Multifunctional Poro-Vascular Composites for UAV Performance Enhancement

J. P. Thomas
US Naval Research Laboratory
Multifunctional Materials Branch, Code 6350
Washington, DC 20375 USA
202-404-8324; james.p.thomas@nrl.navy.mil

2nd Multifunctional Materials for Defense Workshop

July 31, 2012
Multifunctional Poro-Vascular Composites for UAV Performance Enhancement

1. REPORT DATE
31 JUL 2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Multifunctional Poro-Vascular Composites for UAV Performance Enhancement

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Naval Research Laboratory, Multifunctional Materials Branch, Code 6350, Washington, DC, 20375

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 2nd Multifunctional Materials for Defense Workshop in conjunction with the 2012 Annual Grantees’/Contractors’ Meeting for AFOSR Program on Mechanics of Multifunctional Materials & Microsystems Held 30 July - 3 August 2012 in Arlington, VA. Sponsored by AFRL, AFOSR, ARO, NRL, ONR, and ARL.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
20

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

• Introduction & UAV Application
• Functional Overview
• Fluid-Phase Modeling
• Electro-Wetting Phenomena
• Fabrication & Vascular Flow Control
• Summary

Contributors: Marriner Merrill, Natalie Gogotsi, Kristin Metkus, Siddiq Qidwai, David Kessler, Mike Baur, Rick Everett, and Alberto Pique

Acknowledgement: Office of Naval Research (NRL 6.1 Core Program)
Poro-Vascular Composites

Multifunctional structural “skin” materials with surface pores and internal vascular channels filled with an ionic-liquid whose height and shape at the pore exits is actively controlled.

Key Features
• Flexible structural skin laminate with $t \sim \text{mm}$.
• Surface-roughness control on sub-mm scale.
• Structure-roughness multifunctionality.

Fluid-Phase Surface Morphologies

$V = 0$

non-wetting

applied voltage

vascular pumping

wetting
UAV Applications

Structural skin layer with active surface roughness control for drag/heat transfer tuning → enhanced performance & energy efficiency.

<table>
<thead>
<tr>
<th>Surface Configuration</th>
<th>Normalized Heat Transfer, St/St₀</th>
<th>Normalized Skin Friction, C_f/C_f₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Dimpled</td>
<td>1.3-1.6</td>
<td>1.2-2.2</td>
</tr>
<tr>
<td>Domed</td>
<td>1.4-2.5</td>
<td>2.5-3.3</td>
</tr>
</tbody>
</table>

Aerodynamic Notions

Skin-friction drag (C_f) versus Reynold's number (Re_L) for Flat Plates with Surface Roughness (ε/L)

Total Drag = (skin-friction + pressure) drag + induced drag

Surface Roughness Effects
Increased roughness (ε/L) →
- no effect on C_f in laminar flow regime,
- significant increase in C_f in turbulent regime,
- transitions to turbulent boundary-layer flow at lower Re.

Reference: www.hpcnet.org/upload/directory/.../15698_20080506135629.ppt
Aerodynamics Notions (cont’d)

Pressure drag affected by boundary-layer flow separation!

Total Drag = (skin-friction + pressure) drag + induced drag

Airfoil Boundary-Layer Separation

Surface Roughness Effects

Increased roughness (ε/L) →
- induces transition to turbulent boundary-layer flow at lower Re,
- turbulent boundary-layer remains attached → lower pressure drag,
- laminar boundary-layer flow separates → higher pressure drag.
Functional Overview

- **Pore Fluid Meniscus Shape**
 - EWOD electroding
 - IL properties
 - Pore configuration

- **Fluid Height in Pore**
 - Channel configuration & surface properties
 - Pump characteristics
 - IL properties

Structural Properties
- Material properties, Laminate, pore array, channel configurations

Surface Morphology Properties
- Fluid shape and height control

Integration into structure

Multifunctional Composite for System-Level Performance and New Capabilities

Thermal Control Applications:
- heat-flow switching,
- enhanced thermal dissipation,
- enhanced “fin” efficiency

UAV Applications:
- new aero-control capability
- energy efficiency
- reduced weight

Other Applications:
- surface reflectivity
- surface damage sensing
- surface healing
Fluid-Phase Modeling

Bond Number

\[B_0 = \frac{\Delta \rho g d}{\gamma / d} \]

- \(B_0 < 1 \) → gravity negligible
- \(B_0 \sim 0.1 \) PV composites

Can ignore gravity!!
Fluid-Phase Modeling

Laplace-Young: (capillary physics)

$$\Delta P = \frac{2\gamma}{r}$$

Young-Lippmann: (EWOD)

$$\cos \theta = \cos \theta_0 + \frac{\varepsilon_0 \varepsilon}{2t\gamma} V^2$$

Geometry:

$$r = -\frac{d}{2 \sec \theta}$$

Circular pores \rightarrow spherical geometry

d = pore diameter
h = distance to meniscus top
θ = contact angle
r = radius of curvature
$\Delta P = p_f - p_a = \text{fluid “gauge” pressure}$

$$\Delta P = \frac{-4\gamma}{d} \cos \theta \quad & \quad h = \frac{d}{2} \left(\frac{\sin \theta - 1}{\cos \theta} \right)$$
Modeling Results

