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0.1 Objectives

Specific objectives of the research at United Technologies Research Center (UTRC) are as follows:
(1) Develop methods and tools for uncertainty management in non-linear non-equilibrium models of
wave phenomena in the jet engines.

(2) Develop methods and tools for parameter identification and model validation techniques for non-
linear non-equilibrium models of wave phenomena in the jet engines.

(3) Develop methods and tools for Design of Beneficial Wave Dynamics for jet engine life and oper-
ability enhancement.

0.2 Summary of Accomplishments

The accomplishments of this research program emphasized the more promising directions of points
(2) and (3) listed above, where the uncertainty management called out in point (1) was implicitly ac-
commodated in the analysis. A particular emphasis of this research was the identification of nonlinear
models based on high-speed video of lame dynamics. This is a key component of the thermo-acoustic
feedback model studied extensively in previous AFOSR-sponsored research programs at UTRC. These
results are presented in section 1.1.

These concepts were extended to nonlinear model reduction based on tangent space approxima-
tions. Here local gramians are empirically computed based on perturbation trajectories. Key com-
ponents of this research were the development and application of algorithms for approximating the
nonlinear manifold for which a data set belongs, and identification of the nonlinear dynamics on the
particular manifold. This lead to the concept of a hybrid (switching) locally affine dynamic texture
model, based on the local tangent space approximation of the manifold. These results are presented
in section 1.2.
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Stability Analysis of Systems with Symmetry-Breaking is presented in section 1.3. Here, sufficient
conditions are established for a nonlinear PDE model of thermo-acoustics with wave-speed mistuning.
In investigating a new approach to stability analysis of the nonlinear thermo-acoustic model we de-
veloped the concept of continued fraction convergence as a condition for stability. Initial results are
presented for a string of oscillators and the concepts are extended to the application of subsystems
connected in a ring structure.

The results of the current research are summarized in 7 journal papers (1 published, 1 accepted, 5
in preparation), 9 conference papers, and another 2 conference papers currently in preparation.
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Chapter 1

Summary of research results

1.1 Empirical Modeling

In this section we discuss results on empirical modeling. The first set of results relate the standard lin-
ear dynamic texture modeling framework to the recently introduced concept of dynamic mode decom-
position. These results are built on principal component analysis of the data set. The next two results
focus on the identification of nonlinear systems and the analysis of metastability with the analysis of
the Markov operator governing the transport of distributions on the phase space.

1.1.1 Dynamic Mode Decomposition

Through the singular value decomposition, we show that the eigenmodes computed from dynamic
mode decomposition are the same as those computed from a linear dynamic texture model computed
from principal component modes. Comparison results are presented based on

Dynamic Mode Decomposition (DMD) is a method that allows the extraction of dynamically
relevant flow features from data (66, 69, 68]. The relation of DMD to eigenmodes of the Koopman
operator appear in [63].

Consider an ordered sequence of (vectorized) data snapshots z;, € RM where k = 1,..., N For
integers j, k where j < k, let X;‘ = [zj,...,Zk] s0

T
X:=XVN={[z),...,zn5] = [z?,...,z}}] : (1.1)

The row vectors z; € RN can be considered as records of scalar time-series data at a single spatial
location indexed by I. In particular

z1(1: N-1) z1(2: N)

N- . N .

Xy = : , Xg' = :
zm(1: N -1) zm(2: N)
Suppose that there is a linear model A such that

XY = AXN-1. (1.2)
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Suppose also that we can write

Xy =x{-1s (1.3)
where S is the companion matrix
0
S=[ I s]:=C+D (1.4)
N-2

where s is the least squares approximation of zy = Xf’ ~1s, so

-
- [xf’-lTx{" -1] xN¥-Tgy, (1.5)
and p 0 "
C:=[IN—2 0], D:=[ 0 s—el], eT:[l,O,...,O]. (1.6)

Write the eigen-decomposition of S as
SW =wQ, (1.7)

where the columns of W are the eigenvectors and (2 is a diagonal matrix consisting of the eigenvalues.
Then
AXNIW = XN-1sw = XV-lwaq (1.8)

which implies that Xf’ W approximate some of the eigenvectors and 2 approximates some of the
eigenvalues of A. We refer to these eigenvectors as DMD modes, denoted by @, with

¢ =XNw. (1.9)

Note that the DMD modes are composed of the normalized columns of W scaled by the data Xf’ ~E,
Therefore, each column of ® will be scaled according to the data. This is analogous to taking the
Fourier transform of a time-series record, where associated with each frequency is a magnitude re-
sponse. This is discussed further in the next section. Therefore, associated with each DMD eigenvalue
will be a magnitude given by the norm of associated column of ®.

Principal Component Analysis

Principal component analysis (PCA) is also known as proper orthogonal decomposition (POD) (35],
Karhunen-Loeve Decomposition [72], and singular value decomposition (SVD) [36]. The SVD of a
matrix XY 1 is

X! =uzv?, (1.10)
where U and V are unitary, UTU = I and VTV = I. A popular method of computing POD is the
method of snapshots.  First form the correlation matrix

K =XN-1TxN-1 2 yzuTUusyT = vAvT, (1.12)




where A := X2, Through the svd relation, the POD modes U are computed from V as follows:
U=XN-1yA-g, (1.12)

which is identical to (1.10), however K is of smaller dimension than Xf’ ~1 and therefore computing
V, A through (1.11) is sometimes easier than computing (1.10) directly.
Combining (1.5) with (1.10) results in

—1TN-1]"1 T
s = [XFTXY T XNy
=VA~WTVvEUTzN
=VE WU Tzy. (1.13)

From (1.12),
iy =XV s = XN WEWTzy = USVIVE WU Tzy = UUT 2y, (1.14)

which implies that the least squares approximation of zn is precisely the projection of zn on to the
modes U.

