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Poro-Vascular Composites 

Multifunctional structural “skin” materials with surface pores 

and internal vascular channels filled with an ionic-liquid whose 

height and shape at the pore exits is actively controlled. 

Key Features 

• Flexible structural skin 

laminate with t ~ mm. 

• Surface-roughness 

control on sub-mm scale. 

• Structure-roughness 

multifunctionality. 

Fluid-Phase Surface Morphologies 



UAV Applications 

Reference: Kithcart, M.E. & Klett, D.E., J Enhanced Heat Transfer, 3(4), 1996. 

Surface 

Configuration 

Normalized Heat 

Transfer, St/Sto 

Normalized Skin 

Friction, Cf/Cfo 

Flat 1.0 1.0 

Dimpled 1.3-1.6 1.2-2.2 

Domed 1.4-2.5 2.5-3.3 

Surface Roughness Effects 

Structural skin layer with active surface roughness control for drag/heat 

transfer tuning  enhanced performance & energy efficiency. 



Aerodynamic Notions 

Skin-friction drag (Cf) versus Reynold’s number (ReL) 

 for Flat Plates with Surface Roughness (e/L) 

Surface Roughness Effects 

Increased roughness (e/L)   

• no effect on Cf in laminar flow regime, 

• significant increase in Cf in turbulent 

regime, 

• transitions to turbulent boundary-layer 

flow at lower Re. 

Reference: www.hpcnet.org/upload/directory/.../15698_20080506135629.ppt 

Cf 

ReL 

L/e 

Total Drag = (skin-friction + pressure) drag + induced drag 
profile drag drag due to lift 



Aerodynamics Notions (cont’d) 

Pressure drag affected by boundary-layer flow separation! 

Airfoil Boundary-Layer Separation 

Total Drag = (skin-friction + pressure) drag + induced drag 
profile drag drag due to lift 

Surface Roughness Effects 
Increased roughness (e/L)   

• induces transition to turbulent boundary-layer flow at lower Re, 

• turbulent boundary-layer remains attached  lower pressure drag, 

• laminar boundary-layer flow separates  higher pressure drag. 

Lift (L) & Drag (D) Forces 



Functional Overview 

EWOD electroding 
IL properties 

Pore configuration 

I Pore Fluid Meniscus Shape 

Channel configuration 
& surface properties 
Pump characteristics 

IL properties 

t 
I Fluid Height in Pore I 

Material properties, 
Laminate, pore array, 

channel configurations 

Fluid shape and 
L.....---~ height control -+-

I Structural Properties I + I Surface Morphology Properties 

Thermal Control Applications: 
heat-flow switching, ~ 

enhanced thermal d issipation, -. 
enha nced "fin" efficiency 

~ Integration into structure 

Multifunctional Composite for 
System-Level Perfo rma nee 

and New Capabilities 

Other Applications: 
surface reflect ivity 

surface damage sensing 
surface healing 

UAV Applications: 
""' new aero-control capabil ity 
,.. energy efficiency 

reduced weight 



Fluid-Phase Modeling 

B0 < 1  gravity negligible 

B0 ~ 0.1 PV composites 

Can ignore gravity!! 
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Fluid-Phase Modeling 

d = pore diameter 

h = distance to meniscus top 

q = contact angle 

r = radius of curvature 

P = pf - pa = fluid “gauge” pressure 

Circular pores  spherical geometry 
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Modeling Results 

Three Regimes 

1. A-B: pore filling (constant r & p) 

2. B-C: pore-surface transition (q  q + p/2) 

3. C-D: fluid spreading (r ↑ & p ↓) 

Key Implications 
• For stable behavior beyond peak 

pressure points (e.g., C or E): 

o displacement-pumping avoids 

uncontrolled spillage from pore, 

o hysteresis prevents siphon from 

pore with smallest contact angle. 

• Large non-wetting contact angle not 

needed; anything >90 deg OK. 

