

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MAINTAINING MULTIMEDIA DATA
IN A GEOSPATIAL DATABASE

by

Mitchakima D. Banks

September 2012

 Thesis Advisor: Mathias Kölsch
 Second Reader: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Maintaining Multimedia Data in a Geospatial Database 5. FUNDING NUMBERS
6. AUTHOR(S) Mitchakima D. Banks

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The maintenance and organization of data in any profession, government or commercial, is becoming increasingly
more challenging. Adding components, whether those components are two- or three dimensional, further increases the
complexity of databases. It is harder to determine which database software to choose to meet the needs of the
organization. This thesis evaluates the performance of two databases as spatial functions are executed on columns
containing spatial data using benchmark testing.

Evaluating the performance of spatial databases makes it possible to identify performance issues with spatial
queries. The process of conducting a performance evaluation of multiple databases, in this thesis, focuses on the
measurement of each elapsed time within each database.

The work already implemented in evaluating the performance of spatial databases did not explore a
database’s performance as it returned large and small result sets. The overhead of returning large or small result sets
was not considered. Therefore, a custom test was developed to engage the aspects of prior work found beneficial.
Using a database the researchers built with well over one million records, the elapsed time in adding records was
measured. The elapsed time of the spatial functions queries was measured next.

The results showed areas where each database excelled given multiple conditions. A different look at
PostgreSQL and MySQL as spatial databases was offered. Given their results, as each database produced result sets
from zero to 100,000, it was learned that the performance of each database could differ depending on the volume of
information it is expected to return.

14. SUBJECT TERMS Database, Spatial, Benchmark 15. NUMBER OF
PAGES

57

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MAINTAINING MULTIMEDIA DATA IN A GEOSPATIAL DATABASE

Mitchakima D. Banks
Lieutenant, United States Coast Guard

B.S., Voorhees College, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: Mitchakima D. Banks

Approved by: Mathias Kölsch
Thesis Advisor

Arijit Das
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The maintenance and organization of data in any profession, government or commercial,

is becoming increasingly more challenging. Adding components, whether those

components are two- or three dimensional, further increases the complexity of databases.

It is harder to determine which database software to choose to meet the needs of the

organization. This thesis evaluates the performance of two databases as spatial functions

are executed on columns containing spatial data using benchmark testing.

Evaluating the performance of spatial databases makes it possible to identify

performance issues with spatial queries. The process of conducting a performance

evaluation of multiple databases, in this thesis, focuses on the measurement of each

elapsed time within each database.

The work already implemented in evaluating the performance of spatial databases

did not explore a database’s performance as it returned large and small result sets. The

overhead of returning large or small result sets was not considered. Therefore, a custom

test was developed to engage the aspects of prior work found beneficial. Using a database

the researchers built with well over one million records, the elapsed time in adding

records was measured. The elapsed time of the spatial functions queries was measured

next.

The results showed areas where each database excelled given multiple conditions.

A different look at PostgreSQL and MySQL as spatial databases was offered. Given their

results, as each database produced result sets from zero to 100,000, it was learned that the

performance of each database could differ depending on the volume of information it is

expected to return.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..3
A. SPATIAL DATA ..3

1. Non-Spatial Database ..3
2. Spatial Database ...3

a. Geometry..4
b. Geography ...5

B. INDEXING ...6
1. Non-Spatial Indexing ...6

a. B-tree Indexing ...7
b. GiST Indexing ...8
c. GIN Indexing ..8

2. Indexing Spatial Data ..8
a. R-tree Indexing ...9

C. ARCHITECTURE ...9
1. Storage Engines ..9

D. BENCHMARKS ..10
1. Current Benchmarking ...10
2. Reason for Custom Benchmark ..11

III. METHODOLOGY ..13
A. BENCHMARKING DATA INSERTED TO THE TABLE13

1. PostgreSQL ...14
2. MySQL ..14

B. BENCHMARKING DATA RETRIEVED FROM TABLE14
1. CONTAINS (Polygon) ...15
2. EQUALS ...16
3. OVERLAPS and INTERSECTS ..16
4. CONTAINS (Point) ..17

IV. EXPERIMENT SETUP...19
A. OVERVIEW ...19

1. Hardware and Connection ..19
2. Database ..19

B. BUILDING THE DATABASE ...20
1. “Center” ..21

a. Random Data ..21
b. Milestone Data ..21

2. “Corners”..22
C. TESTING THE DATA ..23

V. BENCHMARK RESULTS ...25
A. RESULTS OF DATA INSERT...25

 viii

1. Data Load Results ..25
B. RESULTS FROM QUERY SET ..26

1. CONTAINS (Polygon) ...26
2. EQUALS ...27
3. OVERLAPS and INTERSECTS ..28
4. CONTAINS (Point) ..29

C. ANALYSIS OF THE RESULTS ..30

VI. CONCLUSION ..33

APPENDIX A. RANDOM DATA GENERATOR ...35

APPENDIX B. MILESTONE DATA GENERATOR FOR EQUALS QUERY37

APPENDIX C. GENERAL MILESTONE DATA GENERATOR39

LIST OF REFERENCES ..41

INITIAL DISTRIBUTION LIST ...43

 ix

LIST OF FIGURES

Figure 1. Geometry graph with polygon A and polygon B intersecting.4
Figure 2. Geography or “round earth” graph with polygon A and polygon B