Conditioning

The algorithm for computing the eigenvalues of S given by (1.4) is ill-conditioned. Here we discuss the
use of SVD as described in [67] to result in a more robust algorithm. We essentially apply equations
(1.7, 1.8, 1.10) and apply a similarity transform on S so that

§:=xvTsve-l (1.15)
We first combine (1.8, 1.10) to get
AUSVTW = UsvTSwW =UuzvTwa. (1.16)

Pre-multiplying (1.16) by U7 and applying (1.15) results in

UTAUEZVTW = svTsw = zvTwa (1.17)
=svTsvE-tsvTw = svTwa
=8y =Y0Q, (1.18)

where Y := ZVTW is the matrix whose columns are the eigenvectors of S. Referring back to the
discussion in [67], note that according to (1.17, 1.18), UTAU = S, and the DMD modes are

d=UY =USVTW. (1.19)




It remains to be shown how to compute S directly from the data. Define ef’ 1= UTX{V 1=
2VT = [6;,...,0x-1] and similarly define G);F = [0;,...,0k] . First, swap the left and right sides of
(1.3) and pre-multiply by U7 and post-multiply by VE~! to result in, after applying (1.10),

§=zvTsve1=yTx)ve! (1.20)
=T [UEVZN“T, :z:N] ye-!
=[5 on| Ve
=eYeN-1Tp!, (1.21)

The above equations involve computing the SVD of the data X and projecting the data onto the PCA
modes U.

Truncation

The scaling by A~! in (1.21) motivates truncating the model because A often features singular values
with very low magnitude and the high-indexed entries of Gf’ ~1. In other words, the projection of the
data on to the higher order PCA modes results in time-series data with very small absolute value,
which is the case when the number of snapshots N is smaller than the spatial dimension of the data
M,ie. N < M. Suppose that instead of computing the DMD on the snapshot data, we first project
on to the low-dimensional space spanned by a truncated set of PCA modes U,. Equations (1.2,1.3)
become

ey =UTXY =UTAX) ' =vuTAav,@Y ! .= 4,07 . (1.22)
ey =Uurxy =vurxy-'s =edls, (1.23)
which results in .
AeY 1=01s (1.24)
Rearranging (1.24) yields .
A, =0ON-1gys-l=gvTgoye-1=3§. (1.25)
In particular, by (1.13)
§=[ef e vz

=
- [@g-l,szvz-IUTxN] vl
= [@Q—l,e,v] ve-l

= oYl (1.26)
which resembles (1.21). Furthermore, by (1.14),

by =UTey =UTUEVTs = ) 1s = @N-'vE-1UTzy = @V 'vE-lgy. (1.27)




Dynamic Texture Model with PCA

Dynamic texture models are essentially linear dynamic models describing the dynamics of PCA coef-
ficients under the assumption that the driving noise is second order Gaussian (see the work of Soatto
et al. [23]). Suppose the data snapshots {zr}k=1,. n are the output of a linear dynamical system

0k+1 = Aek ol B'Uk, (128)
i = VO + wy, (1.29)

where ¥ = [¥,,...,¥k| € R™*X chosen to minimize the objective '
ming || XN1 - OV 1L, (1.30)

Note that in [23] the minimization is based on all N data snapshots and here we leave out the last
snapshot. Under the assumption of stationarity, the optimal solutions will be similar in both cases.
The minimizing solution of (1.30) is obtained through the SVD of Xf/ “1 = UxVT by taking

v=U eVl=zyT (1.31)
The linear dynamic texture model is found by minimizing the objective
ming||©) — AOY 2. (1.32)
Note that
of = [0}, 0n] = [81 Dy, UTzn] = @Y~ [Dy, VE-10Tap], (1.33)
where
Dy = [ I;_z ] . (1.34)

From (1.13) we have VE~1UTzy = s, and combining this with (1.33,1.51) gives

ey =el's (1.35)

The optimal solution of (1.32) is given in closed form by

-1
A=eYel-1T [ef’*‘@f’-lT] (1.36)
-1
= ef-isef-1" o] lel ]

=eN-lgve[zvTvy]™

=eVM-lsvs (1.37)

which is the same as (1.25) showing that the dynamic texture model is the same as the linear model
used in DMD. By application of the SVD (1.10), another way of writing (1.36) is simply

A=eYeN- 1T [zyTys)™ (1.38)
=efeN-1Tp-1-3. (1.39)




Following (23], the sample input noise covariance @ is estimated by

s lndN '
Q=ﬁ o7 . (1.40)

=]
where 9; = 0;4+1 — A6;. The driving noise input matrix B is estimated such that

BBT = Q. (1.41)

1.1.2 Nonlinear Model Identification from Spectral Analysis of Markov Operator

We provide a numerical approach to estimating nonlinear stochastic dynamic models from time-series
data. After possible dimensional reduction, time-series data can be used to construct an empirical
Markov model. Spectral analysis of the Markov model is then carried out to detect the presence of
complex limit cycling, almost invariant, and bi-stable behavior in the model. Model parameters are
expressed as a linear combination of basis functions over the phase space. A least squares minimization
is used to fit the basis function coefficients in order to match the spectral properties of the respective
Markov operators. The approach is demonstrated on the estimation of a nonlinear stochastic model
describing combustion oscillation data.

