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 Generate power onboard 
spacecraft 
◦ Up to kilowatts 

 Same system can be used to 
provide propulsion 
◦ Change inclination, altitude, etc. 

◦ Reboost and deboost 

◦ No consumable propellant 

 Generate significant power when 
other sources are not available 
◦ Dark side of the Earth 

◦ Thrust when power is available 

 Uses orbital energy as the storage 
“battery” 
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EDT vs. Electric Propulsion 

EDTs provide  

• High thrust-to-
power  

• Extremely high 
specific impulse 
performance 



Advanced Propulsion, Power, & Comm. 

for Space, Sea, & Air 

Bare Wire Anode + FEACs 
• Bare wire anodes used to collect electrons from ionosphere, 

and Field Emission Array Cathodes used to emit electrons 

• No consumables, but lower TRL 

• Re-boost mode converts solar energy into orbital energy 

• De-boost/Generation mode converts orbital energy into electrical power 

• Requires capability to drive current both up and down tether 

Dual-Plasma Generator 
• Hollow Cathode Plasma Contactors or SOLEX devices 

generate plasma ‘ball’ to enable low-impedance electrical 
connection to ionospheric plasma 

• High TRL, but requires small mass flow of expellant 

ED Tether Architectures for  
“Orbital Battery” Operations  

www.tethers.com 4 



 Began experimental investigations on EDT 
components for CubeSat-class EHEDT 
systems 
◦ LEO plasma chamber set up and characterized 

◦ Component testing begun 

 Performed femtosat-class trade studies and 
concept development 

 Participated in PROPEL EDT mission design 

5 
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“small” satellite 

~100+ kg 

CubeSat 

“nano” satellite 

1 to 10 kg 

“Sprite” Cornell Univ. 

ChipSat 

“pico” satellite 

<1 kg  



Field Emitter 

Tether Materials 

Ongoing laboratory experiments 
are evaluating key components 

(a) (b) 

Figure 3. (a ) Pia ma source CAD model: l~i charge 
chamber outer wall. 2-ho llow cathode, 3- inner part o f the 
magnetic filter. 4--neutraJ density grid , 5-Sm-Co magnet , 
~uter part of the magnetic filter, 7-coaxial pia ma expansion 
region. (b) Photograph of the pia rna ource during operation. 
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 For small-scale systems, such as those used on 
CubeSats (<10 kg) and femtosatellites (<100 g), it 
may be difficult to make simplifying 
approximations such as assumption of thin or thick 
current collecting sheath 

 Hence, experiments are necessary in order to 
properly characterize devices at this scale 

 Our objective is to compare measured current–
voltage characteristic to theoretical value giving 
upper bound, lower bound, and most exact current 
collection 

8 



Low Earth Orbit (LEO) Environment 

Temperature (order of magnitude) 
Electrons ~ 0.1 eV 

Ions ~5 eV (streaming) 

Density (order of magnitude) 
 1010–1012 m−3 
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Magnetic Filter Plasma Source (CSU) 

Electron Temperature 
0.1 to 0.5 eV 

 

Ion Temperature 
5 to 10 eV 

Argon glow 



 Materials 
◦ Conductivity (I–V characteristics) 

◦ Dual purpose: shared resources on small satellites 

 Geometries 
◦ Non-ideal geometries (e.g., built-up CubeSats) 

◦ Contactors with small volume (or low in mass) and 
high surface area 

 Devices 
◦ Active or passive charge exchange 

◦ Mission-derived or hardware-limited 

11 
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Aluminum 
(Chromate Converted) 

Langmuir Probe 
(with guards) 

ITO Coating 
(Indium Tin Oxide) 
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Alodine Aluminum 

~5 Ω/sq 

Indium Tin Oxide (ITO) 

~15 Ω/sq 
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90° cone, 15-micron microflat 

Image from Kimball Physics 

Experimental setup: Plasma source 

approximately 0.5 m away 
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Heater current 
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Thermionic Cathode Hollow Cathode 

Field Emitters or Emitter Arrays 
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Hoytether Slotted Tape 