Intersecting. ..5
Figure 3. 2-3 B-tree configuration. ..7
Figure 4. 2D R-tree From [9]. ...9
Figure 5. Load data graph..25
Figure 6. Query1: One polygon spatially contains another. ..26
Figure 7. Query2: Two polygons equal. ..27
Figure 8. Query3: One polygon overlaps or intersects another.28
Figure 9. Query 4: Polygons contained within a specified radius of a point.29

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Indices supported. ..6
Table 2. Changes required to create the datasets. ..22
Table 3. Benchmark time for loading data. ..25
Table 4. Query1: One polygon spatially contains another. ..26
Table 5. Query2: Two polygons equal. ..27
Table 6. Query3: One polygon overlaps or intersects another.28
Table 7. Query4: Polygons contained within a specified radius of a point.29

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Originally, this thesis resulted from a project in which imagery was captured and

automatically stored. Historical data was integrated with it and made available through

the network to permit a TIVO-style replay of events anywhere within a city limit, with a

focus and higher spatial and temporal resolution on hotspots. The purpose was to allow

law enforcement personnel to go back in time to a location and recover imagery/video of

interest in an expedited timely manner.

While working on the project, the question of database performance arose.

Deciding on an open-source relational database management system (RDBMS), MySQL

or PostgreSQL, to handle a spatial database of this magnitude, was a decision that had to

be made. So what is so special about spatial databases? Which database is the best

database? No doubt exists that both are admirable proven solutions, but how do they

perform against each other? Does the multimedia data add any additional complexity to

the database?

The goal of this thesis is to compare and analyze the usage of two database

options, PostgreSQL and MySQL, as spatial databases, in a practical situation. The intent

is not to prove that one database will always outperform the other. However, whether one

database will perform better than the other is examined based on specific performance

requirements, and some performance considerations are provided when deciding which

database is right in any given situation.

Some background information about databases is given in Chapter II. Chapter III

describes the benchmark testing used to determine which database outperforms the other.

The specifics of the experiment are given in Chapter IV, including some SQL example

code that could be used to replicate results. The actual results of the experiment are

illustrated using graphs and tables and explained in Chapter V. Chapter VI takes the

results of Chapter V along with lessons learned along the way, to discuss the outcome of

this work and give recommendations for future work. Appendices are provided to offer

some of the Java code used to generate data.

 2

THIS PAGE INTENTIONALLY LEFT BLANK

 3

II. BACKGROUND

This chapter provides background information about relational databases,

examines the uniqueness of spatial relational databases, as well as determines what is

special about these databases. Many of the definitions relating to spatial and non-spatial

databases are presented. Beginning with the general discussion about databases and how

they work, information about spatial databases, how they work and what makes them

special is discussed next.

A. SPATIAL DATA

To give some background into what a spatial database is and how it differs from a

non-spatial database, it is important to start from the beginning by describing what a non-

spatial database is and then move into the specifics of a spatial database.

1. Non-Spatial Database

A database is a collection of tables of information to manage, as well as the

definitions of the relationships that exist between those tables. Databases offer an

organized tool for storing, managing and retrieving information in tables. A table is a

collection of information managed by columns and rows that are uniquely identified by

their name. Each column is basically a category of information, or attributes, and each

row is a record of the column information.

2. Spatial Database

A spatial database is a relational database management system (RDBMS) that

supports spatial data types in the same way as any other data in the database [1].

Relational databases connect data from different files, using a key field, or common data

element. Each table in a relational database uses a key field to uniquely identify each row

and connect one table to another. An RDBMS is the software used by a relational

database. A spatial database stores and queries data related to objects in space. Spatial

data includes points, lines, and polygons. Spatial data consists of two types, geometry and

geography. While these two types behave very similarly, they are different. For the

 4

purposes of this research, the difference focused on between the two data types is the fact

that geometry data types relate to planar, or “flat-earth” data, while geography data types

relate to geodetic, or “round-earth” data.

a. Geometry

Geometry data types work with planar models. The earth is treated as a

flat projection, without taking the curvature of the earth into account. It is primarily used

for describing short distances. The Cartesian coordinate system is used with geometry

data types, and it specifies points in a plane by an ordered pair of numeric coordinates.

They are measured in units of length, and can be expressed using all possibilities of real

numbers. Unlike in a geodetic system, in the planar system, ring orientation of a polygon

is not an important factor (i.e., polygon((2, 2), (2, 4), (0, 4), (0, 2), (2, 2)) is the same as

polygon((2, 2), (0, 2), (2, 4), (0, 4), (2, 2))).

Figure 1 shows a typical graph used in geometry, in which two polygons,

polygon A and polygon B, are intersecting. In comparison to Figure 2, a geography graph

with two polygons intersecting is provided.

Figure 1. Geometry graph with polygon A and polygon B intersecting.

