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ABSTRACT 

The open sea is an area where numerous legal activities occur, such as trade, 

transportation, and scientific research; but it is also a place that attracts persons 

with illegal, criminal, and terrorist intentions. Naval nations, often acting in 

alliance, conduct operations to stop this illegal activity. Maritime-interdiction 

operations (MIO) are the usual type of operation employed, and, because of their 

nature, require robust communications and uninterrupted flow of information. 

Establishing communications and networks in the open seas via terrestrial 

means is possible only in certain areas and is not feasible around the clock. 

Therefore, the distribution of the data and information needed for maritime-

interdiction operations is significantly limited as to speed, accuracy, and 

efficiency. 

 This thesis examines how small satellites can be integrated in an MIO ad-

hoc network and how their advantages and disadvantages affect the flow of 

information among the nodes. 
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I. INTRODUCTION  

A. BACKGROUND 

1. Small Satellites 

When Sputnik, the first artificial satellite, was put into Earth’s orbit in 1957, 

very few people imagined the development of the satellite industry as it has 

occurred over the past 55 years. Today it is feasible to place and control orbital 

systems with masses from more than 6,000 kg to less than 0.1 kg. Large 

satellites have masses greater than 1,000 kg; medium satellites have masses 

from 500kg to 1000kg, mini satellites have masses from 100kg to 500kg, and 

small satellites have masses of less than 100 kg (Satellite mass categories, n.d.). 

This research is focused on the last category.  

Small satellites are subclassified as microsatellites (10–100 kg), 

nanosatellites (1–10 kg), picosatellites (0.1–1 kg), and femtosatellites (< 0.1 kg) 

(Helvajian & Janson, 2008). Because of their size constraints, small-satellites 

have limited capabilities; but the advance of technology transforms them day by 

day into a more and more useful tool for various applications. 

Over the last 55 years, various entities have launched more than a 

thousand small satellites, with missions such as space-environment data 

collection, scientific tests, communications, etc. Although the trend has been 

towards heavy spacecraft that are highly sophisticated and capable of a wide 

variety of missions, the advantages of small satellites continue to interest the 

space industry. 

Advancements in technology have significantly improved the capabilities 

of small spacecrafts in relation to their mass. This progress accords with Moore’s 

law, which observes that the number of transistors on integrated circuits in 

computing hardware doubles every two years. As microelectronics become more 

powerful, they need less space and power and become cheaper every year. On 

the other hand, the modern solar cells that power a satellite can offer more than 
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twice the energy they produced in the 1960s, and energy-storage density has 

also vastly improved. Typically, small satellites, and especially nanosatellites and 

lighter, lack onboard propulsion, but microthruster systems such as cold-gas 

engines, small solid-rocket engines, solid-rocket thruster arrays, and even 

electric propulsion, can already be integrated to add propulsion capability.  

The significant advantage of small satellites is cost. No matter how 

expensive the space project envisioned, the actual manufacture, putting in orbit, 

and control of a small satellite is feasible even for individuals. Picosatellites and 

cube satellites have long been the tool of choice for university research because 

of their low cost; but major organizations like the United States Department of 

Defense are now showing interest in an attempt to reduce operational costs. 

These satellites have become virtually the only choice for those who need orbital 

assets for their operations or projects and could not afford them until now. 

2. Maritime Interdiction Operations 

Today the fight against the asymmetric threat worldwide is of major 

importance for people’s safety around the globe. The term asymmetric threat 

includes threats or techniques that are “a version of not “fighting fair," which can 

include the use of surprise in all its operational and strategic dimensions and the 

use of weapons in ways unplanned. Not fighting fair also includes the prospect of 

an opponent designing a strategy that fundamentally alters the terrain on which a 

conflict is fought.” An example of asymmetric threat is “terrorism by proxy, used 

by various Islamic states against U.S. and European interests” (Asymmetric 

threats, n.d.). All nations try to be prepared for the unexpected. This relatively 

new threat has no boundaries, no borders, and no ethical laws or constraints. 

Ten years ago, the September 11 attacks, which killed 3,000 persons, initiated a 

different perspective on asymmetric threats, and since then countries from all 

over the world have tried to collaborate to counter the new common enemy. 

A product of this collaboration in the maritime environment is maritime-

interdiction operations (MIO) (Figure 1). According to Dr. Daniel Goure these 
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operations traditionally are “activities by naval forces to divert, disrupt, delay, or 

destroy the enemy’s surface military potential before it can be used effectively 

against friendly forces” (Goure D., n.d.). Today, MIOs are interrelated with 

counterterrorism, counter-infrastructure protection (CIP), weapons of mass 

destruction (WMDs), proliferation, piracy, embargo operations, and law 

enforcement (NMIOTC Journal, 2011). Countries conduct these operations in a 

plethora of places, including ungoverned and under–governed regions like the 

Gulf of Aden, where cooperation among all participants is not only demanded, 

but extremely challenging. 

MSA

MSOs MIO

CIP

WMD 
PROLIFERATION

PIRACY

EMBARGO

LAW
ENFORCEMENT

COUNTER 
TERRORISM

 

Figure 1.   MIO perspective (Adapted from NMIOTC journal) 

MIOs cover a plethora of concepts. They can be very sensitive missions, 

conducted in very different environments such as littoral waters or open seas by 

a variety of participating services with different cultural, procedural, and 

technological backgrounds. Any system able to support these operations is 
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clearly complex and must be studied from a network point of view. Such a 

network should be robust, reliable, scalable, and efficient to accommodate all this 

diversity. In addition, it should be able to connect peers with different policies, 

procedures, and capabilities. Therefore, it is necessary for an MIO network to be 

adaptive. 

This research demonstrates that the integration of small satellites into MIO 

ad-hoc networks can be a way of solving the need for robustness, reliability, 

scalability, and efficiency in these networks, which are critical because of the 

special nature of MIOs. As described above, small satellites are orbital assets 

that, with the advancement of technology, have many potential capabilities, 

including operating efficiently as nodes inside networks. Since such integration 

has never been tested, this paper proposes a large-scale experiment for further 

research into the advantages and disadvantages of small satellites as nodes in 

an MIO network. 

B. OBJECTIVES 

The objectives of this study are to examine the following: 

• Which kind of adaptation benefits an MIO environment 

• What is the design of a large-scale MIO experiment with small 

satellites 

• How a large-scale MIO experiment with small satellites can be 

implemented 

C. RESEARCH TASKS 

1. Adaptation 

What are the characteristics an MIO network should have in order to be 

adaptive, and what does this mean to its structure.  
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2. Building Blocks and Relationships Among Parts 

What are the building blocks an MIO network with small satellites 

experiment should have, and which relationships must be present among parts 

for this model to be realistic and functional. 

3. Design Parameters 

What criteria, design variables, and functional constraints should be taken 

into account because of the nature of the experiment. 

4. Scenario 

What type of scenario best fits for exploring in depth the usability of small 

satellites in an MIO network. 

5. Team Composition and Experimentation Roles 

Who are the most suitable personnel for the described experiment, and 

what are their roles. 

6. Data Analysis and Collection Plan 

What kind of data should be collected by the team, and what volume, 

frequency, and other parameters will determine the collection plan. 

D. SCOPE 

This thesis explores implementation of small satellites into fully operational 

MIO networks. Since the potential integration of these orbital assets into ad-hoc 

networks such as MIO networks has never been exploited, the author develops 

an initial design for a large-scale experiment for future research. 

E. METHODOLOGY 

• Various appreciations of the term “adaptation” in ad-hoc networks 

are described from the existing literature. 

• The author presents the design of the large-scale experiment.  
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• Based on the aforementioned design, the implementation of the 

large-scale experiment is described. 

• Using different software and hardware tools, an MIO network is 

modeled and real data is monitored, collected, and analyzed during 

field experimentation, allowing the effect of orbital assets inside the 

MIO networks to be assessed and evaluated.  

F. THESIS ORGANIZATION  

Chapter I includes an introduction to small satellites: advantages, 

disadvantages, and capabilities, based on current technology. A description of 

MIO tasks, the organization of missions, and theaters of operation follows, 

leading to the integration of small satellites into MIOs, which is the purpose of 

this study. The research objectives, tasks, scope, methodology, and organization 

of the study complete the chapter.  

Chapter II lists definitions and characteristics of ad-hoc networks from the 

literature. In this chapter, we describe the building blocks, relationships among 

parts, parameter criteria, space architecture, design variables, functional 

constraints, and Pareto sets of a large-scale, field-experimentation design. The 

basic principles of satellite coverage complete the chapter.  

In Chapter III, we introduce the research scenario, team composition, and 

experimental roles, as well as the data analysis and collection plan and the 

evolution of a large-scale experiment.  

In Chapter IV we describe AISSat 1 and the Atlas Craft Targetr threat-

detection and analysis tool. We also describe our models and the results of STK 

simulations. The possible satellite, with its system and network characteristics, 

and a look at smart-push vs. smart-pull theory conclude the chapter.  

Chapter V presents conclusions and recommendations for future 

research.  
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II. AD-HOC NETWORKS, ADAPTATION IN AD-HOC 
NETWORKS, EXPERIMENTATION, MIO NETWORKS AND 

SATELLITE COVERAGE 

A. AD-HOC NETWORKS 

Most MIO operations in open seas are based on a decentralized type of 

network described as “ad hoc.” These networks are out of range of any terrestrial 

base station that can support and enhance connectivity. For this paper, the term 

“ad-hoc network” refers to networks with devices that are free to associate with 

any other device on the network within link range. Ad-hoc networks do not rely on 

preexisting infrastructure such as access points or routers. Instead, each node is 

mobile, acting as a terminal or router, or both, and “participates in routing by 

forwarding data for other nodes, and so the determination of which nodes 

forward data is made dynamically based on the network connectivity” (Wireless 

ad-hoc network, n.d.). These nodes often divide the network into groups or 

clusters; clustering is a very significant factor in their efficiency. Clustering 

reduces the amount of data needing to be exchanged for maintaining routing and 

control information and for the construction and maintenance of “cluster-based 

virtual-network architectures”  (Basagni, n.d.). 

The limitations and challenges for these networks are many. Some of 

them cannot presently be addressed and some have been addressed to a certain 

degree due to advancements in technology. The limitation and at the same time 

the challenge of coverage is the most important thing in MIO communications, 

and satellites can add much benefit. Orbital assets, however, are constantly 

moving objects, especially LEO satellites, and each time a satellite has the 

opportunity to participate in an ad-hoc network, it finds that conditions have 

changed. Thus, the integration of small satellites into MIOs requires adaptability. 

The network must be always ready to include an orbital asset or to disengage, 

according to asset position, the weather, atmospheric conditions, and many other 
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factors that also play a role in the connection of satellites with terrestrial nodes. It 

is therefore essential that the term “adaptation” be clarified in this paper. 

B. ADAPTATION IN AD-HOC NETWORKS 

1. Adaptation as a Term 

Russel L. Ackoff states that: 

A system is adaptive if, when there is a change in its environmental 
and/or internal state that reduces its efficiency in pursuing one or 
more of the goals that define its functions, it reacts or responds by 
changing its own state and/or that of its environment so as to 
increase efficiency with respect to a goal or goals. (Ackoff, 1971)  

Thus, when a system detects less efficiency because of changes to its 

parameters or environment, it has the ability to alter itself or its environment to 

regain efficiency (some or all, if possible). Ackoff distinguishes four types of 

adaptation. “Other–other” adaptation occurs when the system modifies its 

environment due to external changes (e.g., the tactical command of a group of 

ships changes the area of an exercise because of bad weather conditions in the 

designed area). “Other–self” adaptation occurs when the system modifies itself 

due to external changes (e.g., a group of ships changes the range of operation 

between units to achieve connectivity). “Self–other” adaptation occurs when a 

system modifies its environment because of internal changes (e.g., the command 

of a group of ships decides to divide into two subgroups to perform two-scenario 

training, so the initial area of the exercise is altered to support the new situation). 

