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ABSTRACT 

This thesis explores how the number of operating access control points (ACPs) and their 

configuration of lanes and staffing affect vehicular flow into Naval Base San Diego 

(NBSD).  We examine this flow during normal and non-normal operations, such as 

heightened force protection conditions.  Our research focuses on factors that affect 

throughput as well as managing the costs associated with different staffing 

configurations.  These factors include the force protection condition, vehicle type, 

number of passengers in the vehicle, and the type of credentials used.  We study the 

importance of these factors using statistical techniques to analyze the data collected 

during site visits to NBSD.  We also formulate and analyze queuing models of the ACPs 

to capture the impact of staffing configurations at the ACPs.  Our analysis provides 

insight into how best to increase, or maintain, the throughput with current configurations 

and requirements.  The data collected and analyzed in this thesis provide a solid 

foundation for future research and can easily be adapted to other Department of Defense 

installations where similar congestion is prevalent.   

.   
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EXECUTIVE SUMMARY 

This thesis examines the process of efficiently bringing large quantities of vehicles onto a 

secure military installation during the morning commute hours.  During this peak 

commute time, there can be significant congestion that spills onto surrounding roadways.  

Congestion creates an opportunity for terrorists as many potential targets sit vulnerable in 

traffic.  Congestion also generates economic costs both directly for the military and 

indirectly for the surrounding communities.  Personnel stuck in congestion cannot 

perform their duties and if the congestion impacts the surrounding roadways then local 

businesses may suffer.  Even small increases in the throughput rate of vehicles onto an 

instillation can lead to a significant reduction of congestion so this thesis examines an 

important topic. While this problem applies to many military installations around the 

world, we specifically focus on installation access at Naval Base San Diego (NBSD).  

 This thesis provides initial analysis to Commander Navy Region Southwest 

(CNRSW) as it examines traffic patterns in and around NBSD’s installation access points 

to determine what measures most effectively decrease congestion during peak commuting 

hours without compromising the integrity of the base.  In the first step of our analysis, we 

toured operational access control points (ACPs) at NBSD and spoke with the current 

Security Officer (SECO) to gain a better understanding of the current operations and the 

key factors driving throughput.  These factors include the number of lanes at each ACP 

and the number of sentries assigned to each ACP to process vehicles onto the base. The 

SECO often assigns multiple sentries stacked in tandem in the same lane during the 

morning commute to increase throughput.  While many other factors impact the 

throughput, we only focus on the factors that the SECO can change on a daily basis: the 

number of ACPs and lanes to open and the sentry configurations in each lane.  Following 

this initial visit we formulated a mathematical model to characterize the throughput of 

vehicles arriving at NBSD.  The key component of this model is the time it takes sentries 

to vet and process vehicles, and thus on a subsequent visit to NBSD we focus our data 

collection effort on these processing times.   



 xvi

 We performed various statistical analyses on the data we collected during our site 

visits to determine which factors influence the vehicle processing times.  These include 

the type of vehicle, the type of credential presented, the number of individuals in a 

vehicle, and the force protection condition (FPCON).  Most of the relationships confirm 

our intuition.  For example, the more individuals in the vehicle, the longer the processing 

time.  Similarly, it takes longer for sentries to process motorcycles than to process 

privately owned cars.  

 Our empirical analysis confirms the experience of the SECO: having multiple 

sentries in tandem has diminishing returns. That is, putting two sentries in tandem in the 

same lane does not double the throughput in that lane.  In fact, we observe that the actual 

throughputs are significantly lower than the published standards.  The implication of this 

is that if these standards are used to determine staffing levels, then NBSD is certain to 

experience significant congestion during peak commuting hours.   

 We uncovered one additional surprising result in our empirical analysis: the 

average processing time decreased during periods of heightened FPCON.  One possible 

explanation for this is that both drivers and sentries are more alert and efficient during 

periods of heightened FPCON.   

 Based on the number of available sentries, we recommend the number and 

staffing configuration of ACPs to maximize throughput.  In the case where opening an 

additional ACP requires a fixed overhead of sentries to provide additional security, the 

SECO should maximize throughput by stacking sentries in tandem rather than opening 

additional ACPs.   

 Our analysis considers congestion solely from the perspective of service times 

and under the assumption that there is consistent demand for service at each ACP such 

that sentries are never idle.  As a result, our estimates of throughput capability are apt to 

be overestimates, meaning that congestion could be even worse than projected.  In order 

to get a more complete understanding of the way in which fluctuations in vehicle arrivals 

affect congestion, future work should focus on collecting data associated with vehicle 

commuting and arrival patterns.   
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I. INTRODUCTION  

Solid Curtain-Citadel Shield is an annual exercise conducted by the United States 

Navy “designed to enhance the training and readiness of Navy Security Forces to respond 

to threats to installations and units” (Naval Base San Diego, 2012).  Following the 

February 21–25, 2011 exercise, the United States Fleet Forces Command along with 

Commander Naval Installation Command (USFF/CNIC) issued a joint Mission Essential 

Personnel (MEP) Planning Order (PLANORD) to all installations in the United States 

Northern Command (USNORTHCOM) area of responsibility (AOR).  In November of 

2011, Admiral John Harvey Jr., then the Commander of USFF, sent an e-mail to his 

subordinates highlighting the purpose of the MEP PLANORD.  He highlighted the 

importance of alleviating the “extreme traffic congestion, long-lines of vehicles at our 

installation gates (creating a significant target at exactly the time we’re trying to 

minimize targets), and a marked negative impact on our local communities.”  USFF and 

CNIC directed each Installation Commanding Officer (ICO) to develop an installation 

access plan based on the inputs from all tenant commands.  In response to this directive, 

Commander Navy Region Southwest (CNRSW) and Naval Base San Diego (NBSD) also 

began to look at traffic patterns in and around their installation gates in order to decrease 

gate congestion during peak commuting hours without compromising the integrity of the 

base.  Specifically, CNRSW security personnel need to understand the key factors driving 

congestion and how to reduce it most effectively without compromising security 

protocols.  This thesis proceeds in support of this objective.     

A. BASE ACCESS OPERATIONS 

In order to analyze congestion, we need to understand the process by which 

vehicles physically enter a secure military installation.  In this section, we describe the 

different components of this process.   

1.  Access Control Point Design  

Installation access control points (ACPs) at military installations are the 

designated areas where personnel enter installations via foot or by vehicle.  ACPs are 
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comprised of three basic areas; the approach zone, the access control zone, and the 

response zone.  A Department of Defense (DoD) report entitled “Unified Facilities 

Criteria (UFC) Security Engineering: Entry Control Facilities/Access Control Points” 

defines the vocabulary used to describe ACPs (UFC 4-022-01, 2005).  The approach 

zone is where vehicles leave city streets, decrease their speed, and sort themselves prior 

to entering onto DoD-controlled land.  The approach zone includes lanes going into and 

lanes coming out of the installation.  These lanes may contain vehicle barriers to control 

the speed and the flow of incoming traffic.  The size of the approach zone and the number 

of available lanes into the installation determine the number of vehicles that can wait to 

enter the installation before a backlog of vehicles begins to spill onto city streets.  The 

access control zone is where security personnel known as sentries conduct identification 

procedures and restrict entrance to individuals who are authorized to enter.  The response 

zone is the last area where sentries can respond to a crisis.  In the event that a sentry 

inside the access control zone is unable to handle a threat, the response zone allows 

additional security forces the time and space to respond.  Responses range in scope from 

turning vehicles away, to the use of kinetic force to stop vehicles intent on entering 

without permission.  Figure 1 illustrates a generic overhead view of each of the zones that 

together comprise an ACP.   

 

 

Figure 1.   Illustration of a Common Access Control Point, after MSDDCTEA 2009 



 3

2.  Sentries 

Sentries at ACPs check whether each vehicle attempting to access the installation 

is authorized to enter.  Staffing of ACPs is primarily a responsibility of the installation’s 

Force Protection Department.  This department’s primary mission is to “provide physical 

security for all property and material within the jurisdiction of the Commanding Officer” 

(Naval Base San Diego, 2012).  The department accomplishes a portion of its mission by 

providing physical security at the ACPs.  The Force Protection Department typically does 

not have enough personnel to staff all gates at all hours.  Instead, they typically close 

some ACPs during off-peak hours and also rely on augmented personnel supplied by 

tenant commands within the installation.  Augmented personnel are loaned from their 

commands to the Force Protection Department on a rotating schedule for a few hours, 

usually during the morning rush hours, to perform the duties of a sentry.  Augmented 

personnel allow more ACPs to open during peak hours, but at a cost of pulling personnel 

from their primary jobs.  In this thesis, we do not distinguish between sentries from the 

Force Protection Department and those augmented personnel from other commands.            

As written in the Unified Facilities Criteria (UFC) 4-022-01, sentries must 

conduct identification procedures for everyone attempting to access the installation.  The 

standard duties of sentries within the access control zone of an ACP include verification 

of vehicle decals and personnel credentials, general surveillance of the vehicle and its 

contents, and random inspections of vehicles and their occupants.  During heightened 

force protection conditions (FPCON), sentries may have additional responsibilities and 

conduct more strenuous verifications procedures.  Force protection conditions are set in 

response to current threats towards military facilities and personnel.  The time to clear, or 

process, a vehicle is critical in determining congestion.  In general, this time depends on 

several factors such as verification requirements, the current FPCON, and the individual 

sentry and vehicle.   

