Quantitation and Ratio Determination of Uranium Isotopes in Water and Soil Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Quantitation and Ratio Determination of Uranium Isotopes in Water and Soil Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD, 21010-5403

Presented at the 9th Annual DoD Environmental Monitoring and Data Quality (EDMQ) Workshop Held 26-29 March 2012 in La Jolla, CA.
Disclaimer

The views expressed herein are the views of the author(s) and do not reflect the official policy of the Department of the Army or the Department of Defense, or the U.S. Government.

Use of trademarked name does not imply endorsement by the U.S. Army but is intended only to assist in identification of a specific product.
Introduction

- Uranium – overview
- Sample prep:
 - water – EPA 3020
 - Soils – EPA 3052 (modified)
- Analysis – ICP-MS
 - water – EPA 200.8
 - soils – EPA 6020
 - Quality Controls
- ICP-MS and α-Spec
- Summary
- Questions
Introduction

- Ubiquitous element
- Naturally Occurring U Isotopes:
 234 (0.0055%, 0.245 E6 yr.), 235 (0.72%, 703 E6 yr.), 238 (99.275%, 4,468 E6 yr.)
- Natural U235/238 atomic Ratio: 7.2 x 10^-3
- Natural U234/238 α activity Ratio: 1 (secular equilibrium)
- Used for fuel in atomic energy and warfare
- Depleted Uranium DU: 235 Isotope Quantity Reduced
 U235/238 atomic Ratio: 2 x 10^-3
Sample Preparation

- Water - EPA 3020
 Acid digestion

- Soils – EPA 3052 (modified)
 Acidic microwave digestion
 Complete digestion

- Ratio – Depends on Matrix (see methods above)
Sample Analysis ICP-MS

- Water - EPA 6020
- Soils – EPA 200.8
- Ratios – In house Method
Sample Analysis QC

- Sample Duplicates – precision check
- Blanks – contamination check
- Laboratory Control Samples – accuracy check
- Matrix Spikes – matrix effect
- *Mass bias correction standard
Analysis Recovery QC

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Soil</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicates</td>
<td>---</td>
<td>≤ 20 % RPD</td>
<td>---</td>
</tr>
<tr>
<td>Blanks</td>
<td>< RL</td>
<td>< RL</td>
<td>---</td>
</tr>
<tr>
<td>LCS</td>
<td>± 15 %</td>
<td>± 20 %</td>
<td>---</td>
</tr>
<tr>
<td>MS</td>
<td>± 30 %</td>
<td>± 30 %</td>
<td>---</td>
</tr>
<tr>
<td>Inst Spike</td>
<td>± 20 %</td>
<td>± 20 %</td>
<td>---</td>
</tr>
<tr>
<td>ISA / ISB</td>
<td>---</td>
<td>± 20 %</td>
<td>---</td>
</tr>
</tbody>
</table>
Common Analysis Techniques

- α Spectroscopy
- ICP-MS
α Spectroscopy

- Measures 234 and 238 isotopes
 U-234 from the Uranium Decay Series
 $^{238}\text{U} \rightarrow ^{234}\text{Th} \rightarrow ^{234}\text{Pa} \rightarrow ^{234}\text{U} \rightarrow ^{230}\text{Th} \rightarrow \ldots$

- Sample preparation required (matrix removed)

- Tracer added for quantification

- Measure α particles from radioactive decay

- Ratio and Concentration in same analysis

- Detection limits – depends on count time
ICP- MS

- Measures 235 and 238 isotope ions
 - 235 from the Actinium Decay Series
 \[\text{U}^{235} \rightarrow \text{Th}^{231} \rightarrow \text{Pa}^{231} \rightarrow \text{Ac}^{227} \rightarrow \ldots \]
- Sample preparation
- Count ions
- Conc. and Ratio: two different analyses
- Detection limit: matrix and instrument
ICP-MS 235/238 Ratio Comparison

<table>
<thead>
<tr>
<th>Uncorrected Bias</th>
<th>Corrected Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.51 x10^{-3}</td>
<td>7.24 x10^{-3}</td>
</tr>
<tr>
<td>6.82 x10^{-3}</td>
<td>7.18 x10^{-3}</td>
</tr>
<tr>
<td>6.58 x10^{-3}</td>
<td>7.25 x10^{-3}</td>
</tr>
<tr>
<td>6.24 x10^{-3}</td>
<td>7.14 x10^{-3}</td>
</tr>
<tr>
<td>6.74 x10^{-3}</td>
<td>7.22 x10^{-3}</td>
</tr>
</tbody>
</table>

Accepted Ratio value 7.26 x10^{-3}
ICP- MS

- Measures 235 and 238 isotope ions
 - 235 from the Actinium Decay Series
 \[{\text{U}}_{235} \rightarrow {\text{Th}}_{231} \rightarrow {\text{Pa}}_{231} \rightarrow {\text{Ac}}_{227} \rightarrow \ldots \]

- Sample preparation
- Count ions
- Conc. and Ratio: two different analyses
- Detection limit: matrix and instrument
Choices

- α Spectroscopy
- ICP-MS

Questions you need answered:
 Concentration?
 Ratio?
ICP-MS and α Spec

<table>
<thead>
<tr>
<th>ICP-MS</th>
<th>α Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>235 Conc. Sufficient for ratio</td>
<td>Long count time</td>
</tr>
<tr>
<td>Ratio & Conc. Separate Analysis</td>
<td>Ratio & Conc. Same Analysis</td>
</tr>
<tr>
<td>Correct ratio? – bias, conc.</td>
<td>Correct ratio – recoil effect</td>
</tr>
<tr>
<td>100 mL sample</td>
<td>1 L sample</td>
</tr>
</tbody>
</table>
Acknowledgments

Army Institute of Public Health (AIPH)
EMDQ
Questions

???