Finally, “self–self” adaptation occurs when the system modifies itself to 

compensate for an internal change (e.g., because the ship coordinator of the 

group’s communication assets is ordered to leave the area and go contribute to a 

search-and-rescue effort, another ship of the team undertakes coordination of the 

team) (Ackoff, 1971). It is crystal clear that a truly adaptive system has the ability 

to sustain its efficiency no matter how many or what kinds of changes occur due 

to complexity in its environment or itself. 
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2. Adaptation as a Systems-Thinking Concept 

“Systems thinking is a discipline for seeing wholes. It is a framework for 

seeing interrelationships rather than things, for seeing patterns of change rather 

than static snapshots” (Senge, 2006). Very often, these wholes are very 

complicated systems—networks with many nodes and numerous links, whose 

size can change for various internal or external reasons. According to J. H. 

Holland, “these systems change and reorganize their component parts to adapt 

themselves to the problems posed by their surroundings” (Holland, 1992) or by 

themselves. They are grouped under the term, “complex, adaptive systems.” An 

example of a complex, adaptive system is the immune system. It consists of 

antibodies, which are the mechanisms that destroy various kinds of invaders 

entering the body. Because the variety of forms these invaders take is almost 

infinite and the immune system cannot develop a list of all possible forms and 

prepare special antibodies for the destruction of every invader, it adapts existing 

antibodies in order to destroy new, unknown invaders. 

Based on interrelationships, complex systems are divided into clusters. 

According to Baraabasi, clustering is a generic property of complex networks. 

Strong ties are the relationships that produce clusters, and weak ties are 

relationships that connect clusters together (Figure 2). The concept of weak ties 

is of critical importance in a complex system because, as Barabasi states, they 

are the bridges to the outside world. In order for a system to get new information 

or distribute processed information, weak ties must be activated (Barabasi, 2002, 

2003). The way these ties are distributed in a network, and their number, affects 

the level of system adaptation. A network with many weak ties that connects its 

clusters in many ways gives flexibility and robustness and helps encountering 

problems; which all of them end up to an increased capability of adaptation. 
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Figure 2.   Strong and Weak Ties 

According to Holland, an adaptive system must have ways of changing its 

rules, and to do so must follow certain procedures. First of all, a sense of what 

good performance is and the development of a reward system for the parts of the 

system that causing good performance is necessary. The more a rule contributes 

to good performance, the stronger the possibility that it will be used for future 

decisions. This procedure can help the system use the best rule from those it has 

already tried, but it cannot create new rules—for this, the system needs a rule-

discovery procedure. With these two procedures, the complex, adaptive system 

is able to change its rules and increase its adaptiveness (Holland, 1992). 

Bordetsky has written many papers suggesting that a key factor for 

adaptivity in a complex system such as ad-hoc tactical networks is situational 

awareness. 

The concept of a deployable network-operations center (DNOC) offers 

adaptivity and flexibility to ad-hoc dynamic and tactical environments by 

supplying tactical units with the needed information, on time, and in an 

understandable format. Bordetsky and his team built a DNOC with the following 

criteria: 
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• Deployable/tactical infrastructure 

• Field-deployable kits 

• Flexible and adaptable system, with interchangeable parts 

• Expeditious set up and tear-down 

• Scalability to meet current and future experiments 

• Capability for multi-disciplinary collaboration 

• Promotion of real-time decision making 

Using the TNT testbed and conducting several experiments, Bordetsky 

concluded the following: 

• “Better information-visualization tools increase situational 

awareness. 

• Collaboration and shared information visualizations increase 

understanding. 

• Increased shared awareness and situational understanding 

increase the likelihood of mission accomplishment” (Bordetsky, 

2005). 

Moreover, the TNT testbed setup proves that situational awareness is a 

very important aspect of a complex, adaptive system such as an ad-hoc tactical 

network. Assuming that this system follows the idea of the seven-layer OSI 

model and by measuring the performance of the network (video, images, voice 

etc), the tactical NOC (network operations center) crew or local commanders can 

adapt easily in the application or in the physical layer to increase the 

performance of the network (Figure 3). In the application layer, one can reduce 

video or picture streaming, or allow only voice; in the physical layer, the local 

commander can move the nodes of the network around to bring them back to 

line-of-sight with the closest neighbors or change their location for better 

performance via improved signal strength (Bordetsky, 2010). Bordetsky clearly 
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suggests that feedback loops like that pictured in Figure 3 support system 

adaptation. The mechanism for this is situational awareness. As the system 

receives feedback, it becomes more aware of its current situation. With this 

knowledge, the system changes. In this particular case, the tactical NOC crew or 

local commander decides to change to a more preferable and effective form; in 

other words, the system adapts because the feedback loop results in situational 

awareness, which in turn causes changes. 

 

Figure 3.   Layers of adaptation in TNT testbed (Adapted from Testbed for Tactical 
Networking and Colaboration. International C2 Journal Vol. 4, No. 3, 2010) 

The concept of an “8th layer that extends the well-known seven-layer OSI 

model implements adaptive networking by giving every critical node” in the 

tactical network “its own specialized, network-operation center (NOC) capability” 

(Bordetsky, 2006). This new layer is the means of enabling certain nodes, called 

hyper nodes, to act as simple NOCs inside the network. In this architecture, 

every node’s awareness about its neighbors’ status and capabilities is used to 

form or reform the network for efficiency and robustness. This idea contributes 
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much to scalability. Hyper nodes are aware of the departures of existing nodes 

and the arrival of new ones, and offer that knowledge to the system to reallocate 

the best paths for distributing or gaining information. In this structure, the ability 

of a network to be adaptive is highly depended on these hyper nodes, which add 

intelligent, adaptive, self-control to the system. 

3. Proposed Application of Adaptation to Ad-Hoc, Tactical MIO 
Networks, Small Satellites and MIO 

Considering the literature on adaptation and how strong and weak ties or 

situational awareness effect adaptation to large-scale systems, we now focus on 

MIO ad-hoc tactical networks, and especially on how this adaptation can evolve 

with the use of small satellites. The reason for focusing on orbital assets and 

thinking of them as nodes in this complex system lies in the nature of MIOs. The 

need for monitoring targets, accessing various databases or experts and 

advisors distributed all around the world while being in open seas is 

circumscribed when constrained to terrestrial means. Limitations in speed, 

accuracy, and efficiency can be faced much more effectively with the use of 

satellites. 

After Sputnik, small satellites made their re-appearance as an educational 

tool, and most of them developed in universities, with applications limited by 

technical factors such as physical scaling, orbital mechanics, economics, and 

technology readiness. New technologies, however, improved their capabilities 

and made them suitable for large programs beyond the scope of education. With 

their relatively low cost and by potentially using them in constellations, small 

satellites have become an attractive solution for many commercial, and even 

military applications, that are impractical or unaffordable with large satellites 

(Helvajian et. al., 2008). 
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The scope of this paper is limited, in that it will not capture adaptation in 

MIO ad-hoc tactical networks as a whole, but instead focus on the use of small 

satellites and what changes this use will bring to the adaptiveness of MIO 

systems. 

C. LARGE SCALE FIELD-EXPERIMENTATION DESIGN 

1. The Design in General 

The design of a large-scale field experiment of an MIO with small satellites 

will include specification of the parts (building blocks) and the scale of the 

selected networking environment, which is MIO networks. The desired 

relationships among the parts, which allow the writer to model adaptation for the 

aforementioned networks, will be identified, and prototype or relevant parameter-

criteria space models and TNT 2012-1 experiment descriptions will be explored 

from literature. Next the parameter-criteria space framework for a desirable 

system model will be proposed. Finally the writer will identify both a solution for 

breaking the model down to partial relationships and the meaning of a Pareto set 

for the expected holistic model. 

2. The Building Blocks  

The selected networking environment is MIO. The building blocks are 

individuals, teams, organizations, and orbital assets who operate in order to 

establish information and knowledge sharing and decision making. These 

building blocks are the nodes of the network, and they are connected by 

communication channels, which are the links of the network. The nodes are 

connected for a particular period with terrestrial or orbital technologies and 

formulate strong and weak ties. Different clusters can appear over time and this 

continuously evolving clustering is based on many factors, such us geography, 

commonly used technology, etc. Figure 4 pictures a configuration of the nodes 

and links considered in this study. 
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3. Relationships Among Parts 

The nodes of the Figure 4 configuration are interconnected with various 

communication channels of different technologies. They constitute the strong and 

weak ties of the system. According to Levin et al, “weak ties provide access to 

nonredundant information”. They are “typified as distant” and exhibit “infrequent 

interaction”, and they are “more likely to be sources of novel information” (Levin 

et al., 2004) (Granovetter, 1973). Calvo et al. support the idea that “weak ties are 

transitory and only last for one period” (Calvo et al.,2007), so weak ties for this 

model will be links that are generated for a limited period in allow the nodes to 

have access to nonredundant information. Small satellites and their footprint will 

be the source of this model’s weak ties. Every terrestrial node that is inside the 

footprint of the orbital node is considered to always establish a weak tie (link) 

with it during the time this connection is feasible. On the other hand, strong ties 

are defined as those that exist for a long, if not constant, time and are used 

mostly for routine services and information. So for this particular model, no 

satellite link can be assumed as a strong tie. On the contrary, node connections 

with terrestrial means such as HF channels are considered strong links. 
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Figure 4.   Ad-hoc tactical MIO network 

4. Parameter-Criteria Space Architecture 

Within the framework of MIO networks, Bordetsky and Mantzouris studied 

the amount of coverage possible by deploying a number of picosatellites. More 

specifically, they ran two simulations in the Satellite Tool Kit (STK) for a 

constellation of four and six picosatellites and concluded that the approximate 

total time for satellite communications during a day is two hours or three hours 

and twenty minutes, respectively. This period represents the sum of all time 

blocks distributed during the day with durations from five to nine minutes, 

depending on the characteristics of the satellite orbit (Bordetsky et al., 2011). 

Although the orbit is a design constraint for the model, this paper will not test the 

effect of the number of satellites in the constellation to the network but rather will 

use that model (four to six small satellites used as nodes) to test what other 

characteristics of the network can affect the ability of adaptation. “Adaptation” will 
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be used in this model as the ability to distribute information among nodes when 

new arrivals or departures of nodes occur, when strong and weak ties appear or 

disappear, and when the capacity of the links varies.  

A significant aspect of measuring adaptation in MIO networks is also the 

number of links used for information flow. A robust system is better able to 

distribute information without flaw if the information makes as few hops to its 

destination as possible. Barabasi mentions the importance of the degrees of 

separation between nodes. He states that the real issue isn’t the overall size of 

the network, but the distance between any two nodes. “As we add more links, the 

distance between the nodes suddenly collapses” (Barabasi, 2002, 2003). So the 

existence of links in which small satellites are involved affects the degree of 

separation of the nodes; or in other words, affects the number of links the 

information needs to use in order to flow. With the establishment of a weak tie, 

the degrees of separation between two nodes can decrease even to 0. The 

number of weak ties can affect the system’s ability to adapt. A node that has 

many ways to distribute information or decisions is less likely to fail, so that 

makes it robust and effective. New nodes that can be embodied in the system via 

weak links add to the scalability of the system (Table 1). Finally, capacity is 

always an issue in networks. Small satellites have limits to their download or 

upload capacity, and confined access time deteriorates even more this problem. 

On the other hand, strong ties have better chances for maintaining greater 

capacity. So the combination of strong and weak links used for the distribution of 

information defines the network’s level of effectiveness. As Levin states, 

“organizations that can make full use of their collective expertise and knowledge 

are likely to be more innovative, efficient and effective in the marketplace” (Levin, 

2004). 
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Links Degrees of 
Separation 

Number of 
Links 

Scalability Capacity 

Strong 
Links 

Strong links 
can 
increase 
degrees of 
separation 

The number 
of strong 
links has 
small effect 
in ability for 
adaptation 

Strong links have 
not so much power 
to embody new 
nodes or to close 
gaps that occurred 
of nodes that 
departed. 

The extension 
of the amount of 
information can 
be achieved 
using 
collaborative 
Technologies. 

Weak 
Links 

Weak links 
can 
decrease 
degrees of 
separation 

The number 
of weak 
links has 
great effect 
on the 
ability of 
adaptation. 

Weak links have 
great power to 
embody new nodes 
or to close the gap 
of nodes that 
departed. 