We provide an approach for estimating nonlinear dynamic models, possibly driven by noise. The
estimation approach is based on comparing the spectral properties of the empirically constructed
Markov operator with the model-based Markov operator. A nonlinear model is fit such that its as-
sociated Markov operator has similar spectral properties as the empirical Terms in the stochastic
differential equation model are estimated by a linear combination of basis functions. The coefficients
appear in the numerical approximation of the Markov model, and are fit using least squares mini-
mization. Model validation is motivated spectral methods developed in [53] [51] for the comparison of
dynamical systeins.

Spectral method for analysis and comparison

In this section, we describe spectral methods for the analysis and comparison of the dynamical systems.
The material for this section is taken from [20](53}(51]. Also, see [45] for an introduction to these
concepts.
Consider the stochastic dynamical system
oz d

2™ b(z) + o(z)¢, =€ X € RY, (1.42)
or its discrete time equivalent,

Tp+1 = T(zk, &k) (1.43)

where each z; € X € R? is the state vector and & € U is sequence of i.i.d. random noise. Associated
with T is a stochastic transition function p(z, A), which gives the transition probability to jump from
point z € X toset A € B(X), where B(X) is the Borel sigma algebra of X. For deterministic dynamics
i.e., when &, = 0, we have p(z, A) = dr(;)(A), where § is the Dirac delta measure. Stochastic transition
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function can be used to define two linear transfer operators called as Perron-Frobenius and Koopman
operators. Here we consider the finite dimensional approximation of the P-F operator. To do this we
consider the finite partition of the state space X i.e.,

X ={Dy,....Dm} (1.44)

such that D; N D; = 0 for i # j and U, D; = X. P-F operator on the finite dimensional vector space
R™ can be represented by a matrix P : R™ — R™ as follows:

_ w(T71(D;) N Dy)
pL(D;) ’

The resulting matrix is non-negative and because T : D; — X, Z;":l P;; =11ie., Pis a Markov or a
row-stochastic matrix.

Important complex dynamical features of the dynamical system T can be captured using its Markov
matrix P. For example long term or asymptotic behavior of the dynamical system 7' is captured by
theé invariant measure or more appropriately physically relevant measure. Finite dimensional approx-
imation of the invariant measure or the outer approximation to the support of the invariant measure
can be obtain from the left eigenvector of Markov matrix P with eigenvalue one. i.e.,

By

hi=1,..m (1.45)

pP=1-p

Similarly the presence of periodic or limit cycling behavior in T can be captured by the complex
unitary spectrum and the corresponding eigenvectors of P. Moreover if the Markov matrix P has real
eigenvalue close to one then it is the indicator for the presence of almost invariant or bistable behavior
in the dynamical system 7. For more detail on this topic refer to [19][20].

We outline an approach to numerically approximate the stochastic dynamical system (1.42) based
on the empirically obtained Markov matrix P.

Set

d
aij(z) = Y ou(x)osk(z) (1.46)
k=1

Under certain regularity conditions [45], the evolution of the density, p under (1.42) satisfies the
Fokker-Planck equation,

d d
o 1 8? 8
E - Ei‘]Z::l 81'{617]’ (at.‘lp) - ; 617,' (btp)
= Fp, t>0,z R (1.47)

Consider the finite-dimensional (discrete-space) approximation of F by discretizing the underlying
phase space X with the partition X following (1.44). Therefore, the distribution p is approximated
by a finiite-dimensional vector u(z) € R™ and let

U = diag{u} € R™*™, (1.48)
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where diag{u} is a diagonal matrix whose entries are the elements of the vector u. Similarly, the
operators are approximated by their finite-dimensional matrices:

F=~F, FeR™™,
Continuing this way, write the discretized approximations of @;j(z) and b;(z), respectively,
aij(z) = Aij(z) € R™, bi(z) =~ Bi(z) € R™. (1.49)

Similarly we write the discretized differential operators

L8 p2ermm O o pegmem (1.50)
2312,‘an L4 J 61:,- y ’ :
Next, define the matrices:
D*(U) := [D4U,...,D4U,. .., D3U] € R™*md (1.51)
DY(U) := [DyU,...,DiU,...,D4U] € R™™4 (1.52)
D(U) := [D*(U), D}(U)] € R™(md*+md) (1.53)
and
[ An ] [ B |
A= Aij € Rmd’, Bl Bj € Rmd,
| Add | | Ba |
C:= [ g } € R(md*+md) (1.54)

The infinite-dimensional Fokker-Planck operator is approximated in finite dimensions by
Fp= Fu= D(U)C. (1.55)
We next write (1.47) in discrete time, with

@ ~ U1 — W
R TR
where 4t is the time step which the time-series data was obtained. Substituting this into the left side
of (1.47) results in the Markov matrix appearing equation (1.45),
U] = U + 6tF‘U4
= [’U.g + 5tD(L’)C]
= Py (1.56)
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We empirically obtain P directly from data by discretizing the underlying phase space (RY) to
obtain this discrete-space approximation. The spectrum of P is given by PV = VA, where

V = [vg,v1,v2,...,Um], A=diag(Ao,A1,---,Am)- (1.57)

Under suitable conditions there exists a steady distribution vy where Ag = 1.
Consider a single eigenvector v € R™ with ecigenvalue A\. We have

Pv=[v+68tD(V)C] = Mv, (1.58)
and after rearranging,
' A-1
ot
This can be solved for C' which will give the functional forms of b(z) and o(z) appearing in (1.42). Of

course, for a single eigenvector, there are multiple solutions. We solve (1.59) for multiple eigenpairs;
the first k for example. We have

D(V)C =

vi=w. (1.59)