The type of credentials that a person must provide to a sentry depends upon the 

status of the individual.  Military and DoD civilian personnel are each issued a Common 

Access Card (CAC).  CACs are the most common type of credential.  Contractors and 

personnel who do some of their work on the installation may obtain a RAPIDGate 
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credential (Naval Base San Diego, 2012).  These special credentials streamline the access 

procedures for contractors and sentries.  When a contractor arrives at a gate with a 

RAPIDGate credential, a sentry inspects the card with a handheld scanner in order to 

process the contractor.  This is faster than having to validate a contractor’s unique ID 

with paperwork from the Pass and Decal office, but in general it still takes more time to 

process a RAPIDGate credential than a CAC credential.  Individuals in rental cars or 

newly purchased cars without license plates also have to provide additional paperwork to 

the sentry.   

3.  Processing Lanes 

Each access control zone consists of one or more parallel processing lanes where 

the sentries and vehicles interact.  The number of processing lanes within the access 

control zone is not necessarily equal to the number of input lanes in the approach zone.  It 

is possible that one input lane in the approach zone can split into multiple processing 

lanes in the access control zone.  It is much less common for there to be fewer processing 

lanes than input lanes due to the merging of input lanes.  As each vehicle approaches, its 

driver must stop and present his credentials to the sentry.  Once a vehicle has been 

cleared or processed by the sentry, it may proceed onto the installation.  In addition to 

providing credentials, the operator of a vehicle must maintain the vehicle’s registration, 

pass all safety inspections, and follow all safety laws.  In the event a sentry observes any 

violations, he can deny entrance to the installation. 

A lane can have more than one sentry assigned to it.  When the number of 

vehicles attempting to access an installation is low, a single sentry will often suffice to 

process incoming vehicles in a timely manner.  When demand for installation access 

increases, a second sentry may process vehicles in the same lane, to increase the 

processing rate.  This addition of a second, or in some cases third, sentry is called tandem 

processing.  The ability to employ tandem processing depends not only on having the 

available sentries, but also on the physical layout to support having more than one vehicle 

inside the access control zone.  If the FPCON increases, the staffing of lanes can be 

restricted.  The restrictions specify the number of sentries required at an ACP, at a lane, 
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and the equipment they must carry.  Additional equipment requirements, such as specific 

weapons or personal protective equipment, can reduce the number of sentries and lanes 

available due to training and qualification requirements, and availability of equipment.  

Operation Order (OPORD) 3300-11 delineates these requirements.       

4.  Measuring ACP Performance 

We use the throughput of vehicles per hour to measure the efficiency of an ACP 

its and lane operations.  We measure throughput in terms of the average number of 

vehicles that can be processed and gain access to the base during some time period.  We 

use one hour as our standard time period.  The throughput of a lane depends on the 

demand, or the number of vehicles attempting to gain access to the installation, and the 

staffing configuration of sentries, which will depend upon the current FPCON.  The 

Army Military Surface Deployment and Distribution Command Transportation 

Engineering Agency’s (MSDDCTEA) 2009 study provides baseline throughput numbers 

under different FPCON levels.  Table 1 shows that two sentries in tandem do not 

necessarily double the throughput over a single sentry processing lane.  According to this 

table, tandem processing will increase throughput from 300–450 vehicles per hour per 

lane (VPHPL) with one sentry to 400–600 VPHPL with tandem (two sentries per lane) 

processing.  Taking the midpoint of both the single and tandem processing numbers, this 

suggests an expected 33% increase in vehicular flow with tandem processing.  In this 

thesis, we examine the efficiency of tandem sentries and provide mathematical reasoning 

for the apparent diminishing rate of throughput.         
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FPCON 

Manual Checks 

Single Lane 
Checks 

Tandem Lane 
Checks 

Alpha 
800 to 1,400 

VPHPL 
No Data 
Available 

Bravo, Bravo+, 
and Charlie 

300 to 450 
VPHPL 

400 to 600 
VPHPL 

Delta 
20 to 120 
VPHPL 

Not Allowed 

 

Table 1.   Vehicle Throughput per Hour per Lane at Standard ACPs, after           
MSDDCTEA 2009  

5. Configuration and Operation of ACPs 

The ultimate responsibility for the operations of ACPs belongs to the installation 

Security Officer (SECO).  As the head of the Force Protection Department, the SECO 

authorizes opening and closing of ACPs, and determines staffing configurations at the 

ACPs.  The USFF Anti-Terrorism Operation Order (OPORD) 3300-11 stipulates the 

minimum requirements.  The SECO has the ability to increase staffing level and open 

extra ACPs to help alleviate congestion at his or her own discretion, but cannot authorize 

any relaxation of the requirements.   

In this thesis, we primarily focus on the decisions available to the SECO each day.  

These include the number of open ACPs and the staffing configuration of sentries at each 

ACP.  The SECO has much less control over other factors that impact congestion and 

throughput.  Examples include the FPCON levels, extreme weather, where people decide 

to live, and preexisting infrastructure.  In the long term, NBSD could build new ACPs, 

expand existing ACPs, or reroute traffic outside the installation (probably in conjunction 

with the city of San Diego).  These measures would incur large overhead costs of time 

and money and we do not consider them in our analysis.    

B. NAVAL BASE SAN DIEGO 

Naval Base San Diego consists of over 2,000 land acres and 326 acres of water.  It 

houses approximately 180 shore-based commands and more than 60 Afloat Commands.  
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The base is populated by roughly 40,000 personnel, including military service members, 

DoD civilians, and contractors that work within the gates on any given day.  Of that 

40,000, approximately 4,000 reside on the installation.  On weekdays, between 0500 and 

0800, peak demands for bringing personnel onto the installation typically exceed the 

capacity to do so.  During these peak arrival times (i.e., typical morning commute times), 

ACPs quickly fill to capacity and create backups on city streets.  On average, 30,000 

vehicles transit through NBSD’s ACPs each day (Naval Base San Diego, 2012).   

The base is divided into two distinct areas, a “wet” side and “dry” side, by Harbor 

Drive.  Personnel can access the waterfront side, or “wet” side, of NBSD via one of six 

ACPs.  The personnel at NBSD refer to these ACPs as “gates” and designate each with a 

number.  Each ACP has different physical characteristics both in the number of lanes and 

in the layout of the approach zones.  Table 2 lists the number of in and out lanes in the 

approach zone of each ACP and the number of parallel processing lanes in the access 

control zone.  Each of the ACPs at NBSD has a traffic signal at the intersection of the 

approach zone and the city street to control the flow into the approach zone.  The 

installation does not own these signals; therefore NBSD personnel cannot manipulate 

these signals in real time to control arrivals into the approach zone.  The approach zones 

for ACPs can buffer anywhere from two to more than ten vehicles before traffic backs up 

onto city streets.  Figure 2 is an overhead representation of NBSD.   

 
Access Control 

Point 
Gate 2  Gate 6  Gate 6A*  Gate 7**  Gate 9  Gate 13 

Lanes In  1  2  1  2  3  2 

Lanes Out  1  2  ‐  2  3  2 

Processing Lanes  1  3  1 
Not 

Available 
3 or 
4*** 

2 

  * For Commercial Deliveries Only 
** Under Construction during research 
*** Can use contraflow 

Table 2.   Number of Lanes Available for Each ACP at NBSD 
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Figure 2.   Overhead of Naval Base San Diego, after NBSD Website 2012 

NBSD regularly collects data on installation access at different times throughout 

the year.  During a given collection period, they collect, in hourly increments, the number 

of vehicles that enter the installation at each ACP over the course of one designated 

week.  In some instances, they also record the number of ships in port during their data 

collection periods.  NBSD provided eight weeks of throughput data ranging from April of 

2010 to September of 2011.  The average throughput between Monday and Friday for the 

six o’clock hour at ACP 6 was 1,265 vehicles with a standard deviation of 381 vehicles.  

The maximum number of vehicles that entered through ACP 6 in a single hour was 2,296 

vehicles, while the minimum number through was 97 vehicles.  As a more specific 

example, Table 3 presents data from ACP 6 during the week of 23 through 29 January 

2011 during peak commute times.  The table shows that NBSD’s recorded throughput 

between the hours of 0600 and 0700 from Monday through Friday ranged from 1116 to 

1740 vehicles with an average throughput of 1348 vehicles.   
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Table 3.   Example of Data Collected by NBSD from January 2011. Flat Decks  
are considered large amphibious ships in this data 

C. RELATED WORK 

Before concluding this chapter, we discuss other work related to this research and 

how our work fits into this larger body of literature. Traffic congestion impacts many 

facets of life all over the world (Downs, 2004, Ch. I). Congestion results in large 

economic and environmental costs.  Downs (2004, Ch. VI) describes measures taken to 

alleviate congestion and evaluates how well they succeeded.  Nelson (1981) applies 

mathematical and statistical models of traffic to examine congestion similar to that at 

NBSD.  These references are very relevant to the congestion faced at NBSD, but they 

apply at a more macroscopic level than what we focus on in the thesis. Measures that 

NBSD could implement that relate to this line of research include adding or modifying 

public transportation options, modifying the roads leading to NBSD, changing traffic 

light timing, and altering work schedules to avoid peak commute times. Future research 

may incorporate these aspects; however, in this thesis, we focus only on the measures the 

SECO can alter on a daily basis to reduce congestion and increase throughput. 