Limited 
capabilities for 
upload/ 
download. Time 
is also an issue 

Table 1.   MIO network links 

5. Design-Criteria Similarities With TNT 2012-1 Experiments 

Searching for similarities in the TNT 2012-1 set of experiments, “Special 

Operations Rapid Decision-making Environment (SORDE),” experiment by the 

company Aptima, presents some common design criteria with MIO experiments, 

and particularly with the design of this paper’s experiment. SORDE aims to 

enhance distributed collaboration between tactical operation centers and 

forward-deployed units by decreasing uncertainty about the actions and status of 

distributed team members. Distributed warfighting units reduce uncertainty by 

increasing team and shared situational awareness of mission status and 

resources. Tools such as e-mail, text messages, chatrooms and file-sharing 

systems enable instantaneous information sharing across globally distributed 

teams. Forward-deployed warfighters have the opportunity for real-time reach-

back with operation centers, enhancing their situational awareness. 

Similarly, in an MIO environment, there is extended collaboration between 

forward-deployed units such as boarding teams or vessels farther away from line 
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of sight (LOS) and tactical operation centers, or even distributed experts, all 

around the world. The tool for this collaboration, this paper asserts, is the use of 

small satellites. Small satellites promise to decrease the uncertainty of boarding 

teams, for example, and increase situational awareness by connecting forward-

deployed units directly with distributed experts and providing the ability to upload 

and download data such as voice, pictures, or even videos. Just like warfighters, 

forward-deployed units in an MIO have opportunities for real-time reach-back. 

Moreover, SORDE is intended to improve warfighter decision making 

process in environments with great uncertainty because of their restricted access 

to communications channels. The result is a measurable increase in mission 

effectiveness and overall reduction of uncertainty about the status of critical blue 

forces. For their part, small satellites are intended to improve the decision-

making process for distributed units in environments where there is no way to 

communicate and exchange information except through orbital assets. The result 

will also be a measurable increase in MIO effectiveness and in situational 

awareness among the nodes of the network.  

6. Design Variables 

Design variables are those quantities or choices that are under the control 

of the model’s designer. They are system’s independent variables and determine 

what needs to be measured to understand the responses of a system undergoing 

testing. For this particular study, design variables are those that define nodes 

and links. For the nodes of this model, there are two states: orbital and terrestrial. 

The variables for the links are the number of links for each node and capacity. 

7. Functional Constraints 

Functional constraints are variables assigned by environmental factors. 

Considering the nature of an MIO, functional constraints can be many and can 

vary significantly. To understand adaptation in an MIO network with orbital 

assets, the constraints to consider are the characteristics of the orbit, time, and 

participant training. Since in this paper only small satellites are tested, the orbital 



 20 

nodes use only low-earth orbits (LEO). So apogee and perigee altitude, 

inclination, argument of perigee, right ascension for the ascending node (RAAN) 

and true anomaly are restricted to values that represent LEO. By the term “time,” 

the writer means the amount of time that an orbital node is available to the 

network. Lastly, because participant attitudes can affect the validity of 

measurements, it is assumed that all are professionals in their roles (e.g., 

boarding teams, WMD experts, nuclear/radiation experts) and equally well 

trained. Table 2 provides a consolidated view of variables and constraints. 

 

Variables Description Range 
Nodes   
Node State A node can be a 

terrestrial unit or a 
small satellite 

Orbital-Terrestrial  

Links   
Number of links The number of links a 

node has in a 
particular moment 

Numerical 

Capacity Maximum amount of 
distributed information 

bps 

Functional Constraints   
Apogee Altitude Orbit characteristic 300 Km-1500Km (LEO) 
Perigee Altitude Orbit characteristic 300 Km-1500Km (LEO) 
Inclination Orbit characteristic 0-180 degrees (by 

convention) 
Argument of Perigee Orbit characteristic 0-359 degrees (by 

convention) 
RAAN Orbit characteristic 0-359 degrees (by 

convention) 
Time Amount of time that 

every orbital node is 
available to the 
network 

Varied 

Participants’ Training  Self explanatory  

Table 2.   MIO network variable and constraints 
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8. Meaning of the Pareto Set for the Expected Holistic Model 

When we are searching for optimization in a holistic model, tradeoffs have 

to be made. This is because not all solutions always apply, as every model has 

its own constraints. The Pareto set of feasible points is the set of solutions in 

which one or more constraints have been taken into account. For this study, four 

Pareto sets will be investigated. In the x-axis (horizontal), strong and weak links 

appear, and in y-axis (vertical), scalability and degrees of separation are plotted 

(Figure 5). 

 

Figure 5.   The Pareto set 

D. MIO NETWORKS 

Mesh networks are the most common type used in MIOs until now. These 

networks are characterized by a constant change of location of their nodes, the  
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number of nodes participating, and the tactical and environmental conditions 

during operation. In a real MIO environment, almost nothing is constant, and this 

makes ensuring functionality of such a network a very challenging issue.  

To clarify the concept of an MIO network, the wave relay mesh 

infrastructure of the Center for Network Innovation and Experimentation 

(CENETIX) tactical-network topology (TNT) testbed in San Francisco Bay 

provides a good example. The cluster consists at this time of one fixed node on 

the Golden Gate Bridge (GGB) and two or more nodes on San Francisco Police 

Department patrol boats. All nodes are equipped with quad radio routers and 

sector antenna (SA) arrays from Persistent Systems, LLC (Figure 6). This small 

network provides the NPS CENETIX SA server with spectral uploads from ARAM 

sensors, GPS tracking, and video feeds. The GGB node is connected to the TNT 

backbone network, and every node connected to the GGB node can provide 

connectivity to any neighbor node that is out of range of the GGB node. This 

ability to expand provides scalability, flexibility, and adaptability in the network, 

ingredients extremely important for the success of a mission. 
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Figure 6.   Sector Antenna Array and Quad Radio Router 

On February 28, 2012, a trial took place with two patrol boats and the 

GGB node. During the trial, whenever one of the boats was out of range of the 

GGB node, the second boat relayed the signal and kept connectivity. The 

problem was when both boats were in the blind regions of the GGB node:  the 

whole network collapsed, making it obvious that the existing fixed node was a 

bottleneck for the system and that an extra node was necessary. This extra node 

could be a fixed node with coverage in the blind area or an aerial node such as a 

UAV or satellite. The latter option seems exotic for coastal waters, but in open 

seas probably represents the most effective, if not the only, solution. 

E. SATELLITE COVERAGE 

To place small satellites over an area of interest in a way that can provide 

extended coverage for an MIO network relies on many parameters, based on 

tactical situation and strategic plan. When this thesis mentions orbits in general, 
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only low-earth orbits (LEO), which are “the region of space to 2000km altitude” 

(Office of Safety and Mission Assurance, 1995),  are referred to, because this is 

where small satellites typically live and operate. Continuous LEO satellite 

coverage over an area, although technologically possible in reality, would be 

extremely expensive and, as a practical matter, not achievable. Thus, the 

operation command has to decide first on the area of coverage. With this 

information, some of the parameters of the orbit can be decided; but for an MIO, 

the area of coverage is an issue, because although you can limit the area of 

operations, illegal activities can take place, theoretically, everywhere on the open 

sea. It is difficult to exclude regions when designing a safety net around 

countries. A highly inclined orbit can cover most of the earth’s surface and, if the 

north and south poles should be included, a polar orbit is the only solution. 

Another important parameter that must be taken into account for the coverage 

plan is what part of the day the orbital assets are needed over a specific region. 

Most of the satellites in LEO revisit a place more than once a day. The frequency 

depends on the period of the orbit, but not on a specific time of the day, except 

those that follow sun-synchronous orbits. “Sun-synchronous orbits are those 

whose orbital plane makes a constant angle α with the radial from the Sun to the 

Earth” as can be seen in Figure 7 (Curtis, 2010, p.237). In other words, the asset 

is able to make passes over a particular region of the earth at the same time 

every day. This parameter can be very important for particular types of MIO 

operations. For example, usually boarding operations happen during daytime, so 

an orbital node is needed then and not during night hours. With sun-synchronous 

orbits, this is achievable.  
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Figure 7.   Sun-synchronous orbit (Adapted from Orbital Mechanics for Engineering 
Students. Second edition. Burlington, MA:Elsevier. p.237 ) 

A satellite, to be sun-synchronous, must follow the formula: 
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.
Ω = 1.991 x 10-7  rad/s (change in Ω, RAAN) 

J2 =1.08263 x 10-3 (second zonal harmonic) 

μ=398600 km3/s2 (gravitational parameter for Earth) 

R= 6378 km (Earth radius) 

e=0 (eccentricity for a circular orbit) 
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a= altitude (km) + R (semi major axis) 

i (inclination) 

Because the inclination of a satellite is difficult and expensive to change from the 

initial orbit, and all other values are constants for one altitude only, the satellite 

can be sun-synchronous for a range of inclinations. For example, for an 

inclination i=96.330, the satellite, to be sun-synchronous, should remain at 200-

km altitude. This means that only when the satellite is at 200-km altitude will it 

make a pass according to design, and this will last a limited number of days 

because of atmospheric drag. After that, the time of revisit will start to drift, and 

this must be taken into account in the design of the operation. The drawback for 

small satellites is that their altitude is not constant. Since they do not usually 

have their own propulsion systems, atmospheric drag reduces the satellites’ 

altitudes, until they reenter the atmosphere.  

In real operations, extended coverage of an area requires not just one, but 

a constellation of small satellites. The number of assets will be, determined by 

the operational requirements. The way to increase the area or duration of 

coverage is to increase the number of orbital assets. Constellations are 

principally defined by the number of planes, the RAAN of each plane, and the 

number of satellites in each plane. True anomaly is the angle between the 

direction of periapsis and the current position of the satellite, as seen from the 

center of the earth (true anomaly, n.d.). Keeping the orbit elements of the 

constellation identical and changing true anomaly, one can disperse or 

concentrate the access time above a region for a particular period during a day.  

As an example, simulating in Satellite Tool Kit, a sun-synchronous, two-

satellite constellation with the same orbital elements, and with the Gulf of Mexico 

as the area of interest, a change in true anomaly of 70 degrees to the second 

asset has the result of accessing the whole area with only two satellites every 

night at the same time (Figure 8). 
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Figure 8.   Coverage of Gulf of Mexico 

Bordetsky and Mantzouris simulated in STK a four- and a six-satellite 

constellation and chose to disperse the assets by using different arguments of 

perigee. 
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III. LARGE SCALE EXPERIMENT AND SIMULATION 

A. LARGE SCALE EXPERIMENT 

1. The Experiment in General 

The nature of MIOs is so complex—and at the same time, the satellite 

world is so advanced technologically—that it is impossible for a single 

experiment to examine and prove the level of integration that can be achieved 

between MIOs and small satellites, and the interactions that occur between the 

two. So this experiment may be considered part of an experimentation campaign 

that includes hypothesis generation and testing efforts. Alberts et al. defines an 

experimentation campaign as “a series of related activities that explore and 

mature knowledge about a concept of interest” (Alberts et al., 2002). As 

illustrated in Figure 9, “experimentation campaigns use the different types of 

experiments in a logical way to move from an idea or concept to some 

demonstrated military capability” (Alberts et al., 2002). 

Concept
(High Risk)

Demonstrated 
Capability
(Low Risk)

Maturity Process Products

Developed and Refined Military 
Capability

Demonstration

Refined Hypothesis

Preliminary Hypothesis

Discovery Experiment

Concept

Research 
and 

Development 
Priorities

JROC 
Acquisition

Military 
Capability 
Package 

Requirements

 

Figure 9.   From theory to practice (Adapted from Code of Best Practice for 
Experimentation) 
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Discovery experiments, according to Alberts, lead to hypothesis 

generation. “They generate rich insights and knowledge, they will not ordinarily 

provide enough information (or evidence) to reach a conclusion that is valid 

(correct understandings of the cause-and-effect or temporal relationships that are 

hypothesized) or reliable” (Alberts et al., 2002). Since the integration of small 

satellites in a military operation environment such as an MIO has never been 

tried before, a discovery experiment can become very useful for hypothesis 

generation. The simulations that Bordetsky et al. conducted with picosatellite 

constellations are in the discovery track. They demonstrated that small satellites 

in general can become a valuable tool for MIOs and these simulations can be the 

start for an experimentation campaign that can test hypotheses like that in this 

research (Table 1). 