D(Vo) wo
D(Vi-1) Wi—1
Again, for k small, there are multiple solutions. We next restrict C' to be a linear combination of k

basis functions. Let {¢;} be a set of basis functions where ¢; : R - R, j =0,1,2,...,n — 1, such as
Hermite polynomials. Define the matrix consisting of these basis functions as column vectors:

®:= [¢01 ¢1,. .-, ¢ﬂ-1] €R™*™. (161)
We rewrite (1.54) in terms of these basis functions. For each 1, j take
Aij = 3 ‘I)Ozij, aij € R™, (1.62)
B; = ®8;, B; €R"® (1.63)
and
[ a1 ] [ 61 ]
o= | ajj e R, B:=1| 06 | € R™
| Qdd ] | Ba ]
ci= [ Z ] € R(nd*+nd) (1.64)
As in (1.51-1.53), define the differential operators restricted to these basis functions:
D}(U) := [D}U®,...,DLUS,..., D3,U®] € R™" (1.65)
DL(U) := [D1U®,...,DU®,...,DU®] € R™*™ (1.66)
Do (U) := [D3(U), Dy(U)] € R™*(nd*+nd), (1.67)
12




Rewrite equation (1.60) as
Dg (Vo) wo
e= - Wk; (168)
Dg(Vi-1) W1

where Dg 1. € kax("dg*""d), = R("d2+"d), Wi € R¥™,
We solve for ¢ through least squares:

min [Dg k¢ — Wil" [Dexe — Wil, (1.69)

Dg yc =

which results in
¢ = [DjxDox) " D} Wi (1.70)
We would like to compare the eigenfunctions of the approximated model with the eigenfunctions
appearing in equation (1.57). We compute the approximate Markov matrix:

d d
D(c) := Y D}diag{®oy;} + Y  D}diag{®5:}. (1.71)
ij=1 i=1

The approximate Markov matrix is then
P=1+6tD(c). (1.72)
We then compare the spectrum of D(c) with the spectrum in (1.57).

Application Example

In this section, we construct a reduced order model describing nonlinear oscillations of flame dynamics.
High-speed video data was obtained from the UTRC combustion rig described in [73], and proper
orthogonal decomposition (POD) was used for dimension-reduction. We briefly describe how the
Markov matrix was empirically constructed.

Data Reduction using POD Modes

From the image data, the mean field was removed from each of the images and the POD modes were
computed. It was found that the first two POD modes account for more than 80% of the energy found
in the data set. Hence, we consider a two dimensional state space £ € R%. The two-dimensional time

series is constructed via (D10
] _ | Tk | _ 1, Yk
oy [ - ] - [ (62, ) ] 07
where g denotes the k-th image with the mean field subtracted.

The time series of POD coefficients, given by {z}, were obtained from projecting the original data
onto the POD modes. The resulting phase space (plotting z; s vs. a4, for k = 1,...,N) is shown
in figure (1.1). The phase portrait shows a noisy limit cycle where the density of points is clearly
non-uniform. The rotational speed of the limit-cycle varies depending on the state. This indicates
that a nonlinear model is necessary to match this time series.
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Projected Phase Space
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-150 -100 ~50 0 50

Figure 1.1: The phase space of the coefficients resulting from projection of the data onto the first two
POD modes

Empirical Markov Model

A Markov model was computed from this time series data through equation (1.45). The result is a
non-reversible Markov model with many eigenvalues, as shown in Figure 1.2. Note that the eigenvalues
can be collapsed toward the origin by taking powers of P. The eigenvector corresponding to the unit
eigenvalue, shown in Figure 1.3 confirms the steady distribution of the trajectories.

{ eaveloee < Mav . e | Crveoup news oo 1

- -

HEE
3 ~

]
1
f
i
\
1 - - -
{
1

BN

T

Figure 1.2: The eigenvalues of the Markov model.

The phase of the eigenvector associated with the 2nd eigenvalue is shown in Figure 1.4. It reveals
the oscillatory nature of the dynamics.

Nonlinear Model Extraction
In this section we develop a second order stochastic differential equation model of the form

&y = bi(z1,22) + on1&a
Zg = ba(z1, 22) + 02262 (1.74)

to capture the essential dynamical behavior of the reduced set of data from the previous section.
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magnitude of first eigenvector
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Figure 1.3: The first eigenvector shows the invariant distribution
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Figure 1.4: Magnitude(left) and phase(right) of the second eigenvector




Before going into the details of the model we would like to summarize some of the key dynamical
features of the reduced set of data as captured by phase portrait in Figure 1.1.

¢ Dynamics consist of stable limit cycle where the motion along the limit cycle is in clockwise
direction.

e The limit cycle is parameterized by angle §. Speed along the limit cycle is nonuniform, speed of
the limit cycle is less for 6 € [0, —5| compared to other value of 6.

We would like the model to capture this essential dynamical behavior along with the amplitude of
the limit cycle and the average speed or the frequency of the limit cycle. We choose a reduced set of
eigenvalues closest to the unit circle to approximate the Markov model. Due to the cyclic nature of
the data, we use basis functions @ in radial coordinates, expressed as separable functions in r and 6

oro(xy,22) =¥
k,2j(x1,2) = r¥ cos(j8)
bk 25+1(%1, T2) = ¥ 5in(j6),
k=01,2,.5, j=0,135:.
where
Ty =rcosf
To =rsinf
The least squares fit (1.70) resulted in basis function coefficients producing the terms appearing

on the right hand side of (1.74). The functions by (z1,z2) and ba(z),z2) appear in Figures 1.5 and 1.6,
respectively. The resulting functions o1 (21, z2) and o22(z1, 2) are qualitatively similar.

