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Outline
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Weapon Dynamic Environment

• Impact and shock is 
relevant to many fields

– Crash testing    ̵̵̶  Blast protection
– Defense ̵̵̶  Oil & Mining 

• Common features
– Impulse stress waves

• Short rise time
• High frequency waveforms
• High amplitude
• Multiaxial

– Wide range of damage
• Sensor resonance
• Material failure
• Fatigue, etc.

Sensor resonance from impact loads

Blast-Induced High-Rate Material Fracture

Fractures Group, Cavendish Laboratory, Cambridge
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State of the Art in Shock Mitigation

Classes (by dissipation mechanism)
• Mechanical deformation

– Automotive “crumple zones”

• Constrained layer damping
– Woodpecker skull (biomimetic) [11]

• Energy localization
– Functional polyurea nanoparticles [12]

• Viscoelastic/viscoplastic
– Polysulfide-isolated mount [13]

• Superelastic
– NiTi shape memory alloy [14]

• Multilayered mechanical filter
– Metal & polymer “bandstop” filter [15]

[11] Yoon, S.-H., and Park, S., 2011, "A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems," Bioinspiration & Biomimetics, 6(1), p. 
016003.

[12] Holzworth, K., Williams, G., and Nemat-Nasser, S., 2012, "Hybrid Polymer Grafted Nanoparticle Composites for Blast-induced Shock-wave Mitigation," Proc. SEM 
International Conference & Exposition on Experimental and Applied Mechanics, Costa Mesa, CA.

[13] Bateman, V. I., Brown, F. A., and Nusser, M. A., 2000, "High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the 
ENDEVCO 7270AM6," Report SAND2000-1528 Sandia National Laboratory 

[14] S. Nemat-Nasser and W.-G. Guo, 2006, “Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures”, Mech Materials 38, pp 463-474.
[15] N.A. Winfree et al, 2010, “Mechanical filter for sensors”, US Patent 7706213

Woodpecker brain isolation [11]

Polysulfide filter [13]
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Proposed Research Objectives

Technical Challenge
• Improve survivability of complex systems in high shock 

environments (e.g., ballistic impact & explosive loading)

Technical Objective
• Identify and demonstrate concepts for broadband shock mitigation

– Attenuate impulsive uniaxial and multiaxial stress waves with simultaneous high 
amplitude stress and high frequency content

Proposed Approach: Multilayered Mechanical Metamaterials
• Develop theory/models in metamaterials framework

– “Bottom-up”, e.g., uniaxial elastic is initial focus
– End state: Broadband spectral framework with rate-/temp-dependent materials

• Identify best candidates using optimization
– Multiobjective, constrained 
– Also includes consideration of uncertainty 

• Demonstrate using state-of-the-art experiments
– Validate models and performance in shock-like loading regimes
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Metamaterials & Other Buzzwords
• Metamaterials [1]

– Definition: Engineered materials designed w/properties not occurring naturally
– “Effective” macroscopic properties strongly dependent on (nano-/micro-) 

structure & material (“unobtainium”) 

• Phononic Crystals (PC)/Band Gap (PBG) Materials
– Definition:  Artificial periodic (crystalline) composites where structure 

influences wave propagation [2]
– Interactions: Bragg (lattice) + Mie (geometric) scattering

• Generally constant “single scatterer” assumption

• Acoustic Band Gap (ABG) Materials
– Definition:  Composite materials with  defined band baps in or near the 

acoustic range (~20 Hz to 20 kHz)
– Interactions: Elastic wave propagation + Bloch periodicity (pressure)

• Superlattices (SL)
– Definition: Multilayered periodic heterostructures (i.e., a microstructure with 

different materials) made of thin crystalline films, 
• Individual film thicknesses ranging from less than 1 nm to over 100 nm
• Period:  Characteristic pattern of crystalline films (e.g., a pair of different films 

called a “bilayer”) that is repeated many times
– Interactions: Phonon (elastic) propagation on lattice (band-folding, scattering)

[1] Shelby, R. A., Smith D.R., Shultz S., and Nemat-Nasser S.C., 2001, “Microwave transmission through a two-dimensional, 
isotropic, left-handed metamaterial”, Applied Physics Letters 78 (4), pp. 489-491.