This research moves one step forward from theory to practice (Figure 9). 

In this experiment, “preliminary hypotheses” are those related to the 

aforementioned relationships between the creation, use, and disbandment of 

strong and weak ties, and their effect in the adaptation of the model, as 

described in Table 1. The “refined hypothesis” is focused on evaluating the use 

of small satellites in the creation, use, and disbandment of strong and weak ties, 

and also in evaluating new parameters that appear in the information-distribution 

loop. Alberts states that “Hypothesis testing experiments are the classic type 

used by scholars to advance knowledge by seeking to falsify specific hypotheses 

(specifically if…then statements) or discover their limiting conditions. They are 

also used to test whole theories (systems of consistent, related hypotheses that 

attempt to explain some domain of knowledge) or observable hypotheses derived 

from such theories. In a scientific sense, hypothesis testing experiments build 

knowledge or refine our understanding of a knowledge domain. In order to 

conduct hypothesis testing experiments, the experimenter(s) create a situation in 

which one or more factors of interest (dependent variables) can be observed 

systematically under conditions that vary the values of factors thought to cause 

change (independent variables) in the factors of interest, while other potentially 
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relevant factors (control variables) are held constant, either empirically or through 

statistical manipulation.” (Alberts 2002). In this experiment adaptation, strong and 

weak ties are observed while the values of the aforementioned independent 

variables vary, keeping orbit, time, and training constant. 

This experimentation campaign can be completed by a number of 

demonstrative experiments. According to Alberts et al., “in such demonstrations, 

all the technologies employed are well-established and the setting (scenario, 

participants, etc.) is orchestrated to show that these technologies can be 

employed efficiently and effectively under the specified conditions.” (Alberts 

2002). For this situation, after hypothesis-testing results are clear and well 

understood, the experimenters can focus their attempts to attract support for the 

adoption of this innovation. For a successful demonstration, the team has to 

correct all the factors that caused problems to the system or discrepancies in the 

results and to investigate the settings that best describe the concept. 

2. Experiment Scenario and Initial-Plan Structure 

a. Scenario Overview 

NATO launched a constellation of six small satellites in polar orbits 

as a communication aid for a large-scale exercise to be conducted south of 

Crete. Experiment intelligence indicates that a terrorist organization wants to 

transfer fissile materials from Ukraine to Iran. A container ship (Figure 10) 

departed from the port of Odessa, Ukraine, and declared as last port of call 

Alexandria, Egypt. After leaving the Aegean Sea, and after NATO received 

information from the AIS system of the ship, the last port of call changed to Imam 

Khomeini port in Iran. NATO decided to start an MIO for this incident and ordered 

a group of four ships to proceed to the area of the contact of interest (COI). The 

COI is 150 nautical miles southeast of Crete. This MIO experiment will be 

conducted in two phases. 

Phase 1. Arriving in the area, no radioactive source is detected 

from sensors employed by the four warships, so the local command decides to 
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send a boarding team to further investigate cargo, crew, manifest, route of travel, 

and biometrics. For this investigation, the boarding team maintains network 

connectivity via terrestrial means of communication with their command-and-

control center aboard one of the four ships. They are equipped with hand-held 

active and passive nuclear/radiological detectors, cameras, and other advanced 

biometric data-collection devices. Detection results, including those from visual 

and verbal descriptions, are downloaded and stored into computers. A fast-

deployable ground station for small satellites, including SmallSat antenna, 

control, and tracking displays, is also part of the boarding team’s equipment. 

Information in the form of simple data, voice, picture, and video recordings are 

gathered by the team and sent to Europe (NATO Joint Chemical Biological 

Radiological and Nuclear Center of Excellence in Czech Republic) and the US 

(Lawrence Livermore National Laboratory), where technical nuclear/radiological 

experts will conduct analysis and adjudication. The team also sends information 

to their command-and-control center. The amount and type of data transferred 

will vary greatly, according to the availability and capacity limits of the 

communication assets and the data consumers’ requirements. Finally, the team 

decides on further actions in the boarding operation after receiving the expert 

results via satellite link (Figure 11). 

 

 
Figure 10.   Iranian container ship 
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Figure 11.   Scenario overview 

Phase 2, the Iranian container ship continues her route to Imam 

Khomeini port. NATO decides that warships participating in Operation Enduring 

Freedom at the Horn of Africa area will escort the COI to a safe port for further 

investigation, and they will need all related information. The command-and-

control center (one of the four warships in the Mediterranean) uploads 

information (data and results from the boarding operation) to the orbital assets 

and a unit of Operation Enduring Freedom uses a downlink to receive the 

information. Two more fast-deployable ground stations for small satellites are 

required for the execution of this phase of the experiment: one on the local 

command-and-control center and one on the ship at the Horn of Africa that is 

collecting the pertinent information (Figure 11). 



 34 

3. Team Composition and Experimentation Roles 

The design of this experiment requires the involvement of people with a 

variety of expertise. Military experts, operators familiar with the functions involved 

in the scenario, academic experts involved in the experiment design, data 

analysis and modeling experts, individuals with knowledge of scenario 

development, and those with technical expertise in generating and instrumenting 

a realistic environment (Alberts, 2002) will together orchestrate this experiment. 

The team comprises the following sub teams (Table 3): 

• Academic experts. These will be mostly from NPS and will be 

responsible for the control of the experiment. Principal Investigator, 

experiment plan, design and execution, a network-operation-center 

officer, ground-station controllers, and data-capturing-tools 

controllers are some of the basic responsibilities of this sub team. 

These experts will be distributed to the various sites of the 

experiment; some will be in the CENETIX room at NPS. They will 

handle the design variables and make sure that functional 

constraints are held constant. Finally, people located at NPS will 

observe the measurements that explain the dependent variables 

• Nuclear/radiological experts. For this model, NATO JCBRN 

Defense CoE in Czech Republic and LLNL in US will receive the 

packets of information, analyze them, and send the results back to 

the boarding team on site. 

• Military experts will staff the various positions on site and be 

responsible for the realistic conduct of the scenario. They will be 

provided by NATO Maritime Interdiction Operations Training Center 

(NMIOTC) in Crete. 
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SUB 
TEAM 

ORGANIZATION LOCATION RESPONSIBILITIES 

Academic 
experts 

NPS 

NPS/ 
on site 

Principal Investigator, experiment 
plan, design and execution, network 
operation center officer, ground 
station controllers, data capturing 
tools controllers 

Nuc/Rad 
experts NATO JCBRN 

CoE / 
LLNL 

Czech 
Republic / 

US 

receiving the packets of information, 
analyzing them and sending the 
results back to the boarding team on 
cite 

Military 
experts NMIOTC on site realistic conduction of the scenario 

Table 3.   Team composition, location, and responsibilities 

4. Data Analysis and Collection Plan 

The data analysis and collection plan is the heart of the experiment. The 

efforts involved are highly linked, and although it is intuitive first to collect and 

then to analyze, in reality things are much more complicated. The purpose of 

collecting data is to feed the data-analysis plan, so it is obvious that the data-

analysis plan determines what kind of data is needed for every situation. Alberts 

mentions that “while the data analysis plan should be posited first, the process of 

developing the two plans will be iterative. The initial data requirements from the 

posited data analysis plan will have to be put into the context of the experiment 

setting, the collection means available (pre-experiment, automatic, observer 

based, SME based, etc.), and the scenarios being used.” This means that data-

analysis plan will be modified to accept only available data and, on the other 

hand, the collection process may reveal needs for analysis not described in the 

initial data-analysis plan (Albert et al., 2002). The categories of data that the 

experiment team will capture are shown in Table 4. 
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Categories of data 

1.  Number of nodes involved in each packet of information distribution 

2.  Bit error rate 

3.  Number of strong and weak links that exist at any particular time 

4.  Degrees of separation between the sender and the receiver of each 
packet of information 

5.  Network performance when there are only terrestrial nodes inside the 
network 

6.  Network performance when there are orbital nodes inside the network 

Table 4.   Categories of data 

a. Data-Analysis Plan 

The data-analysis plan includes descriptive, bivariate, and 

multivariate analysis. In the descriptive phase of the plan, data anomalies are 

identified and corrected or excluded from analysis. After the identification of data 

anomalies, the distribution of each variable is examined. The purpose of this 

action will be twofold: to find any invariant variable and remove it from the 

analysis plan, and to discover the number of outliers, and thus know what kind of 

statistics should be used. 

Since most hypotheses include if-then terms such as “if A occurs 

then B happens under condition of C”—and because of the relationships 

explained in Table 1 and the four Pareto sets (strong/weak links vs. scalability 

and strong/weak links vs. degrees of separation)—bivariate analysis for this 

model is essential and is expected to uncover important dynamics within the 

data. According to Alberts, “in order to identify the relationships between the 

various factors and variables, the order for conducting bivariate analyses is: 

• Dependent variables  
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• Control factors  

• Control factors and dependent variables  

• Independent variables  

• Control factors and independent variables and 

• Independent variables and dependent variables.” (Alberts et 

al., 2002). 

Particularly for this experiment, criteria and constraints from Table 2 

and the Pareto sets will be analyzed. Scalability and degrees of separation 

should be independent. If correlated, the design should need some changes 

such as redefinition or merging or splitting the variables (Alberts et al., 2002). 

Association (if any) between orbital characteristics, time, and participant’s 

training will be determined, and after that relationships between them and 

dependent variables will be identified. Because the design of the experiment is 

supposed to exclude effects of functional constraints by keeping them constant, if 

any relationship between functional constraints and dependent variables are 

identified, “the analytic team would know that the design had been unsuccessful 

and these factors would need to be included in the later multivariate analyses 

and considered in the process of refining the conceptual model.” (Alberts et al., 

2002). 

Like dependent variables, the independent variables of this model 

are assumed unrelated. If not, changes to the design are needed. If there is any 

relationship between the independent variables and functional constraints, that 

will indicate that the design is probably flawed. 

Finally, independent and dependent variables are examined for 

relationships among them. At this point, Alberts mentions that “these are true 

tests of the strength of association for the direct propositions of hypotheses 

posited in the conceptual model.” (Alberts et al., 2002). It is important that the 

team test all possible bivariate combinations because this project belongs to an 
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early experimentation domain, and there can be relationships not considered in 

the design. 

Finally, multivariate analysis will test the whole data as a system. 

b. Data-Collection Plan 

The data-collection plan for this experiment is based on “automated 

collection, recording for later reduction and human observation” (Alberts et al., 

2002). It is essential for the team to ensure that the aforementioned data-

collection mechanisms impact the functionality of the systems as little as 

possible. Also, because time is critical, time synchronization for everybody and 

for all assets of the experiment is necessary. Automated collection enables the 

team to monitor easily and accurately certain data during the experiment without 

too many people involved, eliminating human error. Recording for later data 

reduction is the safe method for capturing data, because it eliminates errors from 

too few observers or incorrect understanding of what to record and what not to. 

Audio and visual recordings, enriched with meta-data, will be used for later 

analysis after reduction. Human observation is an important data-capturing 

technique, especially for data that other tools cannot capture, because it captures 

data from a higher-level, human view. This method can give very useful 

information, but on the other hand, can be extremely inaccurate because of 

observer subjectivity; for this to be avoided, observer selection and training is 

important. 

Table 4 depicts the data to be collected. For categories 2, 5 and 6 

automated collection will be used; for category 4, recording for later reduction 

and human observation will be used, and for categories 1 and 3, human 

observation (Table 5). Only select people from the team will have access to each 

variable, to avoid conflicts in measurements. It is assumed that three to four days 

of measurements are enough for extraction of useful conclusions from the 

gathered data, and that  deep knowledge of equipment handling by the team will 

ensure quality data collection. CENETIX resource portal tools will be used for 
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capturing events, anomalies, useful information, meta-data, collaboration 

between the members of the team, and data reduction and assembly. 