Figure 1.5: The estimated b; (z1,z2) appearing in (1.74).

The resulting approximate eigenfunctions of the estimated Markov matrix are shown in Figure 1.7
and 1.8. Figure 1.7 shows the approximate invariant distribution which closely resembles that shown
in Figure 1.3. Similarly, the second complex-valued approximate eigenfunction is shown in Figure 1.8
which closely resembles the second eigenfunction shown in Figure 1.4. The match in the eigenfunction
indicates a good match between the model and the data in terms of long term dynamics.

16




Bl
o™ A N2
20 ' o
. X
> -2
o -
: ' -4
-20
_6
-40
A -8
- -
-150 -100 -50 ° 50

Figure 1.6: The estimated be(z1,z2) appearing in (1.74).

abs evec1
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Figure 1.7: The approximate first eigenvector of the estimated Markov matrix
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Figure 1.8: The approximate magnitude(left) and phase(right) of the second eigenvector of the esti-
mated Markov matrix
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1.1.3 Analysis of Complex Spectra and Metastability

The purpose of this paper is to develop methods for model reduction for diffusion processes that
exhibit cyclic behavior. For this purpose we extend techniques based on the spectral theory of Markov
processes to the case of complex spectra. The main idea is to augment the state process for the
diffusion with a clock process. For each complex eigenvalue for the original diffusion there exists a
real eigenvalue for the augmented process. Results concerning metastability (or quasi-stationarity) are
then applied to the augmented process. For the special case of a linear diffusion in two dimensions,
this is analogous to analyzing the process in a rotating coordinate frame. The results are illustrated
through a linear diffusion, and an empirical model of combustion dynamics.

Extensions of the classical Wentzell-Freidlin theory for model reduction have appeared in numerous
papers over the past decade. Much of this work has concerned Markov processes that are reversible
(59, 21, 13, 37, 14, 15]. The goal in these papers is to understand the statistics of exit times from a
given subset of the state space.

Some results for non-reversible Markov chains are available. Fill’s paper [29] extends the convergence-
rate bound of Diaconnis and Stroock [22] to non-reversible Markov chains. For this purpose the
transition matrix is replaced by its symmetrization, and the rate of convergence is bounded by the
eigenvalues of the resulting self-adjoint matrix. These ideas are the basis of [38] that establishes exit
time statistics from a set for a discrete-time non-reversible Markov chain.

Extensions of Wentzell-Freidlin theory to non-reversible processes appeared for the first time in
[38]. The foundation of this paper is the theory of quasi-stationarity, building on the work of [27].
The main idea of [38] can be summarized as follows: Suppose that X = {X(¢) : t € T} is a diffusion
process evolving on X = RY, with transition semigroup denoted {P* : t € T}. We say that A is an
eigenvalue with (non-zero) eigenfunction h if for each ¢,

Pth = eMp

Suppose that A is real and negative. In this case we can assume that h is also real-valued, and we also
assume that it is continuous. We would like to consider Doob’s h-transform, Pt:=e~MI PtI,, where
I, is the multiplication operator: For each z € X and A C X we have Iy(z, A) = g(z)I{z € A}. The
h-transform, like importance-sampling, is intended to lead to a new Markov model whose properties
provide insight into the problem of interest. Unfortunately { P!} is not a valid Markov semigroup since
h may take on negative values. Instead we consider the following restricted definition.

Let M denote a connected component of the set {z : h(z) > 0}. Welet T, = inf(t > 0: Y (t) € M¢),
and for t € T denote t, = t A T,. The twisted semi-group is defined for each t € T, z € X, and A € B
(i.e. A Borel measurable) via,

1
h(z)

P'(z, A) == ——E, [e M h(X(t.))I{X(t.) € A}] (1.75)
Under general conditions, it is shown in [38] that the twisted semi-group corresponds to a diffusion
process on M that is exponentially ergodic. Exponential ergodicity of the twisted process then implies
a form of quasi-stationarity, and from this it follows that the exit time from M is approximately
exponentially distributed with parameter |A|.
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The inspiration for consideration of the twisted process was the work of [27], and techniques from
the large deviations analysis contained in [5, 41].

The main result of this paper is the extension of the results of [38] to the case in which A € C is
complex. The main idea is to augment the state process for the diffusion with a clock process. For each
complex eigenvalue for the original diffusion there exists a real eigenvalue for the augmented process.
Results concerning metastability contained in [38] are then applied to the augmented process.

It is assumed that X = {X(t) : t € T} is a diffusion process evolving on X = R?, with transition
semigroup denoted {P* : t € T}. Letting u denote the drift, and ¥ the covariance matrix, the
differential generator (see e.g. [45]) is defined for C* functions h: X — C by Dh (z):=

d d?
Zu;(m)ah(z) +1 %:Zij(z)mh(x) (1.76)

or, in more compact notation,
D =u-V + jtrace (£A)

For each 3 > 0 the resolvent kernel is given as the Laplace transform,
x
Rg:= / e Ptptdt. (1.77)
0

We write R := Rz when § = 1.
It is assumed as in (38] that the diffusion is V-uniformly ergodic: For a probability measure v on
B, some constants b < oo and I' > 0, a function s : X — [0,00), and a V : X — [1,00):

DV < —-TV +bs

R > s®uv (V4)

The second inequality in (V4) means that the function s and probability measure v are small. This
terminology and the outer product notation are taken from [57]. This ‘smallness assumption’ is
equivalently expressed,

R(z,A) > s(z)v(A), zeX, AeB.

