Summary:

This report summarizes the outcome of the AFOSR grant FA9550-08-01-0117 during the project term 03/01/2008-12/31/2011.

Many important planning and design applications in uncertain environments involve service level or reliability requirements. These include emergency planning, telecommunication network design, cancer therapy planning, and financial optimization. Such requirements give rise to probabilistic or chance constraints. The stochasticity and nonconvexity associated with such constraints make the underlying optimization problem extremely challenging. Current approaches for probabilistically constrained optimization problems are either not able to handle realistic problems or provide much too conservative solutions. This project developed novel methods for this hard class of problems by combining ideas from integer programming and statistical analysis.

Results:

The three key outcomes of the project are the following.

1. Sampling based approximations of probabilistic constraints: We studied integer programming approximations of probabilistic constraints obtained by replacing the uncertain problem parameter by a set of iid samples. We established asymptotic convergence of these approximations and also schemes for bounding approximation quality from finite samples. The developed approach is very general and is applicable to a wide variety of chance constraint problems. A tutorial on this approached was given at INFORMS 2008.

2. Probabilistic set covering problems with correlations: Set covering problems are a very important class of problems arising in various applications. Many important applications, e.g. emergency response center location and sensor network design, give rise to set cover problems with uncertain coefficients. Exploiting the fact these coefficients are Bernoulli random variables, we very effective develop deterministic reformulations of these problems.

3. Cutting planes for probabilistic constraints with coefficient uncertainties: Solving integer programming approximations of probabilistic constraints is very difficult. There has been earlier work on developing methods for these problems when the uncertainty appears in the right-hand-side of the constraints. We extended these approaches to problems when constraint coefficients are uncertain. This is a much more difficult problem.
Personnel Supported:

The grant supported 1 summer month for the PI per year and 12 months for 1 graduate student, during the project term.

Publications:

Optimization with probabilistic constraints

1. REPORT DATE
16-02-2011

2. REPORT TYPE
FINAL

3. DATES COVERED
03/01/2008 - 12/31/2011

4. TITLE AND SUBTITLE
Optimization with probabilistic constraints

5a. CONTRACT NUMBER
FA9550-08-1-0117

5b. GRANT NUMBER
FA9550-08-1-0117

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Shabbir Ahmed

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
AFRL-OSR-TR-2012-0070

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Many important planning and design applications in uncertain environments involve service level or reliability requirements. These include emergency planning, telecommunication network design, cancer therapy planning, and financial optimization. Such requirements give rise to probabilistic or chance constraints. The stochasticity and nonconvexity associated with such constraints make the underlying optimization problem extremely challenging. Current approaches for probabilistically constrained optimization problems are either not able to handle realistic problems or provide much too conservative solutions. In this work: (i) We integrated sampling theory with mixed-integer programming schemes to effectively and efficiently solve large classes of such problems. (ii) We developed new formulations for a wide class of probabilistic set covering problems by exploiting sumodularity properties. (iii) We developed new algorithmic techniques for probabilistic constraints with coefficient uncertainties.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

This report discusses the development of methods for optimization problems with probabilistic constraints, which are widely applicable in planning and design, including emergency planning, telecommunication network design, cancer therapy planning, and financial optimization. The challenges posed by the stochastic and nonconvex nature of these constraints necessitate novel approaches. The authors integrate sampling theory with mixed-integer programming to develop efficient solutions for large-scale problems. They also introduce new formulations and algorithmic techniques that exploit the sumodularity property of certain probabilistic constraints, enhancing the feasibility of solving complex optimization problems in uncertain environments.