Collection Plan Data Category 

Automated 
collection 

• Bit error rate  
• Network performance when there are only 

terrestrial nodes inside the network  
• Network performance when there are orbital 

nodes inside the network  

Recording for later 
reduction 

• Degrees of separation between the sender and 
the receiver of each packet of information  

Human observation 

• Number of nodes involved in each packet of 
information distribution  

• Number of strong and weak links that exist at 
any particular time  

Table 5.   Data-collection plan 

5. Experiment Evolution 

“In a present day scenario, an MIO team commander communicates via 

radio with the tactical command afloat (e.g. frigate, fast patrol boat). The tactical 

command afloat relays the information to a fusion center ashore and awaits 

responses, which are then forwarded back to the team commander on board the 

suspect vessel. In this C2 communication channel loop, the action officer must 

rely on others to accurately relay detailed, time critical information at the tactical 

command to the ashore fusion center, and so on” (Bordetsky et al., 2011). The 

evolution of MIOs by adding orbital nodes to the network can limit the problems 

described above; thus operational risk for the boarding team can be minimized 

and rapid decisions made. Small satellites include a variety of orbital assets, with 

different advantages and disadvantages. So testing and comparing different 

kinds of small satellites may be the next step for this campaign. Because, 

generally speaking, this kind of satellite lacks onboard propulsion, they can only 
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be put in the lower LEO altitudes, to avoid creating long-lived debris at higher 

altitudes. This affects many factors in this experiment. It would be an appropriate 

challenge for a team to investigate the use of different LEO orbits to realize what 

results may be derived, because it is possible that in the future some small 

satellites will have onboard propulsion. 
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IV. INTEGRATION OF SMALL SATELLITES TO MIO 
NETWORKS 

A. AISSAT 1 AND ATLAS CRAFT TARGETR 

1. AISSat-1. An Existing Asset as an Example of a Possible MIO 
Satellite. 

As of this writing, there have been no known attempts to build a small 

satellite dedicated to MIO operations. The reason stems more from limited 

interest among nations that conduct MIO operations than from any lack of 

technology. Countries are not well informed of the advantages a small satellite 

can offer in such operations, or of their relatively small cost of deployment. The 

technology required for an attempt of this kind is already here, and a living 

example is AISSat-1. “AISSat-1 is believed to be the first low cost nano-satellite 

to provide an observational service to governmental authorities. The mission 

objective is to perform maritime observations in the Norwegian high north and 

high south” (Narheim et al., 2010). 

AISSat-1 is a nanosatellite, a 20-cm cube. Its platform is based on 

University of Toronto Institute for Aerospace Studies Space Flight Laboratory 

(UTIAS-SFL)’s generic nanosatellite bus (GNB), a low-cost spacecraft bus 

weighing around 6 kg and equipped with three-axis attitude determination and 

control components, which provide high-precision pointing. This asset carries an 

AIS (dual-channel VHF) receiver developed by Kongsberg Seatex AS, Norway, a 

UHF receiver, and an S-Band transmitter (Figure 12) (Eriksen et al., n.d.). 
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Figure 12.   AISSat-1 External Layout(Adapted from AISSat-1 Early Results) 

Moving on a sun-synchronous orbit at 630-km altitude, the AISSat-1  

collects AIS signals from vessels, decodes them, and either downloads directly to 

the ground station at Svalbard, if within line of sight, or stores the data on board 

in order to download at first opportunity. For data downlink, an S-Band 

transmitter is used, capable of data rates from 32 to 256 Kbps, and two patch 

antennas are mounted on the satellite in such a way that near-omnidirectional 

coverage is achieved. Data latency is reduced to a minimum, as the AISSat-1 

can communicate with the ground station on every orbit. The real-time or 

recorded data from all daily orbits are stored at Svalbard to forward to a mission-

control center located at FFI in southern Norway. Finally, the Norwegian Coastal 

Administration (NCA), which is the main recipient of the data, makes it available 

to the rest of AIS system (Figure 13) (Narheim et al., 2010). For data uplink from  
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the ground station, a UHF receiver is used, operating at 4 kbps. The antenna 

setup is four phased, quad-canted, monopole antennas, for near-omnidirectional 

coverage. 

 

Figure 13.   AISSat-1 communications architecture(Adapted from Tracking Ship Traffic 
with Space-Based AIS: Experience gained in first months of operations) 

2. TARGETR: Atlas Craft Threat Detection and Analysis Tool. 

A very accurate illustration of AISSat-1 data can be had with an Atlascraft 

next-generation, threat-detection and analysis tool called Targetr. Using web 

services, Targetr  gathers and correlates data from every available source, such 

as satellite data feeds, terrestrial collection stations, historical databases, 

published reports, RSS feeds, web sites, and third-party providers. Fusion of this 

data enables the tool to provide “proactive situational awareness, enabling rapid 

maritime anomaly detection, threat identification, and reaction.” “Targetr 

addresses movement, identification, metadata, and relationships for vessels, 

cargo, companies, people, and the interactions between them” (Targetr, n.d.). 
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For this research, the author requested that Atlascraft create a special 

account in their website where AISSat-1 is the only source that provides 

information for any target. With AISSat-1 as the only source of data, the user can 

understand, using Targetr, how the satellite operates, its effectiveness and 

quality of service, and similarities to and differences from future MIO satellites. In 

addition, the user can easily visualize and exploit the available data via analytical 

maps, tables, pictures, and other convenient tools. 

For the date May 30, 2012, between 0600 and 0800, Targetr retrieved 

from the FFI database the targets in Figure 14. The reason for acquiring data 

from this short, particular period only is that choosing longer periods would make 

the picture too loaded with tracks and difficult to analyze. It is obvious from 

Figure 14 that the AISSat-1 orbit covers the higher latitudes more efficiently, 

which is logical, as the purpose of this satellite is coverage of the Norwegian 

Sea. Every yellow triangle on the map represents a track whose AIS signal is 

received from the satellite during that period. The position of every track and all 

other available data such as name, place of origin, destination, etc., are retrieved 

from the transmitted signal.  
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Figure 14.   Targetr platform 

For a clearer look at the type of data the satellite can receive from an AIS 

source and then transmit to a ground station, either directly or when downlink is 

feasible, we zoom in on the Norwegian Sea and arbitrarily selected a track. The 

area of coverage of the satellite is displayed in light green. Theoretically, every 

vessel inside this area transmitting AIS signals is captured and stored in the 

satellite’s memory. In reality, the quality of reception for each signal is the 

combined result of many factors, such as environmental conditions, the position 

of the vessel, traffic in the area (causing message collisions), condition and 

status of the AIS transmitter; but the measured performance on detection 

probability is within acceptable levels (more than 90%). Clicking on the selected 

track, information about the identification of the vessel, heading, speed, latitude, 

longitude, and time of the position of the track are automatically displayed. 

Selecting to expand the track, the tool illustrates in red all the vessel positions the 

satellite received on every orbit (Figure 15).   
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Figure 15.   Track expansion and AISSat-1 area of coverage 

Selecting “show details page,” one can draw some interesting conclusions 

about the received data (Figure 16). For the aforementioned track, it is obvious 

that the AISSat-1 received twelve different sets of data. Examining the time 

between receptions, one can easily derive that the satellite received AIS signals 

from the particular vessel from eight of a total of fifteen passages above the 

given area in one day. At some passages, more than one signal was received. 

After checking the receptions of many vessels, the author observed that 

generally, for every track, there is from one to seventeen or more receptions in a 

day. This observation leads to the conclusion that there can be many 

opportunities for a track positioned at a convenient place, under optimal 

environmental conditions, to upload a significant amount of data to the satellite. 

The downlink of the data to Svalbard is not difficult as the station is located to a 

high latitude (78.216 N) and so the satellite has many chances to see the ground 

station while orbiting during a day. 
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Figure 16.   The “show details” page 

B. STK 

1. STK Modeling of AISSat-1 

The following modeling efforts are based on the scenario described in the 

previous chapter.  A boarding team onboard a ship of interest located southwest 

of Crete conducts an MIO and a constellation of small satellites is used for the 

transfer of information between the team and radiological/nuclear experts in the 

data-fusion center. For simplicity, this scenarios takes into account two terrestrial 

nodes of the network only: the boarding team on the ship and the JCBRN  

Defense CoE. The ship is moving in circles with a speed of 12 knots (Figure 17). 

The constellation consists of six identical nanosatellites and follows the pattern 

Bordetsky and Mantzouris introduced in their work with the following 

differentiation: in the first model, the altitude of the assets is 630 km and in the 

second, 310 km (Table 6). 
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The characteristics of the asset platform are based on AISSat-1. This 

choice is made because this particular design has been tested while in orbit 

since 2010, and the products of its two-year operation are very promising for the 

integration of a similar spacecraft into an MIO network. It is assumed that the 

platform is equipped with three-axis attitude determination and control 

components. The communications packet consists of a 1dbW transmitter and a 

receiver, both operating at 2.4 GHz. The antennas are patch antennas with 3dB 

main-lobe gain and they provide a hemispherical operating pattern. Additional 

gains and losses are assumed to be zero. The assumption is that the two ground 

stations (the ship and the JCBRN center) operate with identical equipment with 

an operating frequency of 2.4 GHz and transmitter power of 30dBW. They use a 

pencil-beam antenna with 40dB main-lobe gain and there are no other gains or 

losses in the system (Table 7). The reader can find details of this scenario in the 

appendix of this paper. 

 

Figure 17.   The two nodes of the network communicating via satellite 
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Orbital 
Assets 

Apogee Altitude 

Model1/Model2 

(Km) 

Perigee Altitude 

Model1/Model2 

(Km) 

Inclination 

(degrees) 

Argument 
of Perigee 

(degrees) 

RAAN 

(degrees) 

True 
Anomaly 

(degrees) 

Cubesat 1 630/310 630/310 90 0 0 0 

Cubesat 2 630/310 630/310 90 45 45 0 

Cubesat 3 630/310 630/310 90 90 90 0 

Cubesat 4 630/310 630/310 90 135 135 0 

Cubesat 5 630/310 630/310 90 180 180 0 

Cubesat 6 630/310 630/310 90 225 225 0 

Table 6.   Constellations set up  

 Nanosatellite Ship JCBRN 

Pointing Equipment 
three-axis attitude 

determination and 

control components 

- - 

RF Output Power 
(dBW) 

1 30 30 

Frequency (GHz) 2.4 2.4 2.4 

Type of Antenna patch Pencil Beam Pencil Beam 

Main Lobe Gain (dB) 3 40 40 

Miscellaneous 
gains/losses 

0 0 0 

Table 7.   Nanosatellite/ground-station characterisitics  

2. Integration Modeling Results 

We ran the simulations of the two models for a twenty-four hour period. 

The date of the scenario is April 28–29, 2012. We focused our interest on two 

basic factors: the duration every orbital asset available to the network and the 

quality of service these assets can provide to the network. Because different 

assumptions translate into different results, and differences in the technology 
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employed can mislead as to what is appropriate or not, we derive results 

comparing the two models with their only difference being the altitude of the orbit. 

With comparison, we tried to eliminate most other factors that relate to our 

assumptions and technology used. 

The higher a satellite’s orbit, the bigger the possible area of coverage on 

the surface of the earth. Therefore, it is expected that at 630 km altitude, the 

access duration of the orbital assets should be improved as compared with that 

at 310 km. Tables 8 and 9 illustrate the results for access time for the two 

constellations from JCBRN station. It appears that doubling the altitude of the 

asset causes the access time to increase from 70% for Satellite 4 (minimum 

increase: from 38.3 at 310 km altitude to 65.3 minutes at 630km altitude) up to 

126% for Satellite 1 (maximum increase: from 32.6 at 310 km altitude to 73.7 

minutes at 630km altitude). The duration of every access increased from a range 

of 4.6–9 minutes at an altitude of 310 km to a range of 5–13 minutes at an 

altitude of 630 km. Also, the number of accesses was more at 630 km and the 

total duration showed an increase of 92% in access time during a day. The 

results presented in Tables 8 and 9 are for the location of the JCBRN center and 

are different for every spot on the globe.  
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Table 8.   Satellite 1, 2, and 3 access times and duration at 630km and 310km  
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Table 9.   Satellite 4, 5, and 6 access times and duration at 630 km and 310 km  

Generally, the higher the latitude of a location, the more accesses and 

greater access duration this location has when the orbital assets follow polar 

orbits. This is the reason for the small differences in Bordetsky and Mantzouris’ 

findings and the findings of this research. The results of the comparison of the 

access between the constellations and the ship are similar. At these two 

simulations, the vessel is set to a 12-knot speed. As a moving node, the ship has  

different access time from the JCBRN ground station, but because the two 

terrestrial stations are not on the same latitude (the JCBRN station is far north of 

the vessel) the difference in their results is a product of movement and latitude. 