Suppose that D has a complex eigenvalue A, which we write as
A=-T+id
with I' > 0, and ¥ # 0, with associated eigenvector h. Consider the clock process defined by,
®(t) = ®(0)e'”, t>0, (1.78)

with initial condition restricted to the unit circle in C, which is denoted U. The clock process is
Markov, as is the bivariate process,

Y(t) = (g((:))) t>0.
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In fact Y is a diffusion on Y = X x U whose covariance matrix for y is given by,
Ty (y) := diag(X(x),0). (1.79)

Throughout the paper we adopt the notation y = (z,¢) for y € Y, withz € X, ¢ € U.
We define for each real 8 € R the real-valued function,

95(w) = Re ((€®/d)h(x)), y=(z,¢) €Y. (1.80)

Proposition 1.1.1 For each € R the function gg is an eigenfunction for the process Y, with
eigenvalue Ay = —T.

Proof. The differential generator for X can be extended in the obvious way to Y. Given the
simple dynamics of ® we have for any function f: U — C,

Df (¢) = i96f'(¢)
With f(¢) = 1/¢ the eigenfunction equation holds,

Df (¢) = —idg/(¢)* = ~idf(¢), @€ U.

Hence the generator applied to gs gives,

Dgs (y) = Re ((¢¥/¢)Dh ()
+ Re (—id(e?/$)h (x))
= Re ((¢’’/¢)Ah(2)
+ —id(e®/$)h (z))
= -Tgs(y), yeYy.

The twisted process

To define the twisted process we fix 8 = 0 in the definition (1.80), and let M denote a connected
component of {y : go(y) > 0}. It is assumed that this set has nice topological properties: M is equal
to the closure of its interior. Following [38], we define T, = inf(t > 0 : Y (¢) € M€), and the associated
twisted process as follows:

The twisted process is the Markov process Y with state space M whose semigroup is defined
using (1.75) based on the eigenfunction go. Equivalently, for each f € Lo(M), and any = € M,

P f (y) == Ey[f (¥ (5))] =

LB, lgo(Y (s AT2))£(Y (s A T.)) exp((s A Ta)D)]
90(y)

The twisted process has a generator defined for C? functions f: Y — C by,

Df = g5 'D(gof) + I'f. (1.81)
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Two key assumptions are imposed in [38]: First, that the diffusion is hypoelliptic (which is used
to conclude that the resolvent possesses a density with respect to Lebesgue measure). Second, it is
assumed that the gradient of the eigenfunction does not vanish on the boundary of M. The gradient
assumption is maintained here. To ensure that Y is hypoelliptic we assume that X is elliptic, meaning
that its covariance is strictly positive. These assumptions are collected together as follows:

¥(z) >0,
V2g0(y) = Re (¢7'Vh(z)) # 0,Vy € M. ' (1.82)

It is not hard to see that the assumption (1.82) always fails when X is a diffusion in one-dimension.
We see in the next section that it does hold in many examples, such as the linear diffusion in two or
more dimensions.

The following result is a consequence of Theorem 3.7 of [38]. The reader is referred to this paper
for a precise definition of metastability — Its main conceptual conclusion is that the exit time 7, is
approximately exponentially distributed, and that the process ‘almost’ reaches a ‘local’ steady-state
prior to exiting M.

Theorem 1.1.2 Assume that (V4) is also satisfied for a continuous function V: X — [1,00). Suppose
that h is an eigenfunction with complez eigenvalue A = —I' + i satisfying the following conditions:

(a) 0<T' <T.
(b) go(y) > 0 for allz € M, and go(z) = 0 for z € OM := M \ M.
(c) Condition (1.82) holds. Consequently, for y € oM, (Vgo(z))"Zy (v)(Vgo(y)) > 0.
(d) Kp:={z € X:V(z) < ngo(z)} is a compact subset of X for each n > 1.
Then,
(i) The escape-time from M for the twisted process is infinite a.s. for Y(0) =y € M;
(ii) The twisted process is Vi -uniformly ergodic with Vy(y) = V(z)/go(y), y€ Y.
(iif) The set M is both metastable and V -metastable, with exit rate '(M) = T'y(M) =T. In

particular,

= ife >
EICET'] oo ife> F
< 0o otherwise.

O

The proof of Theorem 1.1.2 amounts to establishing a version of (V4) for the twisted process. We
can follow the same steps as in [38] to construct the required Lyapunov function.
For a given 0 < a < 1 write

\71:=g()_1V, Vg::go-lgg, a.ndV:=171+VQ.
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We denote Gy = log(go), where g is the eigenfunction for Y. From (V4) and the eigenvector equation
we have,

DV, = [I;'DIy, +Tilgy'V
= g5 [PV +IV]
< - -T)Vi+bgy's
DV; = [I;'Dly +Tllgg

9 '[Dg§ + g

agd [l - (1 — &) VGITy VG).
Following arguments in [38], we obtain a version of (V4) for the twisted process: For a finite constant
by, and a compact set S C M,

DV < =T =)V + bols.

Examples
We discuss an analytic example as well as an example motivated by an empirical model of limit-cycling
combustion dynamics.
Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process,
dX (t) = AX(t)dt + dW (t), (1.83)

where W is a full-rank Gaussian process. Suppose that A is a complex eigenvalue, and v a (non-zero)
left-eigenvector for A, satisfying
ATv = Av.

The generator for X shares this eigenvalue, and the function A(z) = v"z is an eigenfunction:

Dh(z) = (Az)"Vh(z) + jtrace (SAA ()
=z7ATv = Ah(z).
We now check to see if (1.82) is satisfied. We have,

V:g90(y) =Re(¢71v), y=(z,9)€Y.