Other systems with traffic considerations similar to those at NBSD include 

national parks (White, 2007), sporting events (Bale, 2000), and concerts (Chase and 

Healey, 1995).  These all involve many vehicles arriving to a location and then 

interacting with a sentry-like individual (e.g., paying a parking attendant).  Most of these 

articles also take a macroscopic view of the problem, examining what can be done farther 

DATE 23‐Jan‐11 24‐Jan‐11 25‐Jan‐11 26‐Jan‐11 27‐Jan‐11 28‐Jan‐11 29‐Jan‐11

ACP 6 (24/7) Sun Mon Tue Wed Thur Fri Sat

 

Total Ships In 38 38 38 38 42 42 42
Flat Decks 4 4 4 4 4 4 4
Visiting Ships 0 0 0 0 0 0 0

0500-0559 240 1366 1411 820 1170 1376 108
0600-0659 912 1116 1132 1740 1266 1486 433
0700-0759 503 879 851 2038 704 893 289
0800-0859 209 423 241 687 365 584 137
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away from the venue to reduce this congestion.  White (2007) examines a suggestion to 

eliminate personally owned vehicles in Yosemite and to use buses instead.  Chase and 

Healey (1995) and Bale (2000) examine how congestion associated with concerts and 

sporting events impacts the surrounding communities, and they attempt to associate costs 

with the congestion. Most of the measures discussed in these articles are serious traffic 

engineering remedies also seen in Potts et al. (2010) (e.g., adding lanes, widening 

shoulders) that are outside the scope of this thesis.  Nava and Okumura (2010) examine 

traffic commuting to a university, which has peak commute times similar to those at 

NBSD, and that article uses mathematical machinery similar to our approach. However, 

the university setting has no notion of a sentry and that article focuses on the decision 

calculus of a student driving a moped to arrive to class on time. 

DoD is aware of the congestion issue and has studied it.  DoD provides its official 

guidance on ACPs in the report “Unified Facilities Criteria Security Engineering: Entry 

Control Facilities/Access Control Points” (UFC 4-022-01, 2005).  The Army has studied 

automating the processing of vehicles to increase the throughput rate (MSDDCTEA, 

2009). Walker (2011) examined a similar automated process that would use biometric 

information to process vehicles and passengers. NBSD may someday implement one of 

these measures to increase throughput efficiency. However, we do not include these 

considerations in our analysis. The purpose of this thesis is to provide insight to the 

SECO that could have immediate impact.  

Finally, the vehicles in the approach zone wait “in line” for processing by a 

sentry. Queuing theory (Gross et al., 2008) is a rich branch of mathematics that study 

these types of problems.  We leverage queuing theory machinery to formulate our 

mathematical model of the NBSD system.  We can view multiple sentries in tandem as 

processing a batch of vehicles at one time.  Researchers have studied these batch models 

for a long time (Bailey, 1954; Deb and Serfozo, 1974).  However, in the NBSD system, 

the batch processing time should increase as the number of sentries in tandem increases. 

We could not find any work that examines this specific variant of batch queuing models. 
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D. OBJECTIVES AND SCOPE 

This thesis explores how the number of open ACPs and their configuration of 

lanes and staffing affect vehicular flow into Naval Base San Diego.  We examine this 

flow during normal and non-normal operations, such as heightened force protection 

conditions.  Our research focuses on increasing throughput and decreasing wait times, as 

well as managing the costs associated with implementing improvements.  We formulate 

mathematical models of the ACPs to determine which factors matter most.   

In Chapter II, we describe the data we collected about NBSD ACPs and perform 

statistical analyses on this data.  Chapter III presents the mathematical model of 

throughput at ACPs and tests the validity of the model with the data described in Chapter 

II.  In Chapter IV, we determine the optimal number of ACPs to open along with the 

optimal lane and staffing configurations as a function of the number of available sentries.  

We present conclusions in Chapter V.       
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II. DATA ANALYSIS 

Following initial conversations with CRNSW N3 Staff, a team from the Naval 

Postgraduate School (NPS) visited NBSD on 14–15 December 2011.  The objective was 

to understand the basic workings of their Force Protection Department and ACPs.  We 

toured the ACPs and spoke with the NBSD SECO to gain a better understanding of the 

current operations, including staffing decisions as each of the ACPs.  The SECO stressed 

during our initial visit that increasing the number of sentries per lane from one to two or 

three in tandem does not double or triple throughput.  Following the visit, we formulated 

an initial mathematical model to characterize the processing of vehicles arriving to 

NBSD.  We describe this model in Section A of this chapter. 

We visited NBSD again during the 2012 Solid Curtain-Citadel Shield (SCCS) 

exercise between 22 and 26 March 2012.  We observed ACP operations under heightened 

FPCONs and collected data on throughput values and the time required to process 

vehicles.  Between 0500 and 0800 on Thursday, Friday, and Monday, we collected data 

at various ACPs.  We visited two ACPs under heightened FPCON, as well as one ACP 

under normal operations.  After describing the initial mathematical model in Section A, 

we discuss our data collection methodology in Section B.  In Section C, we present 

summary statistics of the data before conducting a more in depth analysis in Sections D 

and E.   

A. MATHEMATICAL FRAMEWORK    

A vehicle driving onto an installation must first potentially wait behind several 

other vehicles before a sentry can process it.  This system is not unlike the one in a 

grocery store, where a customer must wait in line behind other shoppers before a cashier 

checks him or her out.  The branch of mathematics that studies the dynamics of waiting 

in line is called queuing theory.  The ACPs and the interaction of vehicles and sentries is 

an example of a queuing system.  A key component of queuing theory is that a customer 

waits in line to receive service.  In a grocery store, the service is the cashier checking out 

groceries and for our NBSD example the service is a sentry processing a vehicle.  The 
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entity providing service in a queuing system is denoted as the server.  In a grocery store, 

a cashier is a server, and at NBSD a sentry is a server.  The general flow of a customer in 

a queuing system proceeds as follows:  the customer arrives to a designated place to 

receive service, waits for the service, receives the service, and then departs the area.  Any 

queuing system has three main quantities of interest: total number of customers in the 

system (usually line length), total time in system, and utilization rate (i.e., how often the 

server is busy serving a customer).  The two factors that determine these performance 

measures are the arrival process and the service process (Gross et al., 2008, pg. 3-4).  

Specifically, and in accordance with Little’s Law (Gross et al., 2008, pg. 10), the 

performance depends upon the rate at which customers arrive to the system and the rate 

at which servers process customers.  The lower the arrival rate of customers and the 

higher the processing rate of servers, the shorter the lines and the less total time a 

customer will spend in the system.  While NBSD could attempt to influence arrival rates 

by staggering start times of certain commands, the SECO will have no control over 

arrivals on a short-term basis.  Furthermore, as described by the SECO, the ACPs are 

fully saturated with vehicles during the morning commute.  Thus, the throughput will 

directly depend upon the service rate at the ACPs, and so we focus on how the SECO can 

influence the service rate.         

With one sentry per processing lane, the notion of service by a sentry is fairly 

straightforward: a sentry processes a vehicle by inspecting the driver’s credentials.  

However, with multiple sentries in tandem, we must take care to precisely define service.  

We first define a batch.  A batch consists of a group of one or more vehicles processed in 

the same lane at the same time by different sentries of a tandem team.  We define the 

service time for a batch to be the entire time it takes to process all vehicles in the batch.  

Thus vehicles in a batch move together and share a collective service time.  Service times 

include more than just the examination of credentials by sentries.  The service times also 

include the time it takes a batch of vehicles to move into position next to the sentries and 

then depart the access control zone.  During most of the morning rush the queue is 

saturated and thus the ending time of service for one batch coincides with the start time of 
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service for the next batch.   If no vehicles are waiting in the approach zone, sentries 

remain idle until additional vehicles arrive.   

B. DATA COLLECTION AND METHODOLOGY 

Because we view the NBSD ACPs as a queuing system, the service times will 

dictate congestion and throughput.  Thus, our data collection plan focused on recording 

the individual service times, which we used to generate an empirical service time 

distribution and eventually reconstruct throughput values.  We also collected other pieces 

of information that might impact service times.  A small sample of the data collected 

appears in Table 4.  Each row corresponds to the observation of one batch of vehicles.  

The first four columns of Table 4 describe the configuration of the ACP (labeled Gate) 

under observation, the number of sentries in tandem per lane, the FPCON, and the day 

the observations took place.  The 5th column contains the main quantity of interest: the 

service time of each batch.  The 6th column contains an “I,” to signify sentry idleness, if 

no vehicle pulls into the access control zone immediately after the sentries finish 

processing the current batch.  In cases where an abnormal event prolonged the service 

time, we record an “E” in column seven.  Examples of abnormal events include drivers 

asking for directions and drivers being turned away from the installation.  The data in 

columns six and seven are binary values.    

We observe that the vehicle type could impact the service times.  For example, 

when sentries required a driver to physically hand his credentials over for inspection, 

motorcycle operators tended to take more time as they usually had to remove safety gear 

to access their credentials.  We denote specific vehicle types (motorcycle, buses, or 

commercial vehicles) in column eight.  Any row without a specific entry in the “Type of 

Vehicle” column corresponds to a privately owned vehicle such as a car or truck.  The 

number of individuals in each vehicle appears in column nine.  For rows with multiple 

vehicles per batch, we report only the vehicle with the largest number of individuals.  In 

column ten we record whether the vehicle had a RAPIDGate credential.  Finally column 

eleven presents the number of cars that passed in one batch.  The number of vehicles 

usually matches the number of sentries.  In some cases, around idle periods, the sentries 
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processed fewer vehicles than the number of sentries.  In other rare cases, a group of 

sentries could actually process more vehicles if a batch was held up by the lead vehicle in 

the batch.   

 

 

Table 4.   Sample from Data Collected at NBSD during 22 – 26 March 2012 

C. DESCRIPTION OF OBSERVED DATA 

We analyze our main quantity of interest, the service time, in the next section.  In 

this section, we present summary statistics of many of the other variables we collected. 

We describe these variables in the previous section.  