For this scenario, ship-to-satellite access is reduced approximately 25% in 
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comparison with JCBRN-to-satellite access. Comparing the numbers of the two 

simulations, one can assume that the higher the orbit of a satellite, the more 

coverage. In Chapter III of this thesis, we mention that because small satellites 

lack propulsion systems, they fly in the bottom limits of LEO to avoid becoming 

long-lived debris. However, even if they had propulsion, these spacecraft would 

not be able to operate at high LEO because of other technical reasons. 

Available power and volume are two major considerations in putting small 

satellites in high-altitude orbits. Limited power equals limited signal-transmission 

power and limited volume translates to limited antennas size, and thus limited 

gain. Transmission power and antenna type and size are two of the most 

important parameters for successful communication between stations. A 20-cm 

cube is able to produce from a couple of Watts up to a couple of tens of Watts  

electric power (with deployable solar arrays) (Helvajian H. and Janson S., 2008) 

and carry whatever antenna can be stored inside the cube initially and mounted 

outside the cube after achieving orbit. 
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Table 10.   Satellite-1 to JCBRN downlink, link-budget analysis 

Rcv d. l .s-o. 

Pow er 

(dB \N) a t C / N ( dB) 

I 

T i m e (UTCG ) 63Dkrn a t 630krn BER a t 6 30krn 

4 / 28/ 201.2 1 9 :28 - 16·6 .4 5 -4 -23.967 7 1 .73E-Q1 

4 / 28/ 2012 19:.29 - 165..271 -20 .. 3968 

4 / 28/ 201 2 1 9 :30 - 163.921. - 1 8 . 2598 

4 / 28/ 201.2 1 9 : 3 1 - 162.412 - 1 6.4737 

4 / 28/ 2012 19:32 - 160.782 - 1 4 .7538 

4 / 28/ 201 2 1 9 :33 - 1.5:9...207 - 1 3.1 6 1.1 

4 / 28/ 2012 1 9 :34 - 1 58.14 3 - 1 2.1044 

4 / 28/ 2012 1 9 :35 - 158.161 - 1 2.1 477 

4 / 28/ 201 2 1 9 :36 - 1 59_252 - 1 3 .. 3009 

4 / 28/ 2012 1 9 :37 - 160.835 - 1 5 .0358 

4 / 28/ 2012 1 9 :38 - 162.467 - 1 6 .986 

4 / 28/ 201 2 1 9 :39 - 163.975 - 1 9.0979 

4 / 28/ 201.2 1 9 :40 - 165 .325 - 2 1 .5 099 

4 / 28/ 201 2 1 9 : 4 1 - 166.334 -23.9529 

4 / 28/ 201 2 21~06 - 166.45 4 -24.6531 

4 / 28/ 201.2 21~07 - 165 .25 -4 -20.2791 

4 / 28/ 201 2 21~08 - 163.885 - 1 8.1 0 52 

4 / 28/ 2012 21~09 - 1.62.362 - 1 6 .. 3599 

4 / 28/ 201.2 21:1 0 - 160.732 - 1 4 .6858 

4 / 28/ 2012 2 1 :11 - 159_2 - 1 3 .1 6 44 

4 / 28/ 201 2 2 1 :1 2 - 1.58_253 - 1 2 .2443 

4 / 28/ 201.2 21:1 3 - 158.421 - 1 2 .4-633 

4 / 28/ 2012 2 1 :1 4 - 159.594 - 1 3 .751 8 

4 / 28/ 201 2 2 1 :1 5 - 1.61..187 - 1 5 .5928 
4 / 28/ 201 2 2 1 : 1 7 - 16-4. 278 - 19.9434 

4 / 28/ 201 2 2 1 : 1 8 -1.65.602 -22.5097 

4 / 28/ 201 2 2 1 : 1 8 - 1.66.338 -24.2993 

4 / 28/ 201 2 22:45 - 166.443 -20.532 

4 / 28/ 201 2 22:46 -166.041 -20.0288 

4 / 28/ 201 2 22:47 - 165.802 - 19.7565 

4 / 28/ 201 2 22:48 -1.65.762 -19 .7239 

4 / 28/ 201.2 22:49 - 165.929 - 1 9.926 

4/:.l~/:.lUl.:.l. :.l.:.l.:~U -~bb.:.l. /Y - :.l.U. ::S4-t.JY 

4 / 28/ 201 2 22:50 - 166.401 -20.4869 

4 / 29/ 201.2 6 :.31 - 1.66.365 -21.1.155 

""1/29 / 2012 6 ;.32 - 165.""189 - .19.9265 

4 / 29/ 201.2 6 :.33 - 164.649 - 1.8.8 775 

4 / 29/ 2012 6 :.34 - 163.939 - 18.0362 

4 / 29/ 201.2 6 :.35 -163.4 67 -1.7 _4847 

4 / 29/ 201.2 6 :.36 - 163.-329 -1.7.3018 

4 / 29/201.2 6 :.37 - 1.63.558 - 1.7 .5121. 

4 / 29/ 2012 6 :38 - 1 6 4.102 - 18.0703 

4 / 29/ 2012 6 :39 - 1 64.856 - 1 8 .9066 

4 / 29/ 201 2 6 :40 - 165 .717 -20.0107 

4 / 29/ 2012 6 : 4 1 - 1 66.451 - 21. .2304 

4 / 29/ 201 2 8 .0 6 -166-~!!i - 40.::50:51 

4 /29 / 2012 8:{)7 - 165 .013 -24.5384 

4 / 29/ 201.2 8 :08 - 163.4·68 - 1 9 .4946 

4 /7q /";JO'l7 R -nq - 'l n'l n?.=t - 'l n -""Rn7 

4 / 29/ 2012 8 : 1 0 - 1.59.385 - 1.3.6445 

4 / 29/ 2012 8 : 1 1 - 1 56.713 - 10.7717 

4 / 29/ 201.2 8 : 1 2 - 154.121 -8.1.096 

4 / 29/ 201.2 8 : 1 3 - 1 53. 732 - 7 .704 

4 / 29/ 2 01.2 8 :1 5 - 158.795 - 1 2 .7601 
4 / 2 9 / 2012 8 :1 6 - 161.136 - 1 5 .095 1 

4/29/20~2 8:~ 7 -~63.06.3 -~ 7 .0~69 

4 / 29/ 2012 8 :1 8 - 164.6 7 - 1 8.6268 
4/29/201.2 8 :1 9 -1·6-6.036 - 20. 1 705 

4 / 29/ 2012 8 .1 9 - 1 ,66. 4 5 4 - 4 ::5 .. 215 

4 / 2 9 / 2 01.2 9 :4 5 - 166.35 - 2 1 . 431 2 

4 / 29/ 2 012 9 : 4 6 - 165. 373 - 2 0 .0032 

4/29 / 2012 9 .47 - 16·4 . .::574 - 1 8 . 7076 

4/29/ 2012 9 :48 -163.4 32 - 1 7.5838 
4/29 / 201_2 9:49 - 162.663 - 1 6 . 7099 

4 / 29/ 2012 9 .50 - 1 ,62.216 - 1 6 _2061 

4 / 29/ 2012 9 :5 1 - 1 ,62.209 - 1 6 . 1 701 
a j7Q /70'l7 q -"'>7 - '167 na..:~ - '1 F1 "'>q nR 

4 / 29/ 2012 9 .5::5 - 1 6 !5 . 401 - 1 7 . !5809 

4 / 29/ 2012 9 :5 4 - 164 .335 - 1.8 . 408 
4/?Q /70 '17 q -"'>"'> - '1 6 "'> _'!:1; 7 Q - '1 q F1.4F1 7 

4/29/ 2012 9 .56 -1•66.-.::511 - 2 ::1 .2!55!5 

4 /29 / 201.2 9 :56 - 1 ·6 6 .451. - 2 1 .51 99 

4 /29/201.2 18:1 ':;: - 1G'J . 7 42 - 1 9 - 0":041 

4 / 29/ 201 .2 :18:1 6 - 1 ,65. 1 18 - 1.9 .118 
4 /7Q /?0 '1 7 'l R -'1 7 - 1 64 fi4R - 'l R F107 7 

4 / 29/ 201 2 '18:1 6 - 1G4 . .:J99 - 1 6 . 3'J:JG 

4 / 29/ 2012 1.8:1 9 -164.41 - 1 8.3872 

4/29/2012 1.8:.20 -164 .683 - 1 8 . 7065 
4 / 29/ 201.2 18:2:1 - 1G'J. 1 7 1 - 1 9 .. 2747 

4 / 29/ 2012 18:.22 - 1 ,65.809 - 20.0399 

4 / 2 9 / 2012 18:.23 - 16637 - 20. 7475 
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Table 10 depicts the major link-budget parameters for Satellite 1 downlink 

at 630km and at 310km, with JCBRN station. The numbers show that the signal 

received from a spacecraft at 310 km is much stronger with much fewer errors. 

Moreover, the strength of the signal is not constant through the whole duration of 

the access period. As the satellite flies above the horizon at the beginning and at 

the end of the access period, the signal is worse than in the middle. This is 

because the distance between the satellite and the station, called the slant range 

is not constant. The slant range when an asset starts or finishes accessing the 

station can be many times the minimum slant range that appears when the 

satellite is exactly above the station. This phenomenon can change the quality of 

the signal by many orders of magnitude and is highly related to the 

characteristics of the satellite orbit. So it is not correct one to state that access 

time equals communication time, because the signal at the borders of the access 

time might not be strong enough for successful transmission or reception. The 

absolute numbers for received isotropic power, signal-to-noise ratio (C/N), and 

bit-error rate (BER) that appear in our simulations might not be optimal for a 

realistic transmission, even for a constellation orbiting at 310km altitude, because 

of certain characteristics of the satellite platform we chose in an attempt to keep 

our models simple. The example of AISSat-1 proves that in reality, technology 

can amplify these parameters to values that ensure successful uplinks and 

downlinks but the construction of such a model is out of the scope of this 

research.  

Table 11 is the fusion of six sets of data as they appear for Satellite 1 in 

Table 10. It depicts the average values of the three aforementioned link-budget 

parameters for the downlink of the six satellites for both altitude situations with 

the JCBRN station. The numbers clearly present the advantage of 310km-

altitude constellation as regards the quality of the transmitted signal. All six 

satellites succeed at almost the same level of efficiency for every situation and 

the difference between the two transmissions can exceed one order of  
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magnitude regarding the BER (Table 11). The link-budget analysis for the 

downlink between the satellites and the boarded vessel yields results similar to 

those we came up with the satellite-to-JCBRN connection. 

 

Rcvd. Iso. Power 

(dBW) 
C/N (dB) BER 

630km 310km 630km 310km 630km 310km 

Satellite 1 -163.4 -160.0 -18.4 -14.5 5.8E-02 1.5E-02 

Satellite 2 -162.4 -159.0 -16.3 -13.0 2.4E-02 3.74E-03 

Satellite 3 -162.4 -159.1 -16.3 -13.0 2.4E-02 4.2E-03 

Satellite 4 -162.2 -159.4 -16.2 -13.4 2.34E-02 4.99E-03 

Satellite 5 -162.3 -159.4 -16.2 -13.3 2..29E-02 4.56E-03 

Satellite 6 -162.3 -159.1 -16.2 -13.1 2.3E-02 4.1E-03 

Table 11.   Link-budget comparison 

The transmitted power and the size and type of the antenna for terrestrial 

stations, though not unlimited, do not follow the restrictions of a small satellite. 

The uplink of a terrestrial station (mobile or not) can be powerful enough to 

transmit signals that can transfer uncorrupted information to an orbital asset. This 

means that for successful transfers of information among the nodes of an MIO 

network using small satellites, special attention must be paid to the selection of 

the downlink parameters between the orbital assets and the terrestrial stations. 

The rest of the connections between nodes are much easier to implement. 

C. A POSSIBLE SOLUTION 

1. Integration 

The simplicity of an MIO network is the factor that best enables the 

integration of small satellites. MIO operations do not necessarily require large  
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space systems with extreme capabilities. What is really needed is an efficient 

relayer of information, a means that can get, store, and transfer data and make it 

available to distant entities that are critical nodes of the MIO network. 