 5

b. Geography

Geography data types work with geodetic information, and it factors the

curved surface of the earth into its calculations. The position information is given in

ellipsoid coordinates expressed in degrees of longitude and latitude. Each spatial instance

has a Spatial Reference ID (SRID). “The SRID is the spatial reference identification

system. The SRID is part of a set of standards developed for cartography, surveying, and

geodetic storage” [2]. The SRID is not necessary for geometry data. Both location and

orientation must be accurately described in geography.

True geodetic support, which is support for true measurement along a

spherical coordinate), is not offered by MySQL [3]. PostgreSQL does offer it, but only

for point-to-point non-indexed distance functions. Figure 2 shows a geography graph in

which two polygons, polygon A and polygon B, are intersecting.

Figure 2. Geography or “round earth” graph with polygon A and polygon B
Intersecting.

 6

B. INDEXING

Indexing is a way to improve the speed of data retrieval. Like the index in a book,

a data structure can be referred to when searching for an item of information. Within

relational databases, an index eliminates the need to scan each record in a table

sequentially. Database indexes can occupy as much disk memory as data, and can be the

cause of slower writes and increased storage space. However, for the purpose of this

thesis, the full tradeoff of indexing, if any exists, is not explored. Indices are primarily

used to enhance database performance, but inappropriate use can result in slower

performance. This section begins with a general discussion of indices and then elaborates

on the spatial indexing used within the experiment.

No provision exists for creating indices within the SQL standard. All database

software includes the technology needed to index columns. Therefore, the indexing

differences within the two database software options discussed in this thesis are explored

individually. Table 1 shows which indices both MySL and PostgreSQL support.

 B-/B+ tree R-/R+ tree GiST GIN fulltesxt Spatial

MySQL Yes MyISAM tables only No No MyISAM tables only MyISAM tables only

PostgreSQL Yes GiST yes yes yes PostGIS

Table 1. Indices supported.

1. Non-Spatial Indexing

Without indices, MySQL starts reading the first record, then reads the entire table

searching for relevant rows, at a cost of O(n). If it is anticipated that most queries will be

run on a specific column, indexing that column can quickly yield the location the system

should search within the table, without having to look at all the data. “Most MySQL

indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees”

[4], which is explained later in this section.

 7

Normally, all indices are created on a table at the time the table is created [4], but

CREATE INDEX can be used to add indices to existing tables.

CREATE INDEX example_index ON sampleTable (column1);

Within PostgreSQL, B-tree, GiST, and GIN, are provided, as seen in Table 1.

Each index is explained later in this section. Indexing is not necessary for full text

searching. Full text searching consists of examining each word in each cell of a database

for matches, which is contrary to searching a database for matches on parts of the original

data, or metadata. When a column is searched on a regular basis, an index is more

desirable.

a. B-tree Indexing

In B-tree indexing, or generalized binary search tree, each node can have

more than two child nodes, but the lower and upper bounds on that number of child nodes

are typically fixed. Thus, in a 2-3 B-tree, the internal child nodes may only be between 2

and 3 [5], as seen in Figure 3. In the worst and average case scenario, the cost of a B-tree

search is O(log n).

Figure 3. 2-3 B-tree configuration.

 8

The following is SQL code to create a B-tree index on a column named column1

in a sample table named sampleTable:

CREATE UNIQUE INDEX example_Index ON sampleTable (column1);

b. GiST Indexing

GiST, Generalized Inverted Search Tree index, is a more general index. It

can be used for broader purposes, like geographical points and polygons, than B-tree

indexes. Hellerstein, Naughton, and Pfeffer [6] describe GiST as being “lossy” because

each document is represented in the index by a fixed-length signature.

The signature is generated by hashing each word into a random bit in an n-
bit string, with all these bits OR-ed together to produce an n-bit document
signature. When two words hash to the same bit positions, the result is
false matches. If all the words in the query have matches, whether they are
real or false, the table row must be retrieved to see if each match is correct
[PostgreSQL does this automatically]. [7]

The issue with “lossiness” in GiST causes performance degradation due to

useless fetches, but again, this thesis does not focus on the full tradeoff of indexing.

c. GIN Indexing

GIN, Generalized Inverted Index, is not “lossy.”

It is a way to index one record with several keys. GIN index accepts an
array of expressions as a parameter and uses each element of the array as a
key. This gives a many-to-many mapping between keys and records. Each
key potentially points to many records, and each record is potentially
pointed to by many keys. [8]

2. Indexing Spatial Data

Spatial databases employ spatial indices to optimize search results from spatial

queries. Spatial indexing helps the computer make sense of the unique layout of the

world according to a spatial database. It is a set of rules that assists in organizing the

 9

information in a database. In MySQL, spatial column types use R-tree indexing,

explained in Section a, while PostgreSQL spatial columns use GiST, further explained in

Section 1.b.

a. R-tree Indexing

The key idea behind R-tree (Rectangle tree) indexing is that the database

structure groups nearby objects and represents them with a minimum bounding rectangle

in the next higher level of the tree, as seen in Figure 4. In the worst case scenario of R-

tree indexing, the cost to search is O(n). In the best case, the cost is O(logM n), where M

is the maximum number of children per node, and n is the number of levels in a tree.

Figure 4. 2D R-tree From [9].