[2] Lu, M.-H., Feng, L., and Chen, Y.-F., 2009, "Phononic crystals and acoustic metamaterials," Materials Today, 12(12), pp. 
34-42.

[3] Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., and Sheng, P., 2004, "Focusing of Sound in a 3D Phononic
Crystal," Physical Review Letters, 93(2), 024301.

[4] Vasseur, J. O., Deymier, P. A., Khelif, A., Lambin, P., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L., Fettouhi, N., and 
Zemmouri, J., 2002, "Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency 
range: A theoretical and experimental study," Physical Review E, 65(5), p. 056608.

Split Ring Resonators [1]

3D acoustic wave focusing [3]

Acoustic band structure [4]
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Sample of Metamaterials Work

First 
Author Year Materials/

Geometry N-D

Feature 
Size
r or l
[m]

Lattice 
Spacing

a
[m]

Freq Range/
Bandwidth

∆ω
[Hz]

Notes/Comments Ref.

Liu 2000 Cubic array of Pb/silicone
spheres 3D ~5 mm 30 mm 250 to 2k [5]

Vasseur 2002 Square planar array of 
filled/hollow Cu tubes in air 2D 14 mm 30 mm 0 to 50k [4]

Tanaka 1999 Square lattice of AlAs
cylinders in GaAs matrix 2D A

(arbitrary)
a

(arbitrary)
~ a/ν

(normalized)
Surface acoustic 
wave (SAW) theory [6]

Pennec 2004 Square planar array of steel 
tubes w/air, Hg in air 2D 0.9-1.4

mm 5 mm 0 to 300k ABG w/ tunability
and multiplexing [7]

Tang 2004 Thin film sandwiches w/ 
electrorheological material 1D 0.1 mm 0.1 mm 80 to 200 Simple transmission

experiments [8]

Dhar 1999 Lithographically patterned Al 
film on glass substrate 1D ~1 μm 3-3.75 μm 100-800 MHz Measured w/ ps

transient grating [9]

Yang 2004 FCC cubic array of WC 
beads in water 3D 0.4 mm 0.8 mm 0.98-1.2 MHz 3-D focusing of 

waves [1]

Lu 2009 (Review article) Review article (PC 
and AMM) [2]

[5] Liu et al., 2000, “Locally Resonant Sonic Materials,” Science 289 (5485), pp 1734-1736.  
[6] Tanaka, Y., and Tamura, S.-I., 1999, “Two-dimensional phononic crystals: surface acoustic waves,” Physica B: Condensed Matter 263-264, pp. 77-80.
[7] Pennec, Y., Djafari-Rouhani, B., Vasseur, J. O., Khelif, A., and Deymier, P. A., 2004, "Tunable filtering and demultiplexing in phononic crystals with hollow 

cylinders," Physical Review E, 69(4), p. 046608.
[8] Hong, T., Chunrong, L., and Xiaopeng, Z., 2004, "Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves," 

Journal of Physics D: Applied Physics, 37(16), p. 2331.
[9] Dhar, L., and Rogers, J. A., 2000, "High frequency one-dimensional phononic crystal characterized with a picosecond transient grating photoacoustic

technique," Applied Physics Letters, 77(9), pp. 1402-1404.
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Our Approach

• Simultaneously consider the depth and breadth 
of the shock mitigation problem…

…beginning with simple 1-D geometries 
(multilayered films) and well-known materials 
(metals, polymers) in a metamaterials framework

Materials Modeling
• Rate-dependent
• Temperature-dependent  
• Complex properties

Theoretical Mechanics
• Dispersion
• Wave modes/polarization 
• Metamaterials

Optimization
• Topological Optimization
• Multi-objective 

Fabrication
• Reproducibility 
• Characterization
• Distribution of properties

Analysis
• Uncertainty quantification 
• Stochastic analysis
• Spectral element models

Experimental Mechanics
• Shock/vibration analysis:  

transmissibility, damping
• High rate test methods
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Materials