Naval forces or coalitions typically decide that they need to investigate a 

ship because intelligence indicates illegal activities that endanger national or 

global security. An MIO boarding team on a vessel of interest, equipped with 

biometric devices and radio-nuclear or other sensors obtains measurements all 

over the ship. The team gets strange spectra of unknown materials and lack the 

expertise to interpret specific measurements. They take photographs of the 

materials, video of possible changes in their condition, and video of the area 

where materials are located. This data needs to be transferred to distributed 

laboratories around the world, where experts can analyze them and databases 

can be searched. The results of this analysis need to return quickly back to the 

team to inform further actions. Wireless means of communication are needed for 

the flow of information, and every kind has its limitations. Without orbital assets, 

the operation can proceed in littoral waters only, where, using some variety of 

technology, the team can communicate with shore and all information can be 

further transmitted. TNT MIO 12-2, experiment (June 6-15, 2012) that took place 

in Baltic sea between the Swedish port of Karlskrona and the Polish port of 

Gdynia, in Bydgoszcz Poland and in Souda Bay, Greece models the 

aforementioned scenario. Especially in Souda Bay, wave-relay receivers, 

transmitters, and the GPRS network relayed information to the NMIOTC NOC, 

and from there the information reached places distributed all around the world via 

internet. One of the tools used for distribution of information was the Broadband 

Global Area Network (BGAN), a global-coverage network that uses three 

satellites in geostationary orbits and is provided by Inmarsat (Broadband Global 

Area Network, n.d.)(Figure 18). 



 58 

INTERNET

SA
Server NPS

Monterey
LLNL

Livermore CWWIX
Bydgoszcz

JCBRN
Czech Republic

NMIOTC
NOCTW

WR

BGAN

Mutualink
station

Target Ship

Interdiction Boat Interdiction Boat

GPS
Tracking

Nuc/Rad
Sensor

Collaboration
Station

Nuc/Rad
Sensor

IP
Camera

Collaboration
Station

Unmanned rotorcraft
GPS

Tracking

IP
Camera

Nuc/Rad
Sensor

Combat Swimmer

GPS
Tracking

IP
Camera

Nuc/Rad
Sensor

IP
Camera

GPS
Tracking

TW

TW

TW

 

Figure 18.   MIO 12-2 network diagram 

For operations on the open seas, orbital assets must be used in 

transmitting and receiving data. Highly capable GEO/LEO satellites are in orbit 

and cover certain areas of the globe around the clock. If specific needs occur, 

some satellites can change orbit by their own means to cover areas of interest. 

The technologically advanced communication systems aboard these assets can 

transfer vast amounts of information reliably and swiftly, just like BGAN did in the 

TNT MIO 12-2 experiment. It looks like everything that can make an MIO in open 

seas successful is already in place. So why are small satellites such an 

interesting asset? 
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One reason is cost. Most GEO/LEO satellites are commercial, and the 

cost for transferring data is high. Owning these assets is a privilege affordable to 

only powerful countries, and not a possibility for most navies or coalitions. Small 

satellites provide an alternative. Another reason for the interest in small satellites 

is that they do not need the launch platforms the bigger satellites need—they can 

be launched easily even from a combat aircraft (Socher and Gany, 2008). This 

characteristic offers great flexibility to MIOs. There is no need for an existing 

constellation in orbit to design an operation using these assets. The command of 

an operation can deploy a constellation of small satellites only when and where 

needed. 

As seen in the research scenario, the volume of information that needs to 

travel between the nodes of a MIO network is relatively trivial. Data without high 

quality or real-time video is the most a node will try to upload or download. In 

addition, small satellites nowadays can meet the requirements for data transfer in 

terms of data rates in MIO networks. Helvajian H. and Janson S. quote a table 

(Table 12) with indicative data rates for small satellites when 2m- and 4m-

diameter ground-station antennas and a 10-dBi transmit spacecraft antenna are 

used at 2500-km range (Helvajian H. and Janson S., 2008). 

Satellite Class RF Output Power 
(W) 

Data Rate for 2m 
Diameter Receiver 

(Mbps) 

Data Rate for 4m 
Diameter Receiver 

(Mbps) 
Microsatellite  1.4-12  2.8-24  11-97  
Nanosatellite  0.30-2.5  0.61-5.1  2.4-20  
Picosatellite  0.065-0.53  0.13-1.1  0.53-4.3  
Femtosatellite  0.015-0.12  0.031-0.24  0.12-0.97  
Attosatellite  <0.025  <0.051  <0.20  

Table 12.   Small satellites indicative data rates (Adapted from Small Satellites: Past, 
present and future. Reston, VA: AIAA) 

According to Table 12, microsatellites, nanosatellites, and even 

picosatellites can have data rates more than suitable for MIO networks. AISSat-1 

achieves data rates from 32 to 256 Kbps and represents a working example of 

this idea, showing that data rates should not be an issue in the future. Rather, the 

main problem is availability. Living in LEO orbits, these assets can have contact 
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with a ground station for only a few minutes per orbit and for limited passes per 

day, depending on the kind of orbit selected. This shortcoming can be solved by 

deploying constellations of small satellites to provide a number of passes and 

enough time for uplinks and downlinks.  

The more assets a constellation has, the more time a node can use for 

uploading and downloading data. Obviously, increasing the number of orbital 

assets raises the cost of the whole mission, so the maximum number of assets 

can grow up to the point where the cost is meaningful for an MIO operation. This 

number is far less than that which would be needed to provide continuous 

coverage. On the contrary, access time will always be a small cluster within the 

24-hour day. This research examined another way to increase availability: 

increasing the altitude of orbit. This solution can also work up to the point where 

the signal is not strong enough for successful transfer of data, so, again, 

continuous coverage is far from possible. Moreover, as long as these spacecrafts 

are not equipped with propulsion, orbital altitude is also a regulator of their 

operational life and can change the cost effectiveness of the system dramatically. 

So the tradeoffs concerning coverage, signal strength, and operational life of 

small satellites include: low orbital altitude offers poor coverage, stronger signal, 

and short operational life is achieved, while higher orbital altitude offers greater 

coverage, weaker signal, and longer operational life (Figure 19).  

 

Figure 19.   Tradeoffs between coverage, signal strength, and operational life of small 
satellites 
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2. System and Network Characteristics 

MIO networks using small satellites as nodes need to be adaptive. Since 

small satellites have limited capabilities, the architecture of terrestrial stations 

should be efficient enough to counter all orbital limitations. High-gain antennas, 

sophisticated filters, powerful transmitters, and sensitive receivers are some of 

the needed characteristics. Moreover, terrestrial stations need to be intelligent 

enough to estimate when the next satellite will be accessible, for what duration, 

and with which satellite of the constellation it will be connected. They should be 

the hyper-nodes of the system, which, according to the 8th-layer concept and 

their NOC capability (Bordetsky, 2006), have the ability to be aware of the orbital 

traffic and so help the system reallocate the best paths for distributing or gaining 

information.  

No matter how intelligent and effective the hyper-nodes of an MIO network 

are, continuous real-time information exchange between a boarding team and 

nuclear/radiation experts is not feasible, since continuous coverage cannot easily 

be achieved with small satellites. With a six-satellite constellation orbiting at 630 

km altitude, the JCBRN center has a chance for access to almost two orbital 

assets (on average) for every one-hour period during the day (tables 8 and 9) 

while the boarding team can have access to more than one orbital asset, on 

average, for the same period. This translates to an access period of 10–26 

minutes and 5–13 minutes per hour, for the JCBRN and the boarding team 

respectively, for uploading or downloading data. Taking into account the data 

rates of Table 12, we conclude that small satellites can provide the network with 

the ability to send and receive significant volumes of information in near-real 

time. With the constellation orbiting at 310 km altitude, the aforementioned 

results are reduced to a period of 6–11 minutes’ access for the JCBRN center 

and 5–9 minutes’ access for the boarding team.  

The need to exchange real time data between the nodes of an MIO 

network depends on the nature of the MIO operation and the current conditions 

in every task. In this situation, it is clear that small satellites can play a backup 
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role in the communication plan of an operation. Very often, an MIO operation 

lasts for hours, and time is not so much critical to the conduct of its tasks. In 

these instances, small satellites can play a key role in the efficient and fast 

exchange of accurate and important information. 

D. FACING LIMITED CAPABILITIES 

1. Smart-Push vs. Smart-Pull Theory 

One of the important questions an MIO network architect has to answer 

when integrating small satellites into a network is what kind of information can be 

exchanged between nodes. Simple data, pictures, voice, and video are all 

available, but can a network of this kind support the exchange of them all? What 

are the limits? In the previous paragraphs, we tried to face the problem 

technically. Smart-push vs. smart-pull theory is a completely different approach 

to the problem. It is based on the culture one brings to handling the important bits 

of information. 

Smart-pull theory supports the idea that all relevant data to a task or a 

mission must be accessible, and from the pool of data, the decision maker pulls, 

after critical thinking and judgment, the bits that are important for building the 

information. An example of smart pull would be to interpret all available data for a 

terrorist group such as personal skills, education, expertise, training, recent 

movements, affiliations, etc., and produce valuable information such as the place 

and time of a planned attack. On the other hand, smart-push theory supports the 

idea that only the most important bits should reach the decision maker, giving 

him time to process the data efficiently and make appropriate decisions. An 

example of smart-push theory would be a fighting jet pilot who needs to know 

only what is really important for his mission, since his processing capability is 

very limited in comparison to all the tasks he has to accomplish during his flight 

(Hayes-Roth, 2006). 

Implementation of smart-push theory on an MIO would help solve the 

problem of limitations on the volume of information the network can handle. At 
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the level of the boarding team, using as high-quality video as necessary for 

interpreting the current situation or uploading pictures instead of video whenever 

possible are small examples of how data can be processed before sending to the 

decision maker—in our case, the experts. This attitude follows smart-push theory 

and reduces significantly the volume of transmitted information without killing 

important bits. The experts, on the other hand, can process the information they 

have available for the boarding team and send them only what is really critical. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS  

Adaptation in MIO networks is an aspect of great importance. Due to the 

various conditions that may exist in their environment and because most of the 

time they are formed as ad-hoc networks, they need to be robust, reliable, 

scalable, and efficient. Adaptation can add to all these four factors. 

Satellites are the tools that can increase the level of adaptation in MIO 

networks. The problem in the utilization of commercial orbital assets is their cost. 

Small satellites can be a solution to this problem, but there are some constraints 

that must be taken into consideration by the architect of the network. Continuous 

coverage is practically unachievable. Our models showed that a six satellite-

constellation can offer less than ten hours of total coverage per day. Additionally, 

their operational life is very limited in comparison with commercial satellites, 

because they usually do not have a propulsion system onboard and are LEO 

assets. Low altitude, lack of propulsion, and solar activity are the major factors 

that determine their operational life. The amount of power a small satellite can 

generate and the onboard storage space available limit the strength and quality 

of a transmitted signal and confine data rates.  

An effective way of using small satellites in a MIO network is as weak 

links. These assets can connect the clusters of the network, but the links break 

and are reestablished continuously. The clusters of an MIO network can be 

distributed across the globe, and weak ties are the bridges between them. These 

links cannot support the exchange of real-time data, but the achieved data rates 

using current technology are sufficient to support the amount of information 

exchanged in an MIO. AISSat-1 is the active proof that, technologically, we are 

able to move from conceptualization to real-world trials. AISSat-1 provides  
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successful maritime observational services to Norwegian governmental 

authorities. We showed in our models that this kind of platform can be used 

effectively as an MIO-network orbital node. 

Depending on the nature of the operation, small satellites can play a 

backup or key role to the communication plan of an operation. If there is a need 

for real-time data exchange, then, because these orbital assets do not provide 

continuous coverage, they must be used as backup platforms. When time is not 

critical, as often happens with MIOs, small satellites provide an efficient, cheap, 

and effective way of distributing information among the clusters of a network.  

Since small satellites have limited capabilities, terrestrial stations’ 

architectures should be efficient to counter the limitations. High-gain antennas, 

sophisticated filters, and powerful transmitters are some of the characteristics a 

terrestrial station should have in order to support the network. 