• Domed geometry natural  others 

(flat or dimple) require polarization. 
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Electro-Wetting on Dielectric (EWOD) 

Influence of applied potential on contact angle. 
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Electro-Wetting on Dielectric (EWOD) 

60V, 93° 

0V, 118° 

80V, 76° 

Typical behavior 

Design Objectives:  

• maximal q with V 

• minimal hysteresis 



EWOD and Meniscus Characterization 
flat plates  single (capillary) pore  PV pore arrays 

FTA 1000 Drop-Shape Characterization 

• Microscope lens: 0.5 to 12x magnification 

• Side-, top-view cameras to 60 frames/sec 

EWOD Characterization Procedure 

Measurement Index, n
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Flat Plate EWOD Characterization 

Aqueous 0.1 M NaCl solution 

Conductive Kapton RS or XC substrates 

Parylene-C (5.0 um) dielectric 

Teflon AF 1600 (200 nm) hydrophobic 

Substrate Effects 

Voltage, V [volts]
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Key Implications 

• Aqueous (0.1 M NaCl) fluids show larger q versus applied potential, 

• q hysteresis due to variations in surface electrode layer properties. 
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Layer Deposition Effects 

Kapton HN 

+ Parylene HT 

+ Teflon AF 

Kapton RS200 

+ Parylene HT 

AFM 

10 mm 

10 mm 

10 mm 

10 mm 

10 mm 

(h)max ~ 600 nm 



Fabrication 

• EWOD experiments: 

o Flat specimens for electroding and IL 

shape control studies. 

o Glass capillary “single-pore analogs” for 

meniscus shape control studies. 

• PV composites experiments: 

o Non-functional prototypes for fabrication 

technique assessment. 

o Functional PV composite prototypes for 

fluid control and pumping demonstrations. 

Laser Micromachining System 

workpiece 

Video 
Imaging 

X-Y 
translation 

Microscope 
objective 

Pulsed UV 
Laser, 266nm 

Laser micro-
machined 
channel 

Higher-speed possible via laser 

raster with stationary workpiece. 

Higher-resolution laser 

lens + workpiece 

translation. 



PV Composite Prototyping 

5-Layer Laminate Design 

Processing Steps: 

• Kapton RS bonded to Cirlex then laser micro-

machined to create pores and channels, 

• Glass capillary bonded to main channel for 

external-fluidic connection, 

• Kapton HN bonded to seal channels, 

• Assembly vapor-coated with Parylene-C and 

spin-coated with Teflon AF. 

A 

A 

Section A-A 



EWOD Electroding in PV Composites 
Materials; thicknesses; and processing challenges 

Pore Cross-Section 

Key Challenges 
• Require EWOD 

electroding on pore walls 

and surface at exit; 

• Must avoid conductive 

paths between IL and 

solid-phase. 



Fluid Height Control in Pores 

• Objective: assess uniformity of 

fluid filling of pores. 

• Setup: poro-vascular prototype 

without electroding layers: 

o 1000 mm diameter pores, 8 x 8 array, 

o external displacement pump control, 

o water, isopropyl alcohol fluids. 

• Measurements: 

o qualitative video 

Results 
• Fluid constrictions at pore entries allowed 

uniform fluid delivery to all pores in array, 

• Vascular designs with appropriate fluid 

curvatures needed via channel-pore geometry 

and surface coatings to assure uniform delivery.  



Ongoing and Future Work 

• Fluid shape-height control and characterization: 

o EWOD experimentation with glass capillaries (“single-pore”) and pore-array 

configurations, 

o Particle additives in fluid for enhanced EWOD performance, 

o Vascular network design for filling and fluid height control in pore, 

• Structural characterization and interactions: 

o Mechanical properties, 

o Deformation interactions with fluid control, 

• Application to airfoil aerodynamics: 

o Wind-tunnel experiments with “static” silicone PVC models on airfoil 

geometry for drag, lift, and transition characterization and proof-of-concept, 

o Computational simulation of surface morphology effects on boundary layer 

flow using airfoil models and direct numerical simulation, 

o Computational modeling/design to determine optimal surface morphologies 

for airfoil control applications. 