Material classes
• Metals

– W, Ti, steel, Cu
• Polymers 

– Epoxy, polysulfide, 
PMMA, PTFE

• Composites
– G10, syntactic 

foam, Ultem

Constitutive behavior
• “Effective” properties 

– Anisotropic response from 
isotropic films

– Strongly dependent on 
interfaces and spacing

• Time-Temperature 
Equivalency
– Applicable to polymers

• Spectral properties
– Complex moduli as a 

function of frequency…
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Material Spectral Constitutive Response
(Frequency Domain)

• Materials can be modeled with frequency dependent 
(complex) properties
– Complex modulus
– γ: Reattenuation (α), Im propagation (κ)

• Developed solution for 1-D and 2.5-D 
wave transport with complex media
– Working on application to SHPB data sets

Hillström, L., Mossberg, M., and Lundberg, B., 2000, "IDENTIFICATION 
OF COMPLEX MODULUS FROM MEASURED STRAINS ON AN 
AXIALLY IMPACTED BAR USING LEAST SQUARES," Journal of 
Sound and Vibration, 230(3), pp. 689-707.

෨ሺ߱ሻܧ ൌ ሺ߱ሻ′ܧ ൅ ′′ܧ݅ ሺ߱ሻ

ߛ ൌ ݅߱ට
ߩ
෨ܧ
 

݆̃ߝ ሺݔ, ߱ሻ ൌ ෨݆ܲ ሺ߱ሻ݁െ݆ߛ ݔ ൅ ෩݆ܰ ሺ߱ሻ݆݁ߛ ݔ  
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(1) Generalized from several open literature values for PBX-9501 properties
(2) K. Ravi-Chandar and S. Satapathy, 2006, “Mechanical Properties of G-10 Glass–Epoxy 

Composite”, Institute for Advanced Technology, The University of Texas at Austin, IAT.R 0466

Wave Properties in Various Media

Material
Elastic Modulus

E
[GPa]

Density


[kg/m3]

1-D Impedance
Z” = Z/A

[x 106 kg/m2s]

1-D Wave Speed
c

[m/s]

6/4 Titanium 104 4420 21.4 4840

Maraging
Steel 188 8080 39.1 4835

Tungsten 329 16920 75.3 4406

Copper 115 8960 32.1 3583

Polycarbonate 2.3 1200 1.86 1550

Epoxy 2.3 1140 1.62 1420

PVC 1.6 1380 1.48 1077

PBX(1) ~0.5 
(0.1-2.9+) ~1800 1.89 527

G10(2) ~18.8 (x)
~7.8 (z) ~1700 5.64 (x)

3.64 (z)
3320 (x)
2140 (z)

CFRP ~1.5 ~1500 1.50 1000

Frequency
f

[Hz]

Wavelength 


[m]

1 4800

100 48

10k 0.48

1M 4.8m

100M 48

Frequency
f

[Hz]

Wavelength 
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[m]
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Analysis Solution

Initial case:
• Simple 1-D geometry

– Limit: Kolsky bar behavior
• Simultaneous coupled 

problem for wave terms
– Arbitrary N-layer solution
– Banded coupling equation 
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Optimization

• Topological Optimization
– Initial optimization criteria:

Spectral transmissibility 

• Uncertainty Quantification
– Bayesian framework for 

estimating parameters
– Prior information, observation 

and process uncertainty
– Monte Carlo truth modeling
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Initial Shock Filter Design 
Optimization Problem

• Design goals/objectives:
– Spectral energy isolation (transmission rejection ratio)
– Minimum complexity (Nlayers, Lsystem)

• Constraints:
– Discrete material set (non-continuous property variables)
– Defined layer pattern
– Constant layer sizing (LA, LB)

• Initial guess:
– Polysulfide/steel stack

• Method: 
– Discrete genetic algorithm w/local gradient-based improvement

Incident bar Transmit barSample
i s t

Pi,	Ni

Ps,	Ns

Pt,	Nt

12ሺ߱ሻݐ ൌ
1ሺ߱ሻߪ
2ሺ߱ሻߪ

12ሺ߱ሻݐ  ൌ
1ሺ߱ሻߪ
2ሺ߱ሻߪ

 

