 



combine the expertise of basketball fans trying to predict the result of an eight-team 
single elimination tournament, with quarter-finals, semi-finals and a final. Based on 
their decisions about the quarter-finals, these people may be making decisions aboul 
different teams in the semi-finals and final. This makes simple aggregation based on 
their raw decisions impossible for the later rounds. 

For more difficult decision problems like these, we believe cognitive science has 
a key role to play in wisdom of the crowd research. Rather than aggregating people's 
behaviors, it is necessary to aggregate their knowledge, as inferred from their behav- 
ior. This inference needs models of cognition, accounting for how latent knowledge 
manifests itself as observed behavior within the constraints of a complicated task. 

Zhang and Lee (2010) completed a case study of the application of cogni- 
tive models for bandit problems. By applying a series of existing models of human 
decision-making on the task to a variety of data sets, they showed that it is possible to 
produce aggregate performance that is near optimal, and far exceeds the performance 
of most of the individuals. The analysis involved taking a set of standard decision- 
making models, and using the inferred group mean in a hierarchical Bayesian analysis. 
This gives a natural model-based aggregation of individual performance, and solves 
the problem of aggregating the knowledge of different people solving different, but 
related, bandit problems. Rather than aggregating their behavioral choices, we are 
aggregating the psychology parameter values that lead to those choices. To complete 
the model-based wisdom of crowd analyses, we used the group mean parameter values 
to define a "group model" that used the same decision-process, and completed the 
same problems given to participants in each of the three experiments. Because the 
number of rewards obtained is inherently stochastic, we repeated this many times 
to approximate the distribution of rewards. We also applied the optimal decision- 
making process to each experiment, to approximate the best possible distribution of 
rewards for each experiment. 

The results are shown in Figure 6. The columns correspond to the three experi- 
ments. The rows correspond to the WSLS, extended WSLS, e-greedy and e-decreasing 
decision models. Within each panel, the squares piled into histograms show the dis- 
tribution of performance (i.e., how many rewards were obtained) for the individual 
participants. The two curves then correspond to the distribution of performance for 
the group model (red, dotted line) and the optimal decision process (green, solid line). 

Figure 6 shows that some of our decision-making models do produce a clear 
wisdom of the crowds effect, whereas others do not. The distributions of rewards for 
the group model formed by the WSLS and extended WSLS models does not improve 
on the distribution of individual performance, and are not close to optimal. For the 
e-greedy and ^-decreasing group models, however, there is significant improvement. 
In particular, the e-decreasing group model has a distribution of rewards that is 
extremely close to the optimal distribution for all three experiments. 
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Design Optimization 

• Zhang, S., &: Lee, M.D. (submitted). Optimal experimental design for a class of 
■.dir problems. Submitted to the Journal of Ma' ;/ Psychology. 

A basic challenge for measuring human performance in bandit problem—a key 
part of our project—is to design experiments that will provide the most useful data. 
Traditionally, psychological experiments have been designed to meet these goals based 
on a mixture of previous results, pilot information, and the intuition of the experi- 
menter. This is the approach we originally took in Steyvers et al. (2009). Formal 
approaches to experimental design optimization, however, have received considerable 
attention in statistics and engineering, and, recently, psychologists have also started 
to search for approaches that allow the formal optimization of the design of an ex- 
periment (e.g. Myung & Pitt, 2009). 

In Zhang and Lee (submitted), we adapted the formal framework for experi- 
mental design optimization described by Myung and Pitt (2009) to a research area 
where it has not previously been applied. We developed MCMC algorithms for de- 
sign optimization, tailored to answer the question of how bandit problem experiments 
with people should be designed, so as to maximize the usefulness of the data in dis- 
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tinguishing competing models of human cognition. 

Figure 7 shows the final results of this work. In these analyses, one of the 
candidate models is used to generate decision-making data for a sequence of bandit 
problems following either the optimal design, or the original design used by Steyvers et 
al. (2009). Under both designs, the log Bayes Factor in favor of the correct generating 
model is used to measure the effectiveness of the experimental design. Figure 7 shows 
the mean (by lines and markers) and the range (by bounded shaded regions) for 
the log Bayes Factors, in four different analyses. These consider both the WSLS vs 
eWSLS and WSLS vs e-greedy model comparisons, and consider both assumptions 
about which model generated the data. The means, minima and maxima shown 
are based on 100 independent runs of each simulated experiment. It is clear from 
Figure 7 that the optimal design always outperforms the original design on average. 



Even more compellingly, the worst observed optimal design is always better than the 
mean original design, and is often better than the best-performed original design. 
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