C. ARCHITECTURE

In comparing the architecture of the two databases described in this thesis, some

differences arose, specifically in the comparison of both databases’ storage engines,

which is significant only since ignoring storage engines could result in undue influence of

one database software outperforming the other. For the purposes of this thesis, the storage

engine influences on performance are not explored.

1. Storage Engines

PostgreSQL is a unified database server with a single storage engine. MySQL has

two layers, an upper SQL layer and a set of storage engines. In the comparison of the two

databases, it is necessary to specify which storage engines are being used with MySQL

because suitability, performance and (even basic) feature availability are greatly affected.

The most commonly used storage engines in MySQL are InnoDB for high performance

 10

on large workloads with lots of concurrency, and MyISAM for lower concurrency

workloads or higher concurrency read-mostly data [10]. Read-mostly data is the data

indexed, because it is read most. Another important feature about MyISAM is that it

supports spatial indexing.

D. BENCHMARKS

One of the goals of this thesis is to be able to show performance of two databases,

MySQL and PostgreSQL. To assess relative performance, benchmarks are used to

measure both basic spatial database operations and normal real-world applications. In

general, database benchmarks attempt to simulate, as closely as possible, real-world

workloads, while reflecting an organization’s actual workload. Objects in a GIS are

stored in two-dimensional space, which adds to the complexities faced in simulating a

databases’ workload when the data is three-dimensional, latitude, longitude, and

elevation. Within this thesis, this third dimension is not added.

1. Current Benchmarking

Numerous whitepapers exist that describe benchmarks on databases. However,

the number of benchmark tests used for spatial database performance is considerable

smaller. Some of the current benchmark tests explored in creating the benchmark for this

thesis are discussed below.

Ray-Simion-Brown [1] created a benchmark named Jackpine. Jackpine has micro

benchmarks to test basic spatial operations in isolation and macro workload scenarios,

such as map search and browsing, geocoding, reverse geocoding, flood risk, land

information management, and toxic spill analysis. Jackpine was more in-depth than this

thesis process required, in that it examined aspects of topology relationship and use cases

upon which this thesis did not focus.

The benchmark test created by Stonebreaker-Frew-Gardels-Meredith [11] was

closer to being achievable and relevant to this research; however, this benchmark

examined raster data, point data, polygon data, and directed graph data. In representing

 11

each of these classes, the authors added a variable not an issue in this thesis, cost. The

SEQUIOA 2000 factored in costs to its performance results, which added some

additional weight to the result set.

Powers’ benchmark test [12] was the closest benchmark test to what was

attempted to accomplish in this thesis. It used 20 queries to assess performance, which

are broken down as follows.

 9 general spatial queries

 5 hierarchical queries

 4 queries to explore time series data

 1 linked the time series data to its spatial location

 1 combined spatial, monitoring locations and time series data

Using these performance categories, Powers’ work [12] was used to test both

MySQL and PostgreSQL.

Myllymaki and Kaufman [13] implemented a location-based service test that

queried proximity (range queries), k-nearest neighbor, and sorted-distance. It measured

“elapsed time of location updates, spatial queries, and spatial index creation and

maintenance” [12].

2. Reason for Custom Benchmark

The Jackpine macro benchmark illustrated performance of spatial function queries

for different databases, but some aspects of performance are omitted in determining

performance. A number of aspects of this benchmark testing were not necessary for the

performance test in this thesis. Powers [1] benchmark tests were closer to what the

researchers of this thesis were trying to achieve, but it was not sufficient as-is for

determining performance. Thus, the basis of this thesis benchmark tests is greatly

influenced by this work. What happens when instead of inserting 1,000 records, 10,000

records are added? Do the databases still perform the same when the result set returned

by each database is altered? This aspect of performance is explored more within the

research for thesis, but was omitted from the other benchmark tests discussed.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. METHODOLOGY

The approach used in this thesis for measuring performance is a simple

benchmark test developed to show the performance of both PostgreSQL and MySQL in

the “normal” operations of a geospatial database. This benchmark test is not intended to

stress either database. For the purposes of this thesis, stressing the database would

include adding multiple users and testing the performance as each user is added. It would

also include performing multiple complex queries simultaneously. This benchmark will

in no way do this.

Much like Power’s work [1], MySQL and PostgreSQL are compared using a

small dataset and queries. However, the goal of thesis was to provide more than a

preliminary investigation of these databases with the aim to establish which system

performs best. Although indexing is a major part of database optimization, this

benchmark does not fully test indexing and all the tradeoffs of indexing, nor does it test

every indexing option available to PostgreSQL and MySQL.

This chapter is divided into two main sections. The first section describes the

performance of each database as it executes a fundamental database operation, that of

adding data into the database. Each database executes an INSERT, to add information

into their prospective database. The second section shows the performance of four

queries executed on each of the two databases. Then, the latency and throughput of these

databases are measured. In each case, the queries are described in words and expressed in

SQL.

A. BENCHMARKING DATA INSERTED TO THE TABLE

This section describes how the performance of each database was evaluated as 10,

100, 500, 1,000, 5,000, 10,000, and 100,000 records are added to a database that has over

1 million records already stored. Beyond the PRIMARY KEY, no indexing was applied

to the databases as records were being loaded.