߬12 ൌ
transmitted	vibrational	power	
incident	vibrational	power ∝ 122߬12ݐ ൌ

transmitted	vibrational	power	
incident	vibrational	power ∝ 122ݐ
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Experimentation
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Park: ASM International, p. 429 (2000).
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Experimentation

• Hopkinson/Kolsky Bar
– Approximate uniaxial

behavior
• Ideal SHPB-like case

– Simple Analysis
– SOTA instrumentation

• Preload Interface Bar
– Unique capability
– Dynamic impulse with 

static quasi-unixial
confinement 

• Design to 50,000 lbf

4’ Input Bar

4’ Incident Bar
4’ Transmission Bar

Input 

Preload Interface Bar @ AFRLHopkinson Bar @ AFRL
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Way Ahead

• Get started!  
– Initial focus on optimization problem definition and 

figures of merit, theoretical framework, and “art of the 
possible”

• Coordinate w/relevant efforts AFOSR tasks… 
– Interested?  Let’s chat!
Examples:
– Spectral Element Modeling (SEM)

• Nonlinear SEM, PI: Andrew Dick (Rice)
• Wavelet SEM in Plates, PI: Ratan Jha (Clarkson)

– Soliton-Based Artificial Nervous System
• PI’s:  “JK” Yang (USC), Amanda Schrand (AFRL)…



DESCRIPTION & IMPACT
Solitons, self-reinforcing nonlinear wave pulses, are integral parts of
biomembranes and nerves for the efficient transmission of
electrochemical signals. Inspired by complex organ systems such
as skin [Fig1A], we propose a novel artificial nervous system (ANS)
composed of granular phononic crystals (GPCs) [Fig1B], which
support highly nonlinear solitons. Analogous to the mechanism of
neurons embedded within skin, the ANS will be designed to discern
vibrations, temperature, impacts and other aspects of the
environment. The anticipated impact: Micro-scale touch-sensitive
transduction components (e.g., tactile sensors) and Macro-scale
self-sensing mechanoreceptive structures that monitor and mitigate
impact to the host structure in real time.

APPROACH & OBJECTIVES
The ANS will be composed of multi-layered composite granular
networks that convert surface stimuli into groups of compact-
supported solitons in the underlying layer [Fig2A]. By analyzing the
solitons transmitted by the granular chain networks, magnitudes
and locations of external excitations will be identified. The main
objectives are to: 1) Examine the fundamental nonlinear wave
dynamics of granular phononic crystals and 2) Construct proof-of-
concept prototypes [Fig2B] and experimentally verify external
conditions and material properties (e.g., impact location and
amplitudes).

SCHEDULE

DELIVERABLES
Software: Discrete element model (DEM) for granular particle dynamics

Spectral element model (SEM) for interfacial wave propagation
Hardware: Soliton-supporting 2D/3D architecture of granular crystals

AFOSR-BAA: Multi-Scale Structural Mechanics and Prognosis (Program manager: Dr. Les Lee)

References
• A. Schrand.  Direct current regulates process formation in human dermal fibroblasts in a collagen 

matrix .  Masters Thesis, Department of Biological Sciences, Wright State University, Dayton, OH, 
2001.

• J. Yang, et al. Interaction of highly nonlinear solitary waves with elastic linear media, Physical 
Review E, 83: 046606, 2011. 

• N. Boechler, J. Yang, et al., Tunable vibration band gaps in one-dimensional diatomic granular 
crystals with three-particle unit cells, Journal of Applied Physics, 109: 074906, 2011.

• J. Yang, et al., Amplitude-dependent attenuation of compressive waves in curved granular crystals 
constrained by elastic guides, Acta Mechanica, 223(3): 549–562, 2012. 

Fig. 1.  Schematic depictions of (a) Mammalian skin displaying dermal nerve fibers 
and associated sensory mechanoreceptors such as Pacinian corpuscles (Inset: 
soliton packet).  (b) Soliton-supporting ANS based on bio-inspired layering of 
granular phononic crystals.