We collected data on 1,513 batches over the course of three days.  Only 5% of the 

batches attempting to gain access to the installation had a vehicle that used RAPIDGate 

credentials.  The remainder used CACs.  We classify 3% of the batches as abnormal 

observations.  Many of these abnormal observations correspond to extended service 

times.  Nearly all of the vehicles (90%) contained a single individual.  The remaining 

10% of vehicles held between 2 and 11 individuals.  Approximately 12% of the batches 

were followed by an idle period of time before the next batch moved into the access 

control zone.  These idle times ranged from a few seconds of inactivity as vehicles made 

their way through the approach zone to the access control zone, to an occasional lapse of 

a minute where traffic signals had stopped the arrival process.  Although idle times might 

seem inconsistent with our assumption that the system is fully saturated, we do not 

believe this significantly impacts our analysis. When the time between two batches was 

only a few seconds, it is debatable whether we should have recorded that as an idle 

period.  Also when the traffic signals stopped traffic from entering into the approach 

zone, often some of the lanes would remain saturated, while other lanes would empty out.  

Gate
Number of Sentries 

in Tandem
FPCON

Day of 

Observation

Service Time of 

Batch in Seconds
Idle Time

Abnormal 

Event 

Occurred

Type of 

Vehicle

Number of 

Individuals  

in Vehicle

Number of 

RAPIDGate 

Credentials

Number of 

Vehicles 

Passed

9 1 Bravo Thursday 23 I Motorcycle 1 0 1

9 1 Bravo Thursday 9 I 1 0 1

9 1 Bravo Thursday 22 I E 1 0 1

6 1 Charlie Friday 8 2 0 1

6 3 Bravo Monday 29 1 1 3
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A period of time would elapse before vehicles recognized this situation and moved from 

a saturated lane to an open lane.  In 92% of the batches, the number of processed vehicles 

equaled the number of sentries in tandem.  In most of the remaining 8% of observations, 

the number of sentries in tandem exceeded the number of vehicles processed.  In only 

6 observations was the batch size greater than the number of sentries.  These few 

instances correspond to situations where the lead vehicle had an abnormally long service 

time and held up the rest of the batch.  Sentries in the rear of the batch would then 

process vehicles in the approach zone until the lead vehicle cleared the access control 

zone.  Privately owned cars and trucks made up the bulk (96%) of the vehicles.  

Motorcycles (3%) and commercial vehicles such as food trucks, delivery trucks, and 

buses accounted for the remaining vehicles.    

Our working hypothesis was that the number of sentries in tandem and FPCON 

would create differences in service times.  We observed 689 batches during FPCON 

Bravo and 824 batches in FPCON Charlie.  These included 1113 single sentry 

interactions, 146 two-sentry cases, and 254 instances of three sentries in tandem.  All 

FPCON Charlie batches correspond to one sentry.  For the remainder of the thesis, when 

we refer to the number of sentries we actually mean the number of vehicles processed. 

For example, if a lane contains three sentries but these sentries only process two vehicles, 

then only two sentries actually take part in the vetting process and so we label this a two-

sentry interaction.  In Table 5, we present a summary of the variables described in this 

section broken down by FPCON and sentry combinations.  For example, 12% of vehicles 

contained more than one individual during FPCON Bravo with one sentry.  This table 

shows that in our case the fraction of vehicles with multiple passengers varied a non-

trivial amount between batch sizes of one and three (note that in general we might expect 

the opposite, namely that larger batch sizes would yield a higher frequency of vehicles 

with multiple passengers.  The idle period also varies considerably. As stated previously, 

there is a degree of subjectivity in defining these idle periods and we do not read too 

much into these differences.   
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Sentries 
in 

Tandem 
FPCON 

Total 
Sample 
Size (n) 

Occurrence 
of an 

Abnormal 
Event 

More than 
One 

Individual 
per Vehicle 

Percent of 
RAPIDGate 
Credential 

Percent 
Idle 
Time 

Percentages 
of 

Motorcycles 

1  Bravo  289  3% 12% 4% 38%  4%

2  Bravo  146  4% 5% 8% 29%  2%

3  Bravo  254  ‐‐ 3% 10% 7%  1%

1  Charlie  824  3% 12% 4% < 1%  4%

TOTAL Observed 
Percentage 

1513  3% 10% 5% 12%  3%

Table 5.        Percentages of Throughput Based on Different Factors 

D. CHARACTERIZING SERVICE TIMES  

We now focus on the analysis of the service times.  The mean service time for all 

batches over the three days was 14.2 seconds with a median of 11 seconds and a standard 

deviation of 9.6 seconds.  Figure 3 presents a histogram of recorded service times.  Fifty-

three observations recorded fell outside of two standard deviations from the mean.    

     

 

Figure 3.   Histogram of Collected Service Times 
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We analyze the data with comparative boxplots, which are side by side 

representations of the observations grouped by key factors (see Figure 4).  These plots 

allow us to examine the impact that various factors had on the service time.  We present 

each boxplot using the standard structure (Devore, 2009, pg. 35–39).  The median of the 

data appears as the bold line in the middle of the individual boxes.  The median is a 

measurement of central tendency, or a single value that attempts to describe the central 

point of the data, that is more robust and less sensitive to outliers than the average.  Each 

box captures the middle 50% of the data: the upper boundary of the box is the 3rd quartile 

and lower boundary is the 1st quartile.  Inter-Quartile Range (IQR) denotes the difference 

between the two quartiles.  The “whiskers,” represented by the dotted lines and light 

horizontal bars above and below the quartiles, provide a postulated upper and lower 

bound of the data.  The upper whiskers correspond either to the largest data point, or to 

the 3rd quartile (upper boundary of box) plus 1.5 times the IQR.  The circles above and 

below the whiskers correspond to observations that fall outside the whisker range.  One 

often refers to the circles as outliers.        
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Figure 4 presents the observed batch service times broken into groups by both the 

number of sentries in tandem and the associated FPCON.  The grouping of data to the far 

left shows that one sentry can process one vehicle on average in 13.1 seconds during 

FPCON Bravo.  This corresponds to an average throughput of 275 vehicles per hour.  

The average throughput for two and three sentries in tandem is 402 and 486, respectively.  

These results illustrate the significant diminishing returns from tandem processing 

described by the SECO in our conversations.  Three sentries working in three 

independent processing lanes would generate an average throughput of 825 vehicles per 

hour (275 × 3), whereas three sentries working in tandem in one processing lane can only 

process 59% of this value: 486 vehicles per hour.  Table 6 summarizes the mean service 

times and throughput values.  Column 4 of Table 6 presents the 95% confidence intervals 

for the population mean of sampled service times.  We invert the endpoints of these 

intervals and multiply by the number of sentries to produce 95% confidence intervals for 

the hourly throughput rates.  These appear in column 5.     

 

 

Figure 4.   Service Time Boxplots Grouped by Number of Tandem Sentries.  The  
median for each group of data is 11, 16, 21, and 9 seconds, respectively  
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Table 6 allows us to compare our data with the data collected by NBSD and 

reported previously in Table 3.  Unfortunately, the data collected by NBSD does not 

include the number of sentries and lanes at each ACP.  If we assume three sentries in 

tandem in each of the three lanes at ACP 6 and full congestion we would estimate from 

our data analysis a throughput of 1458 (486 × 3), which is 15% above the throughput 

numbers recorded by NBSD.  This is in line with our intuition that our numbers are going 

to be higher than observed numbers, due to the fact that we ignore idle times, and have a 

fully saturated queue.     

 

Number of 
Tandem 
Sentries 

Force 
Protection 
Condition 

Median 
Service Time 

(Sec.) 

95% Confidence 
Interval  

of the Mean 
Service Time (Sec.) 

95% Confidence 
Interval  

of the Throughput 
(VPHPL) 

1  Bravo  11  12.3 – 13.9  260 – 293 

2  Bravo  16  16.6 – 19.2  374 – 435 

3  Bravo  21  21.3 – 23.1  468 – 507 

1  Charlie  9  11.0 – 12.1  298 – 327 

Table 6.   Normalized Vehicle Throughput and 95% Confidence Interval based on the 
Average Batch Service Time  

While our throughput values are consistent with those provided by NBSD, we see 

larger differences when we compare our throughput values with those of Table 1.  Our 

observed throughputs are a considerable amount lower than the published standard in 

Pamphlet 55-15 (MSDDCTEA, 2009).  Table 1 states the standard hourly throughput for 

a one sentry lane in FPCON Bravo or Charlie is 300 – 450.  Our 95% confidence interval 

for FPCON Bravo in Table 6 is entirely below that range. Our 95% confidence interval 

for FPCON Charlie in Table 6 overlaps only with the lowest end of this range. Table 1 

provides a standard throughput of 400 – 600 cars per hour for tandem sentries.  Our 95% 

confidence interval for two sentries is at the lower end of this range, and the three sentry 

estimate lies in the middle.  In reality, as our data confirms, there will be occasional idle 

periods even during peak commute hours. Thus, our estimate probably overestimates the 

actual hourly throughput NBSD can achieve.  We conclude that the standard estimate of 
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throughput rates might be overly optimistic and the actual throughput (at least at NBSD) 

might be considerably lower.  The implication is that if the standard values are used to 

determine staffing levels, then NBSD is certain to experience significant congestion 

during peak hours due to being understaffed.   

Figure 5 illustrates the difference in our observed throughput estimates and the 

standard values from Table 1.  The dashed boxes represent the different sentry 

configurations.  Notice that our estimated 95% confidence intervals lie well below the 

standard average ACP throughputs from Table 1.        