 14

It is important to begin timing the insert after the connection has been made

because the raw time it takes to load data is more accurately measured without the time it

takes to connect to the database that adds additional time to the processing of data, which

is the case for all the data being measured.

1. PostgreSQL

The following is the SQL code to insert records into the PostgreSQL database.

INSERT INTO image VALUES (1, now(), ‘image1.jpg’, ‘images/image1.jpg’,
‘image 1.kml’, ‘point‘(X, Y)’ ‘, ‘polygon‘((X1, Y1), (X2, Y2), (X3, Y3), (X4,
Y4), (X1, Y1))’)’;

2. MySQL

The following is the SQL code to insert records into the MySQL database. Note

that the code is very similar to the PostgreSQL code. The difference is in how each

database stores points and polygons. To insert a point, PostgreSQL separates the X- and

Y- Coordinate with a comma, while MySQL separates the X- and Y Coordinate with a

space. To insert a polygon, PostgreSQL separates the X- and Y Coordinate with a comma

and separates the X- Y- pair with parenthesis and a comma, while MySQL separates the

X- and Y- Coordinate with a space and separates the X- Y- pair with a comma:

INSERT INTO image VALUES (1, now(), ‘image1.jpg’, ‘images/image1.jpg’,
‘image 1.kml’, ‘point‘(X Y)’ ‘, ‘polygon‘((X1 Y1, X2 Y2, X3 Y3, X4, Y4, X1
Y1))’)’;

B. BENCHMARKING DATA RETRIEVED FROM TABLE

This section describes the tests of spatial performance performed for this thesis.

Spatial performance could be tested in a number of ways. For instance, general spatial

queries could be performed that accepted each polygon in each record and returned its

area. The number and/or a list of polygons that intersected each of the given polygons in

the database could also be returned. The decision was made to keep the testing simple

and more controlled by measuring how much time each database took in returning a

 15

result set at known milestones for four spatial functions. Sets of records at different

intervals must be present in the database for testing purposes, which began by providing

the X- and Y- Coordinates for a polygon not in the database, then measuring how much

time it took the database to search and return a response that the polygon was not found.

A polygon was then queried for that had exactly 10 matches in the database, and then

how much time it took the database to search and return a response that included the ten

polygons was measured. The same was performed for 100 matches, 500 matches, 1,000

matches, 5,000 matches, 10,000 and 100,000 matches.

1. CONTAINS (Polygon)

The first query was the CONTAINS (polygon) query. This query is labeled

CONTAINS (polygon), because it is based on the relationship of one polygon to another

polygon. Another query within this method tests the relationship of a given point and a

polygon. The CONTAINS (polygon) query finds all the polygons contained within a

given polygon. For both PostgreSQL and MySQL, this query includes both polygons

equal to testPolygon and polygons smaller than testPolygon. It does not include polygons

larger than testPolygon. The following shows the SQL code to run a CONTAINS

(polygon) query for PostgreSQL and MySQL.

PostgreSQL

testPolygon = “Polygon'((-120.764653,35.716847), (-
120.764651,35.716847), (-120.76465,35.716845), (-
120.764653,35.716845), (-120.764653,35.716847))’”

SELECT * FROM image

WHERE " + testPolygon + " <@ corners

MySQL

testPolygon = “Polygon((-120.764653 35.716847,-
120.764651,35.716847),(-120.76465,35.716845),(-
120.764653,35.716845,-120.764653 35.716847))”

SELECT * FROM image1

WHERE CONTAINS(GeomFromText(‘ + testPolygon + '), corners);

 16

2. EQUALS

The second query was the EQUALS query. The EQUALS query finds all the

polygons exactly equal to the testPolygon. The following shows the SQL code to run an

EQUALS query for PostgreSQL then MySQL.

PostgreSQL

SELECT * FROM image

WHERE " + testPolygon + " ~= corners

MySQL

SELECT * FROM image1

WHERE EQUALS(GeomFromText('" + testPolygon + "'), corners)

3. OVERLAPS and INTERSECTS

The third query was the OVERLAPS and INTERSECTS query. The OVERLAPS

and INTERSECTS query finds all the polygons that overlaps a given polygon

(testPolygon). For PostgreSQL, this query includes polygons equal to testPolygon,

polygons smaller than testPolygon, and polygons larger than testPolygon. As long as

some portion of a polygon overlaps testPolygon, it is considered as overlap. For MySQL,

this is not the case. MySQL excludes polygons equal spatially. For this reason, MySQL

measures INTERSECTS, because the PostgreSQL’s definition of OVERLAPS and

MySQL’s definition of INTERSECTS are more closely alike. The following shows the

SQL code to run an OVERLAPS query for PostgreSQL and an INTERSECTS query for

MySQL.