50 micron diameter 

monel (femtosat) 
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From 

Ideal Surface  Cube  Satellite Model 

Hoberman Sphere Koosh Ball 



Picosat 1 and 2 

250 g, few cm length 

Sprite Chipsat 

7.5 mg, 1×1×0.025 cm 

PalmSat 

Few 100 g, several cm length 

CubeSat 

1 kg, 10×10×10 cm 

 

 Picosatellites (1 kg-100 g) and femtosatellites (<100 g) are 
the next steps in satellite miniaturization  think of flying 
your smartphone with highly capable, enhanced MEMS 
sensors 
 

PocketQub 

~250 g, 5×5×5 cm 

PCBSat 

~300 g, 9×9.5×2.5 cm 



• Small size & mass enable large swarms or fleets to be launched 

• Missions using “fleets” of pico- and femtosats would require 

coordination/maneuverability (propulsion) 

Velocity for 
reduced drag 
orientation 

velocity for high 
drag orientation 

A Rough Estimate of Satellite Lifetime due to Atmospheric Drag 

Parameters 3-kg CubeSat 8-g ChipSat 7.5-mg ChipSat 

Configuration 

3-1000 cm3 

cubes, stacked 

upright 

Low 

drag 

High 

Drag 

Low 

Drag 

High 

Drag 

Ballistic Coeff. 45 95 2.5 13.6 0.03 

Alt = 300 km  a month 
a 

month 
hours 

several 

days 
~ 

Alt = 400 km several months 
several 

months 
days 

several 

weeks 
hours 

Alt = 500 km ~1 year 
~1-2 

years 
weeks 

several 

months 
hours 

Early concepts also have no propellant and a high 

area/mass ratio, so the orbital lifetime is short 



 
• Electrodynamic Tether (EDT) 
 A long conductor connected to a 

spacecraft 
 
• EDT can provide propulsion 
 Change inclination, altitude, etc. 
 Reboost and deboost 
 No consumable propellant 
 

• Additional benefits include: 
 Providing gravity gradient stability 
 

Concept of ED tethers with pairs of femtosats 

as a maneuverable and coordinated fleet 

 
 

Can electrodynamic tethers provide ultra small satellites with lifetime 

enhancement and maneuverability?  Can it provide other capabilities? 

Research questions: 

  

L

dI
0

tetherThrust EDT BLF



System is capable of 

boost, deboost, and 

inclination change 

Both satellites have 

• solar panel 

• power supply  

• electron emitter  

• capable of collecting electrons 

on the surface 

  

L

dI
0

tetherThrust EDT BLF
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  Insulated tether 

  (1−12 m long) 

  Power source 

  Electron emitter 

  Conductive  

  coating 

  Pico/femtosat 

  Nearly identical  

  pico/femtosat 

e- e- 

FEDT Thrust 

Four satellites are considered in 

the trade study 



• Estimated that solar cells provide 

4.4 mW·cm−2 for propulsion 

 

• If more power is available than 

required for thrust, the EDT can 

boost 

 

• Figures to the right show power 

needed  for drag make-up at  

• 400 km (black) 

• 500 km (green) 

• 600 km (blue)  

  as well as the power available for 

propulsion (red) 
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Earth 

Velocity 

A 1-m EDT gives peak thrust for 400-mg femtosat at 500 km and 

600 km. The gravity gradient force is also well below other forces. 

Thrust  equals or 

exceeds drag 

FEDT Thrust Fdrag 



Velocity 

A 12-m EDT gives peak thrust for 250-g picosat at 400 km, 500 km, and 

600 km. The gravity gradient force is also comparable to other forces. 

Thrust equals or 

exceeds drag 

Earth 

FEDT Thrust Fdrag 



1.75 m 

tether 

0.25 m 

tether 

Possible ED Tether Architecture 

for Communication Simulated ED Tether Radiation Pattern 

HFSS was used to model the ED tether as an antenna.  We have considered 

an off-center dipole configuration.   

F = 295 MHz 

3D pattern 

Radiation pattern 

cross section 



 Insulated EDTs only a 
few meters long show 
potential to be used for 
femtosat and picosat 
lifetime enhancement 
and maneuverability  
◦ Capable of nN to μN 

thrust levels 

 
 EDT is less able to 

overcome drag at lower 
altitudes   
◦ Due to increased neutral 

density and decreased 
plasma density-to-
neutral density ratio 

 

Parameter 400 mg 2 g 50 g 250 g 

Satellite 
Dimensions 

1 cm ×  
1 cm ×  
0.2 cm 

   1 cm ×  
   1 cm ×  

1 cm 

  5 cm ×  
   5 cm ×  

1 cm 

  5 cm ×  
   5 cm ×  

5 cm 

Tether 

1 m 
long,        

24 µm 
diam. 