 

Figure 5.   Throughput Interval Estimates from Tables 1 and Tables 5 

The results presented in Figure 4 and Table 6 help us to analyze the impact of 

FPCON by examining the difference between one sentry in FPCON Bravo and one sentry 

in FPCON Charlie.  We do this by conducting a standard hypothesis test to compare the 

means between two independent samples.  In a hypothesis test, we posit a null hypothesis 

(Ho) about the properties from which our data was collected and an alternative hypothesis 

(Ha).  We then calculate statistics from our data to test the null hypothesis. If we deem the 

test statistics calculated to be very unlikely to occur under the null hypothesis, then we 
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reject the null and conclude the alternative hypothesis as correct.  Otherwise, we do not 

reject the null.  Refer to Devore (2009 pg. 284) for more details on hypothesis testing.   

Let µ1b and µ1c denote the population mean for service times for single vehicle 

batch processing under FPCON Bravo and FPCON Charlie, respectively.  We propose 

the following null and alternative hypotheses:    

 
1 1

1 1

: 
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o b c

a b c

H

H
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 


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We test whether the claim of equal population averages is plausible in light of available 

data.  The sample size and sample standard deviation corresponding to the FPCON Bravo 

situation are 289 observations and 6.8, respectively.  For the FPCON Charlie case, these 

values are 824 observations and 7.9.  Because we do not know the true standard deviation 

of the entire population, we use a t-test statistic to generate our p-values, which is the 

probability of observing a statistic.  We must also assume that the two samples we are 

testing are independent, and that the variances of the two populations are equal in order to 

use the t-test statistic.  We calculate the t-test statistic to be 3.14, which is large (in 

general anything greater than 2 in absolute value is considered large).  The probability of 

observing such a large statistic under the null hypothesis is 0.001748.  If the p-value is 

less than a set significance level (α, typically set to 0.05) the test will reject H0.  We 

interpret this to mean that the data contradicts the null hypothesis.  Because our p-value is 

so small, we will reject the null hypothesis under a 0.05 significance level.  Thus, we can 

confidently state that the mean service times of the two FPCON groups are different.  

Surprisingly, not only are the two means different, but the mean service time for FPCON 

Charlie is lower than for FPCON Bravo.  There are several possible explanations for this.  

It may be due to the newly adopted MEP PLANORD, which attempts to bring only 

mission essential personnel onto the installation during events such as a crisis or 

increased level of FPCON.  Mission essential personnel typically have vast experience at 

ACPs and thus are less likely to slow the processing down via abnormal events.  

Furthermore, during heightened conditions, both drivers and sentries are apt to be more 

alert and act more efficiently during the processing.     
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For each of the next four figures (Figure 6 through Figure 9) we consider only the 

one sentry per lane case for both FPCON Bravo and Charlie.  Figure 6 displays a boxplot 

of observed service times grouped by credential type.  It shows the difference in 

processing times between individuals with CACs and RAPIDGate credentials.  For CAC 

credentials, the mean service time was 12.7 seconds with a median of 11 for FPCON 

Bravo, and 10.8 seconds with a median of 22 seconds for FPCON Charlie.  For 

RAPIDGate credentials, the mean service time was 23.2 seconds with a median of 

9 seconds under FPCON Bravo, and 30 seconds with a median of 21 seconds for FPCON 

Charlie.  The RAPIDGate batches have small sample sizes; however the results align 

with our intuition.  We expect that it takes more time to process a RAPIDGate credential 

than a CAC. We observe that it takes approximately 20 seconds longer to process a 

RAPIDGate then a CAC in FPCON Charlie, and only an additional 10 seconds for the 

same comparison in FPCON Bravo.  This suggests that the sentries are more meticulous 

during FPCON Charlie in processing non-CAC users.  Also note that the distribution for 

service times are much tighter (in terms of the IQR) for CAC users.  We would expect the 

processing times for CAC users to be more consistent because these interactions occur 

the vast majority of the time, although the small sample sizes drive some of these results.   

 

Figure 6.   Mean Service Times According to Credential Types.  The median for  
FPCON Bravo service times is 11 and 22 seconds, while the median for  

FPCON Charlie is 9 and 21 seconds 
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Figure 7 presents our findings when we group service times by the occurrence of 

an abnormal event.  For observations where abnormal events occurred under FPCON 

Bravo, the mean and median service time is 22.5 seconds.  When no abnormal event 

occurred in FPCON Bravo, the mean service time is 12.9 seconds with a median of 

11 seconds.  When abnormal events occurred in FPCON Charlie the mean service time is 

13.2 seconds with a median of 12 seconds.  For the remainder of observations in FPCON 

Charlie, the mean service time was 11.5 seconds with a mean of 9 seconds.  As expected, 

the mean service time increases for an abnormal event. However, the difference is much 

greater for FPCON Bravo than Charlie. We should not read too much into this difference 

because the sample size for abnormal events in FPCON Bravo is only 8. However, one 

possible explanation is that in FPCON Charlie only mission essential personnel arrive, 

and so perhaps any abnormal interactions between sentries and these individuals are 

resolved quickly.     

 

 

Figure 7.   Mean Service Times According to Abnormal Event Occurrences.   
The median for each subset is 22.5 and 11 seconds for FPCON Bravo,  

and 12 and 9 seconds for FPCON Charlie 
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Figure 8 presents a boxplot of service times grouped by motorcycles or privately 

owned cars and trucks that access NBSD.  A handful of commercial vehicles did access 

the ACP under observation, which we ignore for Figure 8.  Most commercial vehicles 

will enter via ACP 6A due to the dedicated inspection equipment located there.  For 

FPCON Bravo motorcycles averaged 20.5 seconds for their service time with a 16 second 

median, while cars and trucks averaged 12.8 seconds for their service times with a 

median of 11 seconds.  For FPCON Charlie, motorcycles had a mean service time of 

30.2 seconds with a median of 25 seconds.  Cars and trucks had a considerably lower 

value for their mean (10.9 seconds) and median (9 seconds).  As expected, it takes longer 

to process motorcycles because of the equipment removal required. Also the difference 

between processing times for cars and motorcycles is greater for FPCON Charlie than 

FPCON Bravo because the sentries have to be more thorough in their vetting process. 

 

 

Figure 8.   Mean Service Times According to Vehicle Type.  The median under  
FPCON Bravo is 16 and 11 seconds.  For FPCON Charlie:  

25 and 9 seconds, respectively 
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Figure 9 groups the service times by the number of occupants in each vehicle.  As 

described in Section B, 90% of the vehicles entering the installation contained one 

individual.  In Figure 9, we distinguish between vehicles with one individual and vehicles 

with multiple individuals.  While sentries can process individual drivers in 12.6 seconds 

on average (11-second median) in FPCON Bravo, the addition of more individuals 

lengthens the average service time to 17.9 seconds (17.5-second median).  FPCON 

Charlie presents similar behavior with individual drivers being processed in 10.4 seconds 

on average (9-second median) and the presence of additional individuals increasing the 

average to 19.9 seconds (16-second median).  As we have seen with several other figures 

in this section, the difference between service times for vehicles with multiple individuals 

and vehicles with a single individual is greater for FPCON Charlie than Bravo, which 

suggests more thorough vetting of additional individuals by the sentries during FPCON 

Charlie. We also see a much smaller variation in the service time distributions for one 

individual compared to the distributions for vehicles with multiple individuals.        

 

 

Figure 9.   Mean Service Times According to the Number of Occupants per Vehicle.   
The median for each subset is 11 and 17.5 seconds for FPCON Bravo,  

and 9 and 16 seconds for FPCON Charlie   
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E. REGRESSION MODEL 

We formulate a linear regression model to examine the relationship between the 

service time in seconds and the factors described in this chapter.  We focus on the 

number of sentries and the FPCON level.  We defined an indicator variable to be 1 if the 

batch occurred during FPCON Bravo.  Based on the additional analysis presented in the 

chapter, we also include three additional indicator variables: whether an abnormal event 

occurs, whether a RAPIDGate credential was used, and whether the batch included a 

motorcycle. Finally, we include the number of individuals in the vehicle as an 

independent variable. Table 7 presents the coefficients for our regression model. 

 

Model Coefficients:             

                Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)      4.90 1.07 4.55 5.85E−06 

FPCON Bravo (Indicator)  1.91 0.04 4.81 1.64E−06 

Normal Event (Indicator)        −4.20 0.99 − 4.22 < 2e−16 

Number of Sentries  4.42 0.25 17.51 < 2e−16 

RAPIDGate Credential 
Used  (Indicator)      

8.80 0.74 11.94  < 2e−16 

Vehicle Motorcycle 
(Indicator)        

15.50 0.92 16.79  < 2e−16 

Number of Individuals in 
Vehicle 

4.61 0.30 15.41  < 2e−16 

Table 7.   Linear Model Regression Output.  Coefficient estimates are in seconds 

The independent variables appear in the first column of Table 7 and the 

coefficient value appears in the second column.  For the four indicator variables, the 

coefficient can be interpreted as a time penalty (or bonus if negative) given an occurrence 

of the associated variable.  For example, fixing all other variables, the model predicts that 

it will take the sentries on average 15.5 seconds more to process a motorcycle than a 

privately owned car or truck.  Similarly, on average a standard processing interaction will 

take 4.2 seconds less when a normal event is associated with it.  For each additional 

sentry, which corresponds directly to the number of vehicles in a batch, the service time 

increases by 4.4 seconds.  The service time increases by 4.6 seconds for each additional 
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individual in the vehicle.  The p-value appears in the final column in Table 7.  Small p-

values provide strong evidence that there exists a statistical relationship between the 

given independent variable and the service time.  As seen, all of our independent 

variables are significant.  An R-squared value measures the fraction of the total 

variability in service times that our model captures.  The R-squared for this regression is 

0.505, which means our model captures about half of the variability.  This means that 

while not a poor model, there are certainly factors our regression does not capture.  