PostgreSQL

SELECT * FROM image

WHERE box(" + testPolygon + ") && box(corners)

MySQL

SELECT * FROM image1

WHERE INTERSECTS(GeomFromText('" + testPolygon+ "'), corners)

 17

4. CONTAINS (Point)

The final query was the CONTAINS (point) query. The CONTAINS (point)

query finds all the polygons contained within a certain radius (for PostgreSQL) or

bounding box (for MySQL) of a center point, labeled testPoint. This query is the most

complicated query found within the method because an additional function was needed to

compute the bounding box for MySQL. For PostgreSQL, both the point and the polygons

are placed inside a circle and all circles created around the polygons equal to or smaller

than the circle placed around testPoint were returned as matches. The result set does not

include polygons in which the circle placed around the polygon was larger than the circle

placed around the testPoint. The following shows the SQL code to run a CONTAINS

(point) query for PostgreSQL and MySQL.

PostgreSQL

SELECT * FROM image

WHERE circle(" + testPoint + ", 2.0) && circle(corners)

MySQL

SELECT * FROM image1

WHERE INTERSECTS(GeomFromText(AsText(Envelope

(GeomFromText('LineString(" + lowerX +" "+ lowerY + ", "

+ centerX +" "+ centerY +", " + upperX + " " + upperY +")')))),

corners)

MySQL has additional variables: lowerX, lowerY, centerX, center, upperX,

upperY. These variables create a lineString that defines a bounding box (Envelope).

Unlike PostgreSQL, MySQL does not have a function that defines a circle around a point.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. EXPERIMENT SETUP

Chapter III described the custom benchmark used to evaluate some spatial

features and one non-spatial function of two open source databases. In this section, the

experimental setup is described. The experimental setup goes in depth into the creation of

the databases and discusses the implementation of the benchmark testing.

A. OVERVIEW

In creating a GIS that maintains multimedia data, it is first important to note that

the actual multimedia data is not housed within the databases. Since the multimedia data

is not dynamic, and storing images in a database requires the database to transport large

amounts of data, the databases hold links to the multimedia data, not the actual data.

Also, storing images in the database does not allow the data to be accessible by external

image viewers. Multimedia data has not added any additional complexities to the

database for this thesis.

1. Hardware and Connection

The machine running the database client and conducting the benchmark tests was

a MAC OS X version 10.7.4, with two quad-core intel xeon processors. The system has a

processor speed of 2.4GHz, and 16GB of memory, which was connected to using JDBC.

The JDBC connection pool was created before any data was entered in the databases or

any queries run to ensure that the overhead of a connection to the database was not

accounted for in the metrics. Both databases were running at the same time, but no

benchmark tests were performed simultaneously. The hardware load was comparable in

all cases and no other processes were running.

2. Database

The databases created and evaluated were PostgreSQL9.2 and MySQL5.5. The

databases were installed “as-is.” No tuning was performed on any of the databases. The

tables have an “image_id”, that is a primary key; “image_date”, which is the date the

image was taken; “image_filename”, which is the name of the actual image;

 20

“image_directory”, combines with the “image_name” to create the link to the image;

“kml_filname”, which is the name of the file that holds the metadata about the image and

combines with the “image_directory” to create the link to the metadata; and two spatial

columns, called “Center” and “Corners.” “Center” is a point and “Corners” is a polygon.

The following shows the PostgreSQL statement used to create the geometry database.

CREATE TABLE image (image_id NUMBER(38,0),
 image_date DATE() default now(),
 image_filename VARCHAR (100),
 image_directory VARCHAR (512),
 kml_filename VARCHAR (100),
 center POINT,
 corners POLYGON,
 PRIMARY KEY (image_id)
);

The MySQL database was also created as a geometry database, with spatial features and

a MyISAM storage engine, with the following SQL code.

CREATE TABLE image (image_id int(38) unsigned primary key not null,
 image_date DATE,
 image_filename VARCHAR (100),
 image_directory VARCHAR (512),
 kml_filename VARCHAR (100),
 center geometry,
 corners geometry) ENGINE=MyISAM;

Both databases were initially created without an index. The index was added later in the

experiment to eliminate any latency issues.

B. BUILDING THE DATABASE

To create the database, the records needed to be fabricated to look as close to

actual spatial data as possible. The two columns this thesis is most concerned with are the

“Center” column and the “Corners” column because these are the two spatial columns.

Therefore, all spatial queries are run against these columns. The following sections

discuss how the “Center” data and the “Corners” data were created.

 21

1. “Center”

The “Center” column was created with two sets of data, random data and data

called milestone-data for the purposes of this thesis. The random data is the data not

expect to be utilized. Their purpose is to add extra records to the database so that

performance can be tested on a database with a significant number of records (1.2

million). The milestone-data set is deliberately placed into the database to be returned

when a query is run against the database. This data is the most important data in this

experiment because this data assists in measuring the database performance.

a. Random Data

Within the database, 1,212,251 records were created to make the database

larger. While these records are not measured in the experiment, the goal was to have at

least enough variety in this dataset to make indexing necessary. This random data was

created by using coordinates that would in no way intersect with the milestone datasets.

The java code used to generate the “Center” columns’ X- and Y- coordinates for the

random data can be found in Appendix A.