For our simulations to be tested in a real environment, an experimental 

campaign—not a single experiment—is needed, because of the complex nature 

of MIOs and the variety of technological solutions the space industry can provide. 

The team for such an experimental campaign should comprise academic, 

nuclear/radiological and military experts who will be responsible for data 

collection following automated, recording for later reduction and human-

observation collection plans. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

1. Large-Scale Experimentation 

We were not able to proceed with a real, large-scale MIO experiment that 

integrates small satellites, because at the present time there are no orbiting small 

satellites available to us. The TNT test-bed environment can provide the 

experimental team with a suitable facility for the experimentation, with a variety of 

tools for data capturing and analysis. The cooperation of the Space Systems 

Academic Group and the Information-Technology department at NPS can 

contribute to significant results in the area of small satellites and achieve 
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connectivity at ad-hoc networks like MIOs. The implementation of a large-scale 

experiment would test our designs and verify our simulations. Moreover, the 

analysis of environmental conditions and orbital-decay effects during the 

experiment could provide valuable insight about the real efficiency and 

effectiveness of these spacecrafts over time. 

2. Different Small-Satellite Types 

In this paper there is very little distinction made between small-satellite 

types. We built our models with the assumption that the assets we are using 

belong to the nanosatellites category. According to their generic characteristics 

and to Table 12, microsatellites and picosatellites are also capable of 

participating as nodes in a MIO network. For future work, examining the different 

characteristics of small-satellite types would afford comparison between them 

and their measure of suitability in different MIOs and MIO networks. 

3. Orbits and Terrestrial Stations 

Only one kind of orbit and two specific sites as terrestrial stations were 

selected for our models. The theoretical ease—it is not easy yet— of launching 

small satellites on demand and for various missions, even using a combat aircraft 

as a launching vehicle instead of ground-based rocket launchers (Socher and 

Gany, 2008), gives the ability to select the most appropriate orbit for every 

mission. This is why it would be interesting in future work to compare different 

kinds of orbits, combining them with multiple sites around the globe in different 

latitudes. Such a study would give a more complete picture of achieved 

connectivity for these kinds of networks in association with different orbits. 

4. Bursty Behavior 

In this paper, we examined small satellites as weak links of MIO ad-hoc 

networks. A different approach would be examine these networks from a burst-

attitude perspective. Barabasi states “most of our actions are driven by laws, 

patterns and mechanisms” (Barabasi, 2010). The footprint, and so the availability 
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of a satellite, is not a random phenomenon—it is driven by very specific laws. 

The network is aware of when an orbital asset is available. Time is limited, and 

because the volume of information is greater than the volume that can be 

handled by a small satellite, there is a need to prioritize. The most important and 

time-critical parts of information are uploaded or downloaded in bursts—that is, 

whenever an orbital asset is connected to the network—postponing, cancelling, 

or choosing another means of distribution for quantities of insignificant 

information. 
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APPENDIX 

A. HOW TO CREATE THE MIO SCENARIO IN STK 

1. Create the Six Satellites 

• Create a scenario and name it. 

• Click the “insert object” button and select “satellite” from the 

“scenario objects.” Select “insert default” from “select a method” 

area. 

• Name the satellite “cubesat1” and double-click it at the object 

browser to open its menu. 

• Open the “orbit” page and enter the following settings: 

o Propagator: J2Pertubation. 

o Click the “use scenario analysis period.” 

o Apogee Altitude: 630km/310km. 

o Perigee Altitude: 630km/310km. 

o Inclination: 90 deg. 

o Argument of Perigee: 0 deg. 

o RAAN: 0 deg. 

o True Anomaly: 0 deg. 

o Click OK to save changes. 

•  Click the “insert object” button. Select “receiver” from the “attached 

objects.” From the “select Object” catalog that appears, choose 

cubesat1 and click OK.  

• Name the receiver “satrcv1” and double-click it at the object 

browser to open its menu. 
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• Open the “definition” page, and enter the following settings: 

o Select “model specs” tab. 

o Frequency: 2.4GHz. 

o Click “auto track.” 

o Antenna to LNA Line Loss: 0dB. 

o LNA Gain: 0dB. 

o LNA to receiver Line Loss: 0dB. 

o Select “Antenna” tab and then “Model Specs” tab. 

o Type: Hemispherical. 

o Design Frequency: 2.4 GHz. 

o Main-lobe Gain: 3dB. 

o Efficiency: 100%. 

o Select “system noise temperature” tab. 

o Click on “constant” radio button and enter 1000K. 

o Select “filter” tab and enter for “receiver bandwidth” 

0.002MHz. 

o Click OK to save changes. 

• Click the “insert object” button and select “transmitter” from the 

“attached objects.” From the “select Object” catalog that appears, 

choose “cubesat1” and then click OK.  

• Name  the transmitter “satxmtr1” and double-click it at the object 

browser to open its menu. 

• Open the “definition” page, and enter the following settings: 

o Select “model specs” tab. 

o Frequency: 2.4GHz. 
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o Power 0dBW. 

o Select “Antenna” tab and then “Model Specs” tab. 

o Type: Hemispherical. 

o Design Frequency: 2.4 GHz. 

o Main-lobe Gain: 3dB. 

o Efficiency: 100%. 

o Select “polarization” tab, click “use”, and select “linear.” 

o Select “modulator” tab, put for “data rate” 0.009Mb/sec and 

select BPSK for “modulation type.” 

o Click OK to save changes. 

• Create the other five satellites with the names cubesat2, cubesat3, 

cubesat4, cubesat5, cubesat6 and use the same settings with 

cubesat1, except the values for argument of perigee and RAAN 

which should be both values 45, 90, 135, 180, and 225 deg 

respectively. The receivers and the transmitters should have the 

same characteristics and be named after the number of every 

satellite. 

2. Create the Facility and the Ship 

• Click the “insert object” button and select “facility” from the 

“scenario objects” and “insert default” from “select a method.” 

• Name the facility “JCBRN” and double-click it at the object browser 

to open its menu. 

• Open the “position” page and enter the following settings: 

o Type: Geodetic. 

o Latitude: 49.3581 deg. 
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o Longitude: 17.1526 deg. 

o Altitude: 0km. 

o Altitude Reference: WG84. 

o Height Above Ground: 0km. 

o Click OK to save changes. 

• Click the “insert object” button and select “receiver” from the 

“attached objects”. From the “select Object” catalog that appears 

choose JCBRN and then click OK.  

• Name  the receiver “stationrcv” and double-click it at the object 

browser to open its menu. 

• Open the “definition” page, and enter the following settings: 

o Select “model specs” tab. 

o Frequency: 2.4GHz. 

o Click “auto track.” 

o Antenna to LNA Line Loss: 0dB. 

o LNA Gain: 20dB. 

o LNA to receiver Line Loss: 0dB. 

o Select “Antenna” tab and then “Model Specs” tab. 

o Type: Pencil Beam. 

o Design Frequency: 2.4 GHz. 

o Main-lobe Gain: 40dB. 

o Back-lobe Gain: -3.0103dB. 

o Beamwidth: 1.62062deg. 

o Select “system noise temperature” tab. 



 73 

o Click on “constant” radio button and enter 90K. 

o Select “filter” tab and enter for “receiver bandwidth” 1MHz. 

o Click OK to save changes. 

• Click the “insert object” button and select “transmitter” from the 

“attached objects. From the “select Object” catalog that appears 

choose JCBRN and then click OK.  

• Name the transmitter “stationxmtr” and double-click it at the object 

browser to open its menu. 

• Open the “definition” page, and enter the following settings: 

o Select “model specs” tab. 

o Frequency: 2.4GHz. 

o Power 30dBW. 

o Select “Antenna” tab and then “Model Specs” tab. 

o Type: Pencil Beam. 

o Design Frequency: 2.4 GHz. 

o Main-lobe Gain: 40db. 

o Back-lobe Gain: -3.0103dB. 

o Beamwidth: 1.62062deg. 

o Select “polarization” tab, click “use”, and select “linear.” 

o Select “modulator” tab, put for “data rate” 0.09Mb/sec and 

select BPSK for “modulation type.” 

o Click OK to save changes. 

• Click the “insert object” button and select “ship” from the “scenario 

objects” and “insert default” from “select a method” area. 

• Double-click ship at the object browser to open its menu. 
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• Open the “route” page and insert points on the provided table. The 

first point at the MIO scenario is latitude 34.05745091deg, longitude 

28.93466478, and speed 0.00617328 km/sec. The ship sails in 

circles in this scenario. 

• Click OK to save changes. 

• Click the “insert object” button and select “receiver” from the 

“attached objects”. From the “select Object” catalog that appears 

choose ship and then click OK.  

• Name  the receiver “shiprcv” and double-click it at the object 

browser to open its menu. 

• Open the “definition” page, and enter the following settings: 

o Select “model specs” tab. 

o Frequency: 2.4GHz. 

o Click “auto track.” 

o Antenna to LNA Line Loss: 0dB. 

o LNA Gain: 20dB. 

o LNA to receiver Line Loss: 0dB. 

o Select “Antenna” tab and then “Model Specs” tab. 

o Type: Pencil Beam. 

o Design Frequency: 2.4 GHz. 

o Main-lobe Gain: 40dB. 

o Back-lobe Gain: -3.0103dB. 

o Beamwidth: 1.62062deg. 

o Select “system noise temperature” tab. 

o Click on “constant” radio button and enter 90K. 
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o Select “filter” tab and enter for “receiver bandwidth” 

0.002MHz. 

o Click OK to save changes. 

• Click the “insert object” button and select “transmitter” from the 

“attached objects”. From the “select Object” catalog that appears 

choose “ship” and then click OK.  

• Name the transmitter “shipxmtr” and double-click it at the object 

browser to open its menu. 

• Open the “definition” page, and enter the following settings: 

o Select “model specs” tab. 

o Frequency: 2.4GHz. 

o Power 30dBW. 

o Select “Antenna” tab and then “Model Specs” tab. 

o Type: Pencil Beam. 

o Design Frequency: 2.4 GHz. 

o Main-lobe Gain: 40db. 

o Back-lobe Gain: -3.0103dB. 

o Beamwidth: 1.62062deg. 

o Select “polarization” tab, click “use”, and select “linear.” 

o Select “modulator” tab, put for “data rate” 1Mb/sec and 

select BPSK for “modulation type.” 

o Click OK to save changes. 

3. Create Constellations and Chains of Events 

• Click the “insert object” button and select “constellation” from the 

“scenario objects” and “insert default” from “select a method” area. 
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• Name the constellation “cubesat_rcv” and double-click it at the 

object browser to open its menu. “Definition” page should already 

be selected. 

• Select all the satellite receivers in the scenario at the “available 

objects” table, move them to the “assigned objects” list and click 

OK. 

• With the same way create two more constellations and name them 

cubesat_sats and cubesat_xmtrs. 

• For cubesat_sats, select all the satellites in the scenario at the 

“available objects” table, move them to the “assigned objects” list 

and click OK. 

• For cubesat_xmtrs  select all the satellite transmitters in the 

scenario at the “available objects” table, move them to the 

“assigned objects” list and click OK. 

• Click the “insert object” button and select “chain” from the “scenario 

objects” and “insert default” from “select a method” area. 

• Name the chain “JCBRN_to_cubesat” and double-click it at the 

object browser to open its menu. “Definition” page should already 

be selected. 

• Select station xmtr and cubesat_rcvs constellation in the scenario 

at the “available objects” table, move them to the “assigned objects” 

list and click OK. 

• With the same way create three more chains of events and name 

them JCBRN_to_ship, ship_to_cubesat and ship_to_JCBRN. 

• For JCBRN_to_ship select the JCBRN facility, cubesat_sats 

constellation and the ship in the scenario at the “available objects” 

table, move them to the “assigned objects” list and click OK. 
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• For ship_to_cubesat select the ship xmtr and the cubesat_rcvs 

constellation in the scenario at the “available objects” table, move 

them to the “assigned objects” list and click OK. 

• For ship_to_JCBRN select the ship, the cubesat_sats constellation 

and the JCBRN facility in the scenario at the “available objects” 

table, move them to the “assigned objects” list and click OK. 
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