Overall, the regression results align with our intuition and the analysis in the rest of this 

chapter.   
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III. QUEUING MODEL 

Based on the experience of the SECO and the empirical evidence described in 

Chapter II, tandem sentries clearly produce diminishing returns in terms of throughput.  

In this section, we build a queuing model to account for this behavior.  In this chapter, we 

focus on one single processing lane.  Our single lane queuing model defines a 

mathematical representation of a tandem queue to determine the throughput as a function 

of the number of sentries.  We formulate the single lane queuing model in Section A and 

prove in Section B that the throughput for this model for tandem sentries exhibits 

decreasing returns.  In Section C, we illustrate with examples, and finally, in Section D 

we examine whether this model is consistent with data we collected.     

A. SINGLE LANE  

Consider the case where a single lane contains n sentries in tandem and each 

sentry processes one vehicle at a time.  We assume a sufficiently congested system so 

that we can ignore situations where an individual sentry is idle.  A batch of n vehicles 

arrive to the sentries for processing.  Only after the sentries process all n vehicles and the 

vehicles exit the access control zone can the next batch of vehicles move into the access 

control zone.  We assume the time it takes the ith sentry to process a vehicle is a random 

variable denoted Xi.  Let i index individual sentries, i=1,2,..n. Because the entire batch is 

processed only after each individual vehicle is processed, we model the service time for a 

batch of n vehicles as the random variable: 

1,2,...
max .n i

i n
T X


  

For analytic tractability, we assume that the Xi are independent and identically 

distributed (IID) random variables.  Certainly, this is not true in practice; some sentries 

are more efficient or meticulous than others.  Future work may specify service time 

distributions that depend upon whether the sentry is part of the Force Protection 

Department or from another command.   We next derive the cumulative distribution 

function (CDF) of T as follows: 
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where F is the CDF of service time Xi.   

B. ANALYSIS 

We now show that according to our model, the throughput for a processing lane 

with n sentries in tandem will be less than a corresponding system where the sentries are 

spread among n independent one sentry processing lanes.  The average time to process a 

batch of n vehicles is E[Tn].  When n=1, we have the special case E[T1] = E[Xi].  On 

average n vehicles proceed onto the installation every E[Tn] time units and thus the 

average throughput rate is n/E[Tn].  The throughout for a one sentry lane is 1/E[Xi], and 

so for n independent one sentry processing lanes, the total throughput is n/E[Xi].  

Therefore, the throughput for the tandem system is less than the throughput for n 

independent processing lanes because n/E[Tn] < = n/E[Xi].  This follows because E[Xi] 

<= E[Tn].  In general, this inequality will be strict; only when the service times Xi are 

deterministic will E[Xi] = E[Tn].  Thus, we have shown that the tandem sentry setup is 

less effective than independent processing lanes.   

C. EXAMPLES   

We now present two examples to illustrate the diminishing returns of tandem 

configurations.   

1. Exponential Service Times 

We first model the service times of individual sentries Xi as exponential random 

variables with rate parameter u.  The CDF for Xi is ( ) 1 utF t e   and thus the distribution 

of Tn is: 
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( ) (1 ) .ut n
nP T t e    

Solving E[Tn] for the exponential case yields:  

0

1

1

[ ] 1 (1 )

1 ( 1)
        .

ut n
n

in

i

E T e dt

n

iu k








  

  
  

 





 

Table 8 lists the values for E[Tn]  for several sentries (n), as well as the per car 

processing time E[Tn] / n, and the hourly throughput.  We use the FPCON Bravo scenario 

with one sentry (mean service time = 13.1 seconds) to build the last column of Table 8.  

In this case, the rate u = 275/hr.   

 

n E[Tn] E[Tn]/n 
Throughput for 

u = 275 
(n/E[Tn]) 

1 1/u 1/ u 275 

2 3/2 u 3/4 u 367 

3 11/6 u 11/18 u 450 

4 25/12 u 25/48 u 528 

5 137/60 u 137/300 u 602 

6 49/20 u 49/120 u 673 

Table 8.   Expected throughput for n sentries when individual service times are IID 
exponentials with parameter u 
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2. Two Types of Vehicles 

We also explore the case where there may be two specific categories of vehicles 

that have their own service times.  As discussed previously, drivers either present CAC or 

RAPIDGate credentials to the sentries.  Figure 6 of Chapter II shows the significant 

difference in the service times between those vehicles with CAC credentials and those 

with the RAPIDGate credentials.  In this case, we make the assumption that Xi takes on 

one of two deterministic values, either a (for CAC credentials) or b (for RAPIDGate 

credentials), depending on the category of the vehicle: 

( )

( ) 1 .
i

i

P X a p

P X b p

 
    

Under our assumptions, a < b and the maximum time to process a batch of n cars 

has the following probability mass function (PMF): 

( )

( ) 1 .

n
n

n
n

P T a p

P T b p

 

  
 

The expected time to process the batch of size n is then: 

[ ] ( ).n
nE T b p b a    

As n increases the expected service time goes to b.  The throughput for n sentries 

is: 

.
[ ] ( )n

n

n n

E T b p b a


   

Using the data from Chapter II for the FPCON Bravo one sentry case, we have 

 p = 0.96 (96% of vehicles have a CAC), a =12.7 seconds, and b = 23.2 seconds.  Table 9 

presents the results for several values of n. We list a and b above in seconds, but in Table 

9 we transform it to the hourly throughput.  Comparing Tables 6, 8, and 9, we see that our 

observed throughput values in Table 6 fall between the exponential case in Table 8 and 

the binary case of Table 9.    
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n 
Throughput for a= 12.7, 

b= 23.2, and p= 0.96 
(n/E[Tn]) 

1 274 

2 532 

3 776 

4 1008 

5 1230 

6 1442 

Table 9.   Expected throughput for n sentries when individual service times  
depend upon credential type.   

D. COMPARING THE MODEL TO DATA  

We have postulated a model that intuitively describes the behavior of batch 

processing and exhibits the decreasing returns to throughput that appears in the data.  In 

this section, we perform statistical tests to determine how well our model captures the 

actual behavior of the NBSD system.   

We have an empirical service time distribution for the two sentry tandem 

configuration and the three sentry tandem configuration.  We describe the characteristics 

of these distributions in Chapter II.  We define Y2 and Y3 to be the random variables 

associated with these distributions.  Recall from Chapter II that E[Y2] = 17.9 and E[Y3] = 

22.2.  We want to compare Y2 and Y3 to the corresponding distributions predicted by our 

model, T2 and T3.  In order to generate T2 and T3 we first need the time for one sentry to 

process one vehicle Xi.  We utilize the empirical service time distribution for the one 

sentry case in FPCON Bravo to define Xi.  We collected 289 observations for one sentry 

under FPCON Bravo, and thus Xi corresponds to a discrete random variable that takes on 

each of its 289 values with equal probability.  Recall from Chapter II that E[Xi] = 13.1.  

To generate the distribution of T2 from Xi we generate all 2892 combinations of pairs 

from Xi and define T2 to be the maximum of the two values.  T2 takes on each of these 

values with probability 1/2892.  We construct the distribution for T3 in an analogous 



 36

fashion.  We call T2 and T3 generated in this way the synthetic distributions.  In Figure 10, 

we present the actual observed service times for tandem sentries (Y2 and Y3) and the 

synthetic service times generated by our model (T2 and T3).  The synthetic data for two 

sentries in tandem (T2) has a mean service time of 16.6 seconds and a standard deviation 

of 8.2 seconds.  The synthetic data for three sentries in tandem (T3) has a mean service 

time of 18.9 seconds with a standard deviation of 8.9 seconds.  We next perform 

statistical tests to compare the actual and synthetic distributions.    

 

 

Figure 10.   Boxplots of Service Time Distributions for Observed and Synthetic Two  
and Three Tandem Sentry Configurations. The median for each group  

of data is 16, 14, 21, and 16 seconds, respectively 

We apply a two-sample Kolmogorov-Smirnov test to compare the synthetic and 

observed distributions.  The Kolmogorov-Smirnov test defines a distance between the 

cumulative distribution function of two distributions and tests whether the distance is 

large in some sense.  For more details, see Sheskin (2004, pg. 453–459).  For the three 

sentry case, the test produces a p-value of less than 2.2e-16 allowing us to assert that  

the distributions are different.  The p-value for the two-sentry case is slightly higher 

1.096e-06, but we still reject the hypothesis that the distributions are the same at a 

0.05 alpha level.    
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These tests show conclusively that a statistical difference between the service 

times of our observed and synthetic datasets exists.  There are several possible reasons 

for this.  The amount of data collected is very small compared to the total amount of 

traffic that arrives at NBSD.  Another factor that may influence why our theoretical 

model does not fit the data well is the time required to fill and empty the access control 

zone.  The observed data accounts for this movement of vehicles into position, but the 

theoretical model does not adequately account for this.  When there is one sentry, a 

vehicle only has to move one vehicle length to get into the proper position.  However, the 

lead vehicle must travel three vehicle lengths to get into position for the three sentry case.  

Furthermore, the second and third vehicles in the batch may experience slight delays 

before the driver reacts and pulls up to the proper position.  This extra time is not 

accounted for in our model.  Thus, we would expect the observed distributions to have 

larger service times than we would predict with our theoretical model.  This occurs in 

both the two-sentry and three-sentry cases.  For two sentries in tandem, the observed 

average service time, E[Y2] = 17.9, is one second more than our  synthetic distribution, 

E[T2] = 16.6.  For three sentries in tandem, the observed average service time is E[Y3] = 

22.2, which is three seconds more than the average service time according to our 

synthetic distribution, E[T3] = 18.9.  The differences between the observed averages and 

the theoretical averages increase as we go from two to three sentries.  This is consistent 

with the potential flaw in the model described above.  We would expect the extra delays 

from moving through the access control zone to increase with the number of sentries.  