The code in Appendix A generates the X- and Y- coordinates for this

thesis with an outer loop and inner loop pair. The initial X- coordinate is created. Then, a

specified number of Y- coordinates are created (in this case 200) to accompany the X-

coordinate, which continues until 200 X- coordinates with 200 Y- coordinates each (i.e.,

40,000 records). Due to the milestone-data needed to be mixed in with the random data,

only a few thousand random data records are created without interruption. Next, some

milestone-data records are added in, and then random data records again, which continues

until enough records are added to the database.

b. Milestone Data

A total of 116,610 records were created for measuring each database’s

performance. These records were created in groups of 10, 100, 500, 1,000, 5,000, 10,000

and 100,000. They were created very similarly to the random records, except no random

number generator exits with the milestone-data records because these numbers needed to

 22

be deliberately placed in the database as discussed in Chapter III. A closer look at the

code used to create the dataset to query EQUALS, in Appendix B, shows the same inner

and outer loop as the random data records, without the X- and Y- coordinates.

The code in Appendix B generated the X- and Y- coordinates for the

“Center” column of a dataset of 10 records, used to query EQUALS. Table 2 shows the

changes necessary to create the other milestone-datasets, which are needed to query

EQUALS. As stated in Section one of Chapter IV.B, these datasets were spread out

throughout the database.

“m” value Center X Center Y

10 -100.6565 65.6972

100 -100.6565 35.6972

500 -100.6565 15.6972

1000 -100.6565 85.6972

5000 -35.6972 15.6565

10000 -35.6972 65.6565

01 -15.6972 65.6565

Table 2. Changes required to create the datasets.

The milestone data generated to create the datasets for the other

benchmark tests can be found in Appendix C.

2. “Corners”

The “Corners” column is formed by taking the X- and Y- coordinates from the

data provided in the “Center” column as its arguments. A bounding box measuring five

1 The 0 dataset was created to ensure that performance of the database would be measured when no

records were returned.

 23

miles by five miles is created around the point obtained from the data in the “Center”

column. Then, the coordinates created by this bounding box are used as the coordinates

of the “Corners” column.

C. TESTING THE DATA

The performance of the databases was tested while performing spatial relationship

queries first. The CONTAINS(polygon) query was run first that searched for a polygon

not expected to be in the database. The amount of time it took the databases to return that

response and ensured that it did return the appropriate “No data found” response was then

recorded. Next, the performance of each database was measured as it searched for a

polygon for which it was expected to find ten matches. The performance times were

recorded, and ensured that each database returned the appropriate response. This action

was repeated for datasets of 100, 500, 1,000, 5,000, 10,000, and 100,000. The exact same

test for EQUALS, OVERLAPS and INTERSECTS, and CONTAINS(point) was run, and

the performance of the databases measured, and ensured that the appropriate responses

were returned.

After all the queries were executed and the data recorded, a performance test was

run to ascertain how long it took each database to load 10, then 100, and 500, 1,000,

5,000, 10,000, and last, 10,0000 additional records. The same code initially used to

generate random data records was executed, and a timing wrapper was put around the

code to measure the time taken by each database to execute the test. The information was

recorded and the data generated by this test was erased.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

V. BENCHMARK RESULTS

A. RESULTS OF DATA INSERT

This section provides the results produced from loading data into each database.

Both a graph and table are provided to give the most accurate picture possible of the

results.

1. Data Load Results

Figure 5. Load data graph.

 Datasets
 10 100 500 1000 5000 10000 100000
PostgreSQL 36ms 159ms 596ms 1180ms 4865ms 9055ms 71951ms
MySQL 16ms 89ms 352ms 780ms 3571ms 6916ms 82582ms

Table 3. Benchmark time for loading data.

The results above, in Figure 5 and Table 3, show the amount of time it took each

database to load 10 data records, 100 records, 500 records, 1,000 records, 5,000 records,

10,000 records, and 100,000 records. The time was measured in milliseconds and the data

was plotted in log time.

 26

MySQL performed this task faster than PostgreSQL for data sets less than

100,000. Once the data sets reached 100,000, a shift in performance occurred.

PostgreSQL began to outperform MySQL. Adding smaller amounts of data into a

PostgreSQL database resulted in additional overhead. Base on this information, it could

be argued that if employing PostgreSQL, it would be best to do bulk data loading, rather

than one or two records at a time.

B. RESULTS FROM QUERY SET

This section gives the results produced from executing spatial relationship queries

on each database. Both graphs and tables to give the most accurate picture possible of the

results are provided.

1. CONTAINS (Polygon)

Figure 6. Query1: One polygon spatially contains another.

 Datasets
 10 100 500 1000 5000 10000 100000
PostgreSQL 12ms 13ms 21ms 33ms 56ms 377ms 1018ms
MySQL 477ms 681ms 641ms 667ms 668ms 896ms 1330ms

Table 4. Query1: One polygon spatially contains another.

 27

Figure 6 and Table 4 show the amount of time it took PostgreSQL and MySQL to

run a query using a CONTAINS function. As the table and graph show, PostgreSQL was

significantly faster than MySQL at running this query, when the result sets were small.

As the result set became larger, the delta of the amount of time it took PostgreSQL and

MySQL to return results got smaller. Once a result set of 100,000 was reached, MySQL

performed better than PostgreSQL. The time was measured in milliseconds and the graph

was plotted in log time.