Three Regimes

1. **A-B**: pore filling (constant \(r \& p\))
2. **B-C**: pore-surface transition (\(\theta \rightarrow \theta + \pi/2\))
3. **C-D**: fluid spreading (\(r \uparrow \& p \downarrow\))

Key Implications

- For stable behavior beyond peak pressure points (e.g., C or E):
 - displacement-pumping avoids uncontrolled spillage from pore,
 - hysteresis prevents siphon from pore with smallest contact angle.
- Large non-wetting contact angle not needed; anything >90 deg OK.
- Domed geometry natural \(\rightarrow\) others (flat or dimple) require polarization.
Electro-Wetting on Dielectric (EWOD)

Influence of applied potential on contact angle.

Lippmann-Young Equation:

\[\cos \theta = \cos \theta_0 + \frac{1}{2\gamma} \left(\frac{\varepsilon_0 \varepsilon}{t} \right) V^2 \]

- Apparent contact angle
- Intrinsic contact angle (zero voltage)
- Permittivity of dielectric layer(s) over thickness
- Interfacial tension (IFT) of ionic liquid
- Applied potential
Electro-Wetting on Dielectric (EWOD)

Typical behavior

Contact Angle, θ

Electric Potential, V

- non-wetting
- wetting
- advancing
- receding
- hysteresis
- saturation
- ideal (L-Y) behavior

Design Objectives:
- maximal $\Delta \theta$ with V
- minimal hysteresis
EWOD and Meniscus Characterization

flat plates \rightarrow single (capillary) pore \rightarrow PV pore arrays

FTA 1000 Drop-Shape Characterization
- Microscope lens: 0.5 to 12x magnification
- Side-, top-view cameras to 60 frames/sec

EWOD Characterization Procedure

- **Measurement Index, n**
 - Drop Width [mm]: 0.4, 0.8, 1.2, 1.6, 2.0
 - Contact Angle, θ [deg]: 90, 100, 110, 120, 130

- **Aqueous 0.1 M NaCl Solution**
- Conductive Kapton XC substrate
- Parylene-C (5.0 um) dielectric
- Teflon AF 1600 (200 nm) hydrophobic
- Applied potential: 0 ($\pm 50, 100, 150, 200$) volts
Flat Plate EWOD Characterization

Substrate Effects

Fluid Composition Effects

Key Implications

• Aqueous (0.1 M NaCl) fluids show larger $\Delta \theta$ versus applied potential,
• $\Delta \theta$ hysteresis due to variations in surface electrode layer properties.
Layer Deposition Effects

Kapton HN + Parylene HT + Teflon AF

Kapton RS200 + Parylene HT

$(\Delta h)_{\text{max}} \sim 600 \text{ nm}$
Fabrication

- **EWOD experiments:**
 - Flat specimens for electroding and IL shape control studies.
 - Glass capillary “single-pore analogs” for meniscus shape control studies.

- **PV composites experiments:**
 - Non-functional prototypes for fabrication technique assessment.
 - Functional PV composite prototypes for fluid control and pumping demonstrations.

Laser Micromachining System

Higher-speed possible via laser raster with stationary workpiece.
5-Layer Laminate Design

Processing Steps:

- Kapton RS bonded to Cirlex then laser micro-machined to create pores and channels,
- Glass capillary bonded to main channel for external-fluidic connection,
- Kapton HN bonded to seal channels,
- Assembly vapor-coated with Parylene-C and spin-coated with Teflon AF.
EWOD Electroding in PV Composites

Materials; thicknesses; and processing challenges

Pore Cross-Section

Key Challenges
- Require EWOD electroding on pore walls and surface at exit;
- Must avoid conductive paths between IL and solid-phase.
Fluid Height Control in Pores

- **Objective:** assess uniformity of fluid filling of pores.
- **Setup:** poro-vascular prototype without electroding layers:
 - 1000 μm diameter pores, 8 x 8 array,
 - external displacement pump control,
 - water, isopropyl alcohol fluids.
- **Measurements:**
 - qualitative video

Results
- Fluid constrictions at pore entries allowed uniform fluid delivery to all pores in array,
- Vascular designs with appropriate fluid curvatures needed via channel-pore geometry and surface coatings to assure uniform delivery.
Ongoing and Future Work

• Fluid shape-height control and characterization:
 o EWOD experimentation with glass capillaries (“single-pore”) and pore-array configurations,
 o Particle additives in fluid for enhanced EWOD performance,
 o Vascular network design for filling and fluid height control in pore,

• Structural characterization and interactions:
 o Mechanical properties,
 o Deformation interactions with fluid control,

• Application to airfoil aerodynamics:
 o Wind-tunnel experiments with “static” silicone PVC models on airfoil geometry for drag, lift, and transition characterization and proof-of-concept,
 o Computational simulation of surface morphology effects on boundary layer flow using airfoil models and direct numerical simulation,
 o Computational modeling/design to determine optimal surface morphologies for airfoil control applications.