There are other possible reasons why our model does match the observations.  For 

example the characteristics of the batches depend upon the number of sentries (see Table 

5).  However, we feel these differences would have a minor impact on the comparison.  

In the next chapter, we use only the observed distributions, so we do not investigate the 

model’s shortcomings further.  Future work may explore analytical representations, 

however, and thus we will need to determine the cause of the discrepancy between the 

model and observed data, its real-world impact, and whether we can reduce it via model 

refinements.  Our initial intuition is that the difference would not have a significant 

impact on our results.   
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IV. OPTIMAL STAFFING CONFIGURATIONS 

We now consider the staffing decision faced by the SECO every day: which 

ACPs should be opened, how many lanes should be opened at each ACP, and how many 

sentries should be placed in each lane. In this analysis, we assume that all lanes are 

equivalent and independent. Thus, the throughput in a lane at ACP 6 will be the same as 

one at ACP 9.  The total throughput of two lanes will just be the sum of the throughputs 

at each individual lane.  For example, if one sentry processes 300 VPH in one processing 

lane, then we can assume that if the SECO were to open another sentry processing lane, 

the total throughput of both lanes would be 600 VPH.  Similarly, if two sentries in 

tandem can produce a throughput of 500 VPH, then having two lanes with two sentries in 

tandem each will produce a total throughput of 1000 VPH.  We assume throughout that 

there is no server idleness and so there is essentially an infinite backlog of vehicles.  This 

assumption is reasonable during the morning commute, but it should be relaxed in future 

work.   

A.  THE NAVAL BASE SAN DIEGO SYSTEM 

We described the NBSD system in Chapter I, but review the main points here. In 

Table 2 of Chapter I, we list six ACPs.  ACP 6A processes only commercial vehicles, so 

we ignore it for our analysis.  Currently, NBSD has closed ACP 7 for renovation, so we 

ignore ACP 7 for this analysis due to its status, although including it in future analyses 

will be straightforward.  Thus, we only consider the current operational ACPs at NBSD: 

2, 6, 9, and 13.  We assume ACP 2 has one processing lane, ACP 6 has three processing 

lanes, ACP 9 uses contraflow and has four processing lanes, and ACP 13 has two 

processing lanes. Based on conversations with the SECO we define an order in which the 

SECO will open the ACPs: 6 then 9 then 13 then 2. We assume that all lanes can hold up 

to three sentries in tandem, except for the lane in ACP 2, which only supports up to two 

sentries in tandem.   

The SECO has a finite number of sentries he or she can assign to various ACPs.  

However, not all sentries will necessarily process vehicles in lanes at the ACPs.   To open 
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an ACP the SECO may need to station sentries around the ACP for additional security 

purposes.  Other sentries may exclusively process pedestrian traffic.  These sentries do 

not process any vehicles, and thus they do not increase the vehicular throughput at ACPs.  

However, these sentries count against the limited pool of sentries the SECO can use for 

vehicular processing.  We refer to the sentries required to open a gate that do not process 

vehicles as the overhead to open an ACP.  We only consider the overhead to be 

personnel, but it could also be specific equipment.  The overhead will probably depend 

upon the FPCON; at higher FPCON levels we would expect the overhead to increase.    

The SECO faces a tension. On one hand, he prefers to have as many ACPs open 

as possible to limit the amount of tandem processing, which we have shown is not as 

efficient as opening new processing lanes.  However, opening additional ACPs reduces 

the number of sentries available for processing because of the overhead cost to open an 

ACP.  In Table 10, we present the optimal number of ACPs to open as a function of the 

number of sentries available (the rows) and the number of overhead sentries required to 

open each ACP (the columns). The throughput rate for the optimal staffing configuration 

appears in each cell of the table.  We shade the cells to show the number of ACPs the 

SECO will optimally open for the given situation. As stated earlier, we assume the SECO 

first opens ACP 6, then ACP 9, then ACP 13, then 2.  White cells correspond to the 

SECO opening ACP 6 only.  Dark grey cells correspond to the SECO opening ACPs 6 

and 9. Light grey cells correspond to the SECO opening ACPs 6, 9, and 13.  Black cells 

correspond to the SECO opening all four ACPS: 6, 9, 13, and 2. We also state in each cell 

the optimal sentry configuration as a triple (i, j, k), where i, j, and k correspond to the 

number of one sentry, two sentry tandem, and three sentry tandem lanes, respectively.  

The blank cells at the bottom signify that all lanes at all ACPs have the maximum number 

of sentries in tandem (three sentries per lane for ACPs 6, 9, and 13, and two for ACP 2), 

and thus adding more sentries is infeasible.  Currently, NBSD can support 29 sentries 

processing vehicles onto NBSD assuming no overhead cost per ACP.  Due to space 

considerations, we do not present all sentry levels between 1 and 41 in Table 10.    
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Overhead to Open ACP 

 (Number of Sentries)  

0  1  2  3 
N
u
m
b
e
r 
A
va
ila
b
le
 S
e
n
tr
ie
s 
 

1  275 (1,0,0)   Infeasible  Infeasible   Infeasible  

2  550 (2,0,0)  275 (1,0,0)   Infeasible   Infeasible 

3  825 (3,0,0)  550 (2,0,0)  275 (1,0,0)  Infeasible  

4  1100 (4,0,0)  825 (3,0,0)  550 (2,0,0)  275 (1,0,0) 

5  1375 (5,0,0)  952 (2,1,0)  825 (3,0,0)  550 (2,0,0) 

6  1650 (6,0,0)  1100 (4,0,0)  952 (2,1,0)  825 (3,0,0) 

7  1925 (7,0,0)  1375 (5,0,0)  1079 (1,2,0)  952 (2,1,0) 

8  2200 (8,0,0)  1650 (6,0,0)  1206 (0,3,0)  1079 (1,2,0) 

9  2475 (9,0,0)  1925 (7,0,0)  1375 (5,0,0)  1206 (0,3,0) 

10  2750 (10,0,0)  2052 (6,1,0)  1650 (6,0,0)  1290 (0,2,1) 

11  2877 (9,1,0)  2200 (8,0,0)  1925 (7,0,0)  1374 (0,1,2) 

12  3004 (8,2,0)  2475 (9,0,0)  2052 (6,1,0)  1650 (6,0,0) 

13  3131 (7,3,0)  2602 (8,1,0)  2179 (5,2,0)  1925 (7,0,0) 

14  3258 (6,4,0)  2750 (10,0,0)  2200 (8,0,0)  2052 (6,1,0) 

15  3385 (5,5,0)  2877 (9,1,0)  2475 (9,0,0)  2179 (5,2,0) 

16  3512 (4,6,0)  3004 (8,2,0)  2602 (8,1,0)  2306 (4,3,0) 

17  3639 (3,7,0)  3131 (7,3,0)  2729 (7,2,0)  2433 (3,4,0) 

18  3766 (2,8,0)  3258 (6,4,0)  2750 (10,0,0)  2560 (2,5,0) 

20  4020 (0,10,0)  3512 (4,6,0)  3004 (8,2,0)  2814 (0,7,0) 

21  4104 (0,9,1)  3639(3,7,0)  3131 (7,3,0)  2898 (0,6,1) 

22  4188 (0,8,2)  3766 (2,8,0)  3258 (6,4,0)  2983 (5,4,0) 

23  4272 (0,7,3)  3893 (1,9,0)  3385 (5,5,0)  3110 (4,5,0) 

26  4524 (0,4,6)  4188 (0,8,2)  3766 (3,7,0)  3491 (1,8,0) 

29  4776 (0,1,9)  4440 (0,5,5)  4104 (0,9,1)  3786 (0,7,2) 

30     4524 (0,4,6)  4188 (0,8,2)  3870 (0,6,3) 

33     4776 (0,1,9)  4440 (0,5,5)  4122 (0,3,6) 

34        4524 (0,4,6)  4206 (0,2,7) 

36        4691 (0,2,8)  4374 (0,0,9) 

37        4776 (0,1,9)  4440 (0,5,5) 

38           4524 (0,4,6) 

40           4649 (1,0,9) 

41           4776 (0,1,9) 

 
 Gate 6  Gate 6, 9  Gate 6, 9, 13  Gate 2, 6, 9, 13 

Table 10.   Throughput in Vehicles per Hour for Optimal Configuration of ACPs.   
The triple (i, j, k) in each cell represents the optimal number of lanes  
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We now describe how we construct this table.  For a given configuration, we 

compute the total throughput using the following formula.   

(275 ) (402 ) (486 )

                       where  = number of single sentry lanes

                                   = number of 2 tandem sentry lanes

                          and   = 

Throughput i j k

i

j

k

     

number of 3 tandem sentry lanes.