This is zero if and only if Re (¢~!vi) = 0 for each k = 1,...,n. If this holds for some ¢ € U, it then
follows that v* = i¢~'v is a purely real eigenvector for A, which is impossible since A is complex. We
conclude that (1.82) is satisfied.

Consider the two-dimensional model with




where a > 0. The matrix A possesses a pair of complex eigenvalues in the left-hand complex plane,
satisfying I' = a:
eig(A) = —a ti.

A left eigenvector for A is given by v™ = [~1, 4], which gives
Re (e 'vTX(t)) = cos(t) X1 (t) + sin(t) Xa(t).

If X(0) satisfies Re (»7X(0)) > 0, we can expect that Re (e #u7X(t)) > 0 for a period of time
approximately exponentially distributed, with mean 1/a. Applying Theorem 1.1.2 we conclude that
the first exit time T, = inf(t > 0 : Re(e 7*v7X(t)) = 0) shares the following property with the
exponential distribution:
E[e”'1{=°° s /
< oo otherwise.

Empirical Model of Limit-Cycling Combustion Dynamics

We apply the analysis to a Markov model describing the nonlinear dynamies of limit-cycling combustion
oscillations. The data was obtained from an experimental combustion rig described in [73]. The two-
dimensional phase space was obtained as in {?] as follows. A POD analysis was done on the temporal
flame images and the data was projected on to the first two dominant POD modes. The dynamics of
the flame data projected on to this two-dimensional space is shown in Figure 1.1. The phase portrait
shows a noisy limit-cycle where the direction of oscillation is in the clockwise direction.

A discrete time Markov model was constructed for the dynamics on this two-dimensional space.
The eigenvalues are shown in Figure 1.9. The complex eigenvalues suggest cyclic behavior and a
metastability analysis can be done using the corresponding eigenfunctions as described in the previous
sections.

2 £ 22 E

Y.

Figure 1.9: Eigenvalues of the Markov matrix associated with the combustion dynamics data shown
in Figure ?7?.

We describe the metastable sets associated with the eigenvalues shown on the right in Figure

1.9. In particular, the eigenvalue at X := |Ale® = 0.98 + j0.995 is associated with an eigenfunction
that varies in the tangential direction and has no radial variation. The associated eigenvector h(z)
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is complex as shown in Figure 1.10. We take the clock process to be the discrete time equivalent of
(1.78), .
or =€¥%gy,  k=1,2,...,

where 1 is the angle of the eigenvalue A. Setting ¢ = 1, the eigenfunction of the associated twisted
process is .
90() =Re (e *h(z)), y=(z,¢) €Y.

& 8 B ¢
l-l-nu

-150~-100 =50 ¢ S0

Figure 1.10: The complex eigenvector h(z) (magnitude on right, phase angle on left) associated with
the complex eigenvalue A = 0.98 + 70.995 shown in Figure 1.9.

The plot in Figure 1.11 shows the sign of go(y) for different phase-shifts (i.e, after multiplication
by e~ for different values of k.). Note how the sets with positive support and negative support
rotate around the phase space and the exit time marks the point when the system exits one of these
rotating sets (i.e., exhibits a phase-shift in its oscillations).

phase = Onié.
)
0.9
0
L 08
-1

150100 50 0 50

phase = 2xM4

Figure 1.11: The sign of the eigenfunction with a complex eigenvalue close to the unit circle, rotating
with incremental phase-shifts of I between 0 and 3*.

The eigenvalue A = 0.89 is purely real and hence has a purely real eigenvector with no tangential
variation, but variation in the radial direction. The sign of the eigenvector is shown in Figure 1.12.
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Since the eigenvalue is real, this eigenvector is not associated to any cyclic behavior. This eigenvector
and the related exit time simply indicates when the system moves from a state of low amplitude
oscillation to high amplitude oscillation, and vice-versa.

abs evec 8

Figure 1.12: The sign of the radial eigenvector of the Markov matrix.

Finally, the complex eigenvalue A = 0.851+ 3j0.99 has an eigenvector exhibiting both tangential and
radial components. Note again how the metastable set rotates around the phase-space, as indicated
by the phase-shifted sign of the eigenvector shown in Figure 1.13.

Figure 1.13: The sign of the eigenvector with tangential and radial variation, shown rotating with
incremental phase-shifts of 7 between 0 and -341.

By examination of the magnitudes of the eigenvalues, the eigenvectors associated with these three
metastable sets have decreasing mean exit times. This is intuitively confirmed by the fact that the
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sets become increasingly complicated. A hierarchy of such sets along with the spectral properties of
the Markov matrix can be used to construct a reduced order model of the measured process through
techniques described in [64].

We have presented a framework for analyzing Markov models with semi-rotational dynamics by
considering the complex spectra, and illustrated the approach using an application involving limit-
cycling combustion oscillations. The ultimate goal of this research is to construct low order models
that capture essential structure, such as the hidden Markov models proposed in [38]. The most
interesting open problems are application specific. For example, can we justify the consideration of
a two-dimensional model obtained from POD coefficients? If not, what are alternative approaches to
treat the full-order Markov model?

1.2 Model Reduction

1.2.1 Tangent Space Approach to Nonlinear Model Reduction and Identification

In this section we discuss a novel approach for model reduction of nonlinear systems with output
measurements based on the analysis of linear derivative maps [74]. With every nonlinear system
one can associate a linear derivative map that evolves vectors on the tangent space. At each point
along a nominal trajectory, a local observability gramian defined on the tangent space is computed
based on the linear perturbation dynamics, which is then used to identify a balanced local coordinate
system. These local coordinates can be patched together to construct the global coordinates for the
reduced order representation of the system. A computational approach is described for the empirical
construction of the gramian on the tangent space and for the alignment of the local coordinates to
obtain the global coordinates. Simulation results and examples are presented to demonstrate the
application of the proposed method.