4 m long,          
70 µm 
diam. 

5 m 
long,                   

80 µm 
diam. 

12 m 
long,                 

200 µm 
diam. 

Mass 2 mg 12 mg 0.18 g 3 g 

Thrust 
Power 

9 mW 27 mW 318 mW 672 mW 

Where is 
gravity 
gradient 
significant? 

~600 km 
~500 km, 
600 km 

~400 
km,      

500 km,        
600 km 

400 km,      
500 km,        
600 km 



 Emission current cannot 
exceed space charge limit (JCL), 
governed by 

 
◦ T0 being the initial electron energy 

 Electron emitter types 
◦ Cold cathode 

◦ Hot filament 

 For all femtosatellite sizes and 
altitudes, necessary emission 
area is <2% of available 
emission area even for worst 
emission technology 
◦ Smaller femtosatellites require 

larger percentage of available area 
for emission 
 

 

2
3

0TJCL 

e- 

e- 

e- 

e- e- 

e- e- 

I 

e- 

-Electron emitter 

-Pico/femtosat 

-Nearly identical  

  pico/femtosat 

e- e- 



 Finalize EHEDT system and mission studies 
◦ Characterize overall “round-trip” efficiency of a boost/de-boost 

“orbital battery” EDT power generation system 

◦ Characterize performance of de-boost only “orbital energy 
scavenging” systems 

◦ Characterize performance and efficiency of orbital plane changes 
using a boost/de-boost tether system 

 Laboratory investigation of tether system elements 

 PROPEL mission design efforts 

32 
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PROPEL Mission Goals 

• Demonstrate capability of ED tether technology to 

provide robust and safe, near-propellantless 

propulsion for orbit-raising, de-orbit, plane change, 

and station keeping, as well as perform orbital 

power harvesting and formation flight 

• Fully characterize and validate the performance of 
an integrated ED tether propulsion system, 
qualifying it for infusion into future multiple 
satellite platforms and missions with minimum 
modification 

“Propulsion using Electrodynamics” 
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PROPEL Configuration Driven By Goals 

• Need for Bi-polar current flow 

– Fully insulated conducting tether 

– Hollow Cathode Plasma Contactors 
(HCPCs) at each end as baseline 

– Plasma sensors at each end for 

 HCPC performance 

 End-Body-to-Ionosphere connection 

• Tether retraction capability at both 
ends for confidence of safety 

• Bolt-on architecture to Host S/C 

 

 

3 km 
Tether 

Endmass 

S/C Host 

Host 
Side 

Bolt-on 
Attach 

PROPEL Delivers a Space Flight Demonstration of Electrodynamic Tether 
Propulsion for Rapid Infusion into Future Missions 
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EDT Questions Driving Mission Design 

• What is predictable performance of hollow-cathode 
plasma contactor (HCPC) to collect current from and 
emit current to surrounding ionosphere in terms of: 

– Tether current,  

– HCPC parameters, and  

– Ionospheric conditions?  

• How does ED tether performance change with 
increasing current (above 1 A)? How can the tether 
system be optimized for high current operation?  

• What level of forecasting, real-time observation, 
performance prediction, and integrated simulation are 
required to enable safe ED tether system 
maneuvering?  



36 EDT Prop Demo Mission Overview-July 5, 2012 National Aeronautics and Space Administration 

The EDT Prop Demo Mission will 

operate an EDT propulsion system 

on a flight-proven Host bus in LEO 

(HTV post ISS mission) and has two 

goals:  

 Demonstrate EDT technology’s capability 

to provide robust and safe near-

propellant-less propulsion for orbit-

raising, de-orbit, plane change, and 

station keeping, as well as perform orbital 

power harvesting and formation flight 

 Fully characterize and validate the 

performance of an integrated EDT 

propulsion system, qualifying it for 

infusion into future satellite platforms and 

missions 

 

HTV-based PROPEL Mission 

Design Effort 