Fig. 2. 2D Granular phononic crystals configured in: (a) An elastic medium for 
detecting external impacts. (b) the experimental design and setup with a pneumatic 
actuator.
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Summary

• Impact and penetration loads are extremely 
harsh thermomechanical environments
– Broadband & stochastic environment, nonlinear, etc.

• Several methods have been proposed to 
mitigate this environment (i.e., shock isolation) 
– TBD

• Our research effort proposes harnessing 
metamaterials framework with extension…
– Extended multilayer spectral analytic method 
– Topological multiobjective optimization with uncertainty
– Validation using high rate experiments

• Open and willing to collaborate on research…
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Questions?

Jason R. Foley, Ph.D.
Tech Area Lead, Hard Target Fuzing
Fuzes Branch
Munitions Directorate
Air Force Research Laboratory

Phone: 850-883-0573
Email: jason.foley@eglin.af.mil
Mail: AFRL/RWMF

306 W. Eglin Blvd., Bldg. 432
Eglin AFB, FL  32542-5430

w
w

w
.despair.com

Contact Information
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Shock-Mitigating Multilayered 
Mechanical MetaMaterials (SM5)

Mission Alignment & Benefits; Partnerships
• RW Strategic Alignment:

• Co-developed by hard target fuzing, warhead sub-CTC’s
• Supports S&T Vector 3, “Hold high value targets at risk”
• Mitigation schemes are broadly applicable to penetrating 

warhead subsystems and critical fuze components: 
sensors, firesets, processors, batteries, etc.

• Also enables directional inertial coupling for future 
“Brilliant Fuzing” concepts

• Industry/University/DoD Partners:
• Leverage AFRL/RX, RY for fabrication
• C.T. Sun (Purdue) and X. Zhang (Boston U.) via AFOSR
• O. Mondain-Monval, A. Aradian (CNRS, France) via 

EOARD

Tech Challenges/Approach
• Challenge: Shock mitigation schemes are typically one-shot 

(i.e., use deformation); no description of dissipation
• S&T Approach: “Bottom up”: Develop 1-D analytic 

framework and solve wave eqns
• Define, predict, & validate spectral coefficients, 

constitutive response, effective transport props
• Define dissipation mechanisms and wave properties 

vs. structure, material, length scales
• Challenge: Several candidate material classes

• S&T Approach: Simulate mitigation; calculate effective 
properties; use topological optimization

• Challenge:  Real environments induce nonlinearities
• S&T Approach:  Add in frequency, structure nonlinear 

terms

Schedule/Cost (JON)Technology Objective
FY12 FY13 FY14 FY15 FY16

Program Initiation

1-D Mitigating MM

2-D/3-D Mitigating MM

Program completion

Civ.Salary ($K) 0.0 125 100 100

ARA (Onsite) Salary 75 80 90

Travel 10 10 10

Equipment, T&E 40 60 50

Total ($K) 250 250 250

LRIR Synopsis: 
1. Fuzes CTC
2. Multifunc. Materials
3. PM: Dr. Les Lee
4. J. Foley/B. Martin

• Discover/develop/demo methods for attenuating the 
severe mechanical environment in penetration:

• High amplitude stresses/forces
• High frequency content (broadband) waves
• Multiaxial loading profiles
• Stochastic environment

• Proposed investigation uses mechanical metamaterials
• Acoustic metamaterials have been demonstrated to 

have physically impossible transport properties: 
negative density, wave reversal/focusing, band mod 

• Conceptual foundations in superlattices, phononic
crystals for wave interactions, effective properties

Awareness

Info Sharing

Co-Funded

Inter-
locked
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International

Collaborations and Interactions

SNL
AMRDEC

ARDEC

CalTech
(Daraio)

Purdue 
(CT Sun)

AFRL/RX
AFIT

Auburn

UTSA
(Foster)

AFOSR
DARPA

University of 
Oxford (UK)

Awareness

Info Sharing

Co-Funded

Interlocked

AFRL/RW
ARA
DTRA

UCSD
(Nemat-Nasser)