Previous methods of model reduction include, for example, techniques based on proper orthogonal
decomposition (POD) for of fluid flows problem [11], [62], balanced truncation in control systems [54],
[65], [43], spectral analysis of transfer operators [51], [52], and fast and slow manifold decomposition
[30] in dynamical systems.

Derivative Gramian and Model reduction

Consider the model reduction problem for a discrete time dynamical system with output measurement
as follows:

Tre1 = flzr)
v = h(zx) (1.84)

where x € X C R" is a compact state space and y € Y C R™. Associated with the nonlinear system
is a linear derivative map obtained from the linearization of the system along a nominal trajectory.
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The linear derivative map evolves vectors on the tangent space and is defined as follows:

ksl = g—i(zk)nk =: A(zr)nx
b = %(xk)"]k =: C(zx)mk (1.85)

where A(zx) : Toy X — Tz X and C(zk) : Tz X — Th(s,)Y . Important information about the sys-
tem dynamics can be obtained from the linear derivative map. For example, the Lyapunov exponent,
which can be thought of as the generalization of eigenvalues from linear systems to nonlinear systems,
are obtained from the linear derivative map. The negative (positive) value of maximum Lyapunov
exponent implies exponential convergence (divergence) of nearby system trajectories. Evaluation of
the derivative map at the trivial solution is widely used in the local stability analysis of the trivial
solution.

Under suitable technical conditions {74], for a given point z on the nominal trajectory the observ-
ability gramian

o0 k-1
Q) =" (1‘[ A(z,)) C' (zi)Clax) ] Al=) (1.86)

k=0 \j=0 j=0

is well defined. It is easy to check that Q(x) is positive semi-definite and hence defines a pseudo-
metric on the tangent space at z, with (£,7)g(,) = ¢ Q(z)n, where £ and 7 are vectors belonging to
T,X. Furthermore, one can verify that Q(z;) = A'(:ce)Q(:rgH)A(:z:g) “+ CI(:I:()C(:I.'() where 44 =
f(z¢), which resembles equation (7) in [42], where Lall and Beck write the Lyapunov inequality for a
generalized observability gramian.

Since Q(x) is positive semidefinite we know that there exists a unitary transformation U(z) as
a function of z such that U'(z)U(z) = I and E(z) = U(z)Q(z)U (z) is a diagonal matrix. Now
consider the coordinate transformation on the tangent space ¥ =U(z)n, n="U ()¢ so that Yr,; =
U(zgs1)A(z)U (2i)tn = A(xk)wk and ¢p = C(:ck)U (:ck)m The derlvauve gramian in the new
coordinates can be written as Q(z) = So2, A (zf ) C(ax)’ C(zx)A(zf™"). Now

A@y™") = Algr-1)Alr-2) - A=)
U(zr)Ali—1)Al@r—2) - - A(ze)U (z¢)
U(ze) Azt 1)U (z¢) (1.87)

Hence we have
Qze) = Ulze) > A'(zf)C (@) Clai) Alzf U (e)

= U(z)Qze)U (ze) = E(ze)

Note that the local coordinate U(z) defined at each point of the tangent space provides a diagonal
decomposition of the derivative gramian at each point z. One would like to patch these local coordinate
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to construct the global coordinate on the phase space. Here we proceed formally and assume that
such global coordinate system exists i.e., z = T(z) such that %ﬂ = U(z). In the next subsection
we provide a computational approach for aligning these local coordinates to approximate the global
coordinates.

We assume that in the diagonal matrix ¥X(z) has the following structure.

21 0
ol ( 0 22)
and that ¥; >> X,. Let z = T'(z) and we partition the state z based on the partition of its derivative

gramian ¥ ie., z = (21, 22) = (Ti(z), Tz(z)) = T(x).
It turns out that the reduced order system with the output measurement

2 = N(f(T(,0))
g = T (z,0) (1.88)

can be shown to have non-positive Lyapunov exponents with diagonal derivative gramian ¥, (2, 0).

The computation of the empirical gramians is similar in spirit to [43] and [62] but with a key
difference: the formulae in [43] subtract the temporal means from the trajectories, which is not
applicable in the current setting. Indeed, for the empricial gramian based on the derivative mapping,
we must track the trajectories of the nominal mean states and outputs.

Local Tangent Space Alignment

The global coordinate system T computed from the localized coordinates so that %ﬂ ~ U(z) can be
approximated through an alignment procedure. Denote the K-dimensional vector all ones by ex. We
approximate the global coordinates T using the initial condition data points in {Nj ... Ny} following
the procedure of [79]. Further analysis and refinements appear in [78, 76, 46]. Locally, the balancing
coordinates are given by the transformation ¥y = U’(x¢)Nj. Suppose that there is sufficient overlap
between the sets of initial conditions [78] and that there are M distinct initial condition points.
Furthermore, suppose that the partition is such that z; € R%. In other words, the reduced order
model will be of dimension d. We now construct the global coordinates 7 for k = 1,...,N. Write
Ty = [1},...,7&] and seek to minimize Ey = T} (I — fexek) — Lx¥x for each k. The alignment
matrices L can be determined separately by use of the Moore-Penrose pseudo-inverse. The global
coordinates T}, are approximated by minimizing
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