 

The maximum throughput occurs with 29 sentries spread out over 9 three tandem 

sentry lanes and 1 two tandem sentry lane at ACP 2.  This produces a throughput of 

4776= (1×402) + (9×486), which appears in the last cell of each column.  In what 

follows, we assume the sole objective of the SECO is to maximize throughput.  For a 

given number of ACPs open, the SECO should distribute the sentries as uniformly as 

possible across all the lanes because this will maximize the throughput.  Let us look at the 

eleven-sentry case.  For no overhead, the SECO should open all ACPs (black cell), which 

yields ten lanes. Thus, the SECO should assign one sentry to nine lanes and two sentries 

to one lane, producing a throughput of 2877 = (9×275) + (1×402).  For a single-sentry 

overhead, the SECO should open ACPs 6, 9, and 13 (light grey cell), which yields nine 

lanes. The SECO should assign three sentries as overhead at the three ACPs, yielding 

eight processing sentries.  Eight lanes each have one sentry, producing a throughput of 

2200 = (8×275). For an overhead of two sentries, the SECO should open ACPs 6 and 

9 (dark grey cell), which yields seven lanes. The SECO should assign four sentries as 

overhead at the two ACPs, yielding seven processing sentries.  Seven lanes each have one 

sentry, producing a throughput of 1925 = (7×275). With an overhead of three sentries, the 

SECO should open only ACP 6 (white cell), which yields three lanes. The SECO should 

assign three sentries as overhead at the ACP, yielding eight processing sentries.  Two 

lanes have three sentries and one lane has two sentries, producing a throughput of 1374 = 

(1×402) + (2×486). This example illustrates the potentially significant impact of the 

overhead. The throughput decreases by over 50% from no overhead (2877) to three 

overhead sentries per ACP (1374).  

The shades in the table show that as the overhead increases the SECO is best 

served by opening a new ACP and more likely to stack his sentries in tandem.  With no 
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overhead or a one-sentry overhead the SECO should open a new ACP as soon as feasibly 

possible.  For example, with no overhead, the SECO should open ACP 9 as soon as four 

sentries are available.  In the case where each ACP requires one sentry in overhead, the 

SECO should open ACP 9 as soon as six sentries are available.  With three overhead 

sentries, the SECO should delay opening ACP 9 because of the larger overhead cost.  The 

first realistic opportunity the SECO has to open a second ACP (ACP 9) is when he has 10 

sentries available. This corresponds to six overhead sentries at ACPs 6 and 9, three 

processing sentries at ACP 6 and one processing sentry at ACP 9. This would produce a 

throughput of 1100 = (4×275). However, it is more efficient for the SECO to only open 

ACP 6 and use three sentries as overhead and seven processing sentries spread over the 

lanes of ACP 6.  The throughput for this configuration is 1290 = (2×402) + (1×486).    

The SECO should not open another ACP until twelve sentries are available.  This 

corresponds to six sentries as overhead at ACP 6 and 9 and six single sentry process 

lanes, which yields a throughput of 1650 = (6×275).  If instead the SECO only opens 

ACP 6, he would have three overhead sentries and three processing lanes of three sentries 

in tandem, which would produce a lower throughput of 1458 = (3×486).   

The SECO may have some target throughput he wants to achieve. He can use 

Table 10 to determine how many sentries he needs to achieve this throughput.  For 

example, suppose the SECO has an overhead of two sentries and he needs to process 

2,000 vehicles per hour into the installation.  The SECO could refer to the two sentry 

overhead column and find the first row in which the throughput exceeds 2,000 vehicles 

per hour.  In this case, we see that twelve sentries produce a throughput of 2,052 vehicles 

per hour.  The SECO would open ACPs 6 and 9 and assign four sentries as overhead and 

the remaining eight sentries across the seven processing lanes.   
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V. CONCLUSIONS 

This thesis examines the challenge of bringing large numbers of vehicles into a 

secure location.  Reducing congestion and increasing throughput is important and will 

continue to be important in the future as most military installations see large numbers of 

personnel attempting to gain access.  This problem applies not only to NBSD, but also to 

many military installations throughout the world. The number of installations impacted 

by significant congestion will only increase in the coming years as populations grow and 

cities and towns expand.  Congestion creates an opportunity for terrorism, as many 

potential targets sit vulnerable in traffic.  Congestion also generates economic costs both 

directly for the military and indirectly on the surrounding communities.  Personnel stuck 

in congestion cannot perform their duties and if the congestion impacts the surrounding 

roadways then local businesses may suffer. As force protection departments try to 

balance increasing throughput while maintaining the integrity of the installation, 

understanding the components of an ACP and how they interact with each other will be 

an important research topic in the coming years.   

This thesis presents an analysis of the key factors that drive congestion at the 

ACP.  These factors include the configuration of sentries, the FPCON level, the type of 

vehicle, the credentials used, and the number of individuals in a vehicle.  Our data 

analysis performed in Chapter II quantifies the impact of these factors.  The time for a 

sentry to process a RAPIDGate credential is about double the processing time of a 

vehicle with a CAC credential.  Similarly, the time to process a motorcycle is about 50% 

more than the time to process a privately owned vehicle or truck.  While the fraction of 

vehicles that use RAPIDGate or are motorcycles is relatively small, it might be 

worthwhile for security personnel to examine measures that could speed up the 

processing of these types of vehicles.   

Our data analysis in Chapter II confirms the experiences of the SECO in that 

having multiple sentries in tandem has a diminishing return on throughput.  That is, 

putting two or three sentries in tandem in the same lane does not double or triple the 

throughput in that lane.  In fact, we observed that the actual throughputs are significantly 
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lower than other published standards.  This implies that if the current standards are used 

for determining staffing levels, then NBSD will certainly experience significant 

congestion during peak commuting hours.     

In Chapter III, we present a mathematical model to explain this. While the model 

does not accurately predict specific service time values, it does provide the logic and 

insight for why increasing the number of sentries in tandem has diminishing returns. This 

is a very important result for decision makers. If decision makers expect that putting two 

sentries in tandem will double throughput, then they will significantly overestimate 

throughput and understaff ACPs, and congestion will increase as a result.  

In Chapter IV, we present the optimal staffing configuration for NBSD as a 

function of the number of sentries in tandem. This provides a baseline for the SECO for 

determining when to open ACPs and lanes, and how to most effectively staff them to 

increase throughput.  Table 10 in Chapter IV can inform decision makers of the expected 

gains they will experience in throughput as a function of the number of sentries available 

and the amount of overhead required to open each ACP.  This baseline recommendation 

table will hopefully prove valuable to the SECO.  However, the underlying throughput 

values used to construct the table are based on some simplifying assumptions and we 

hope that future work will add more complexity to the analysis and provide an analog to 

Table 10 that has more accurate throughput values.   

Based on our observations and conversations with the SECO, we assumed that 

during the morning commute there was an infinite backlog of cars attempting to access 

NBSD. In queuing nomenclature, we assumed that the arrival rate of customers was 

much greater than the service rate of the servers. Future research should more precisely 

capture this arrival process.  Personnel do not arrive at a constant rate; the arrival rate 

increases through the morning peak and then ebbs after around 0800.  A more thorough 

analysis would not only consider the ACPs, but also the surrounding roadways leading 

into NBSD.  There are only a handful of large road arteries feeding into NBSD and thus 

future researchers might need to incorporate traffic models or perhaps network flow 

models to adequately represent how personnel travel from their residences to NBSD.   
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Our initial plan was to model many of the arrival intricacies just mentioned. We 

planned on collecting data on the commuting properties of NBSD personnel to more 

accurately capture the arrival process. We had discussions with NBSD and NPS 

Information Technology personnel about developing an automated data collection 

software application for smartphones.  This application would safely and securely collect 

specific non-identifiable information on where personnel commute from, their arrival 

time, and the time the personnel wait in congestion before a sentry processes them onto 

the installation.  One of the potential benefits of such an application would be that we 

could deploy it to essentially any installation.  Future research could thus analyze other 

installations in a similar fashion using the specific data associated with each installation.  

This application could also provide information to the personnel as they commute by 

giving estimated wait times at each ACP.  This could ease congestion around installation 

by more uniformly spreading arrivals across ACPs.  While we were not able to develop 

and deploy this application in time for the thesis, our hope is that it will eventually be 

deployed and future work can take advantage of this wealth of data.   

In our analysis, we ignored other aspects of the arrival process that future work 

could consider.  For example, a trolley cuts right across the main thoroughfare leading 

into ACP 6.  In discussion with the SECO, we learned that the morning trolley can 

significantly impact congestion because it cuts the flow of traffic into the ACP.  This 

congestion then sits on city streets and can even back up onto surrounding freeways.  

Future researchers could examine the impact of changing the trolley frequency from, for 

example, every four minutes to every six minutes.  An analysis of this type would require 

a combination of the arrival data from the smartphone application, simulation, and 

perhaps network models to determine how changing the trolley schedule could help ease 

congestion outside the installation.  Another potentially interesting analysis would 

consider the impact of connecting the wet side and dry side of NBSD with a vehicular 

bridge across Harbor Drive.  Currently, personnel residing on the dry side of the 

installation must leave controlled land, drive less than two miles and be reprocessed into 

the wet side.  As approximately 4,000 personnel live on the dry side, they contribute a 

nontrivial amount to the total number of morning arrivals to the wet side.  Building a 
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bridge would be costly, but it would eliminate the need to reprocess these personnel and 

could potentially reduce congestion significantly.   

While there is much work to be done to enhance the basic analysis in this thesis, 

we have taken an important first step. We performed statistical analysis of actual 

processing data at NBSD to present a picture of the characteristics of commuting 

personnel and the factors that impact the processing times.  We then developed a 

theoretical model for the processing times and provided recommendation for staffing 

configurations to maximize throughput onto NBSD.  

However, this analysis considers congestion solely from the perspective of service 

times and under the assumption that there is consistent demand for service at each ACP 

such that sentries are never idle.  As a result, our estimates of throughput capability are 

apt to be overestimates, meaning that congestion could be even worse than projected.  In 

order to get a more complete understanding of the way in which fluctuations in vehicle 

arrivals affect congestion, future work should focus on collecting data associated with 

vehicle commuting and arrival patterns. 
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