PostgreSQL performed well in executing queries of one polygon containing

another polygon for small datasets. It did not do as well for a larger dataset. It was

anticipated that the results of this query would be an indicator for the results of the

subsequent queries.

2. EQUALS

Figure 7. Query2: Two polygons equal.

 Datasets
 10 100 500 1000 5000 10000 100000
PostgreSQL 13ms 12ms 21ms 35ms 53ms 482ms 856ms
MySQL 481ms 643ms 652ms 662ms 675ms 1080ms 1419ms

Table 5. Query2: Two polygons equal.

 28

In Figure 7 and Table 5, PostgreSQL, again, was significantly faster than MySQL,

until datasets in the 100,000 range were reached. As the result set became larger, the delta

between the databases again diminished. At 100,000, MySQL performed better than

PostgreSQL. The time was measured in milliseconds and the graph was plotted in log

time.

These results shown for this query were similar to the results of CONTAINS

(polygon). PostgreSQL outperformed MySQL in executing queries when two polygons

were equal when the datasets were small. Performance decreased as the dataset became

larger.

3. OVERLAPS and INTERSECTS

Figure 8. Query3: One polygon overlaps or intersects another.

 Datasets
 10 100 500 1000 5000 10000 100000
PostgreSQL 563ms 564ms 571ms 582ms 596ms 873ms 1426ms
MySQL 483ms 641ms 633ms 647ms 677ms 1017ms 1467ms

Table 6. Query3: One polygon overlaps or intersects another.

 29

Figure 8 and Table 6 show a performance difference in PostgreSQL. In querying

for polygons that spatially overlap or intersect, PostgreSQL and MySQL performance

was very close. When no results were returned, and with result sets of 100,000, MySQL

performed better than PostgreSQL. With regard to all the other result sets, PostgreSQL

outperformed MySQL. The time was measured in milliseconds and the graph was plotted

in log time.

The results of this query were unexpected. PostgreSQL performance in executing

an OVERLAP query was almost five times worst than its performance in executing a

CONTAINS (polygon) query and an EQUALS query. MySQL remained consistent with

its performance between the three queries. The reason for these unexpected results is not

known, and is a question to explore in future work.

4. CONTAINS (Point)

Figure 9. Query 4: Polygons contained within a specified radius of a point.

 Datasets
 10 100 500 1000 5000 10000 100000
PostgreSQL 717ms 714ms 721ms 735ms 760ms 1176ms 1617ms
MySQL 622ms 632ms 632ms 644ms 684ms 1009ms 1351ms

Table 7. Query4: Polygons contained within a specified radius of a point.

 30

In querying for polygons contained within a five-mile radius of a point, as shown

in Figure 9 and Table 7, PostgreSQL and MySQL performance was very close. Unlike

the other benchmark tests, MySQL outperformed PostgreSQL in this area. The time was

measured in milliseconds and the graph was plotted in log time.

The results of this query were not in line with what was anticipated. Since

PostgreSQL has a circle function to calculate a radius around a point, it was anticipated

that this built-in functionality would yield faster results than the equation created to

calculate a line and a bounding box around a point, which was not the case. The

assessment of these results indicates significant overhead in using PostgreSQL circle

function.

C. ANALYSIS OF THE RESULTS

Overall, both databases had areas in which they excelled and areas in which they

did not perform well. While in most cases PostgreSQL performed better than MySQL,

MySQL appeared to be more consistent. To explain further what is meant by “more

consistent,” with regard to MySQL, the overhead in returning 10 results was not much

different than the overhead in returning 5,000 results. PostgreSQL, on the other hand,

differed greatly in the amount of time taken in returning 10 results as opposed to 5,000

results. As the number of result set grew, PostgreSQL overhead grew. The initial

assessment that the first query would be an indicator of the results of the subsequent

queries was wrong. In loading data, MySQL performed this task faster than PostgreSQL,

until 100,000 records were loaded. At that time, PostgreSQL achieved better results. The

reverse is true in executing queries.

MySQL performed better than PostgreSQL in all instances in which the result set

was as large as 100,000. It is believed that the reason for the difference in performance

with PostgreSQL was the amount of false-positives produced by the GiST index. When

the result sets were small (i.e., less than 1,000), PostgreSQL was able to retrieve the table

rows and check to see that each match was correct, due to false-positive matches created

by the index, relatively quickly, yielding better performance than MySQL in most of the

 31

result sets. As the datasets grew, it took more time for PostgreSQL to find and remove

these false-positive matches produced by its GiST index.

MySQL has a huge startup cost, or overhead, in performing these spatial queries.

This startup cast is more noticeable in executing the CONTAINS and EQUALS queries,

where PostgreSQL overhead was much lower. It was possible to draw any reasonable

conclusions as to why.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

VI. CONCLUSION

This thesis attempted to compare PostgreSQL and MySQL and prove that in a

practical application of a spatial database, one spatial database would perform better than

the other. In determining which database was “best,” an attempt was made to provide

some insight about the differences of PostgreSQL and MySQL.

A benchmark of the performance of two spatial databases, PostgreSQL and

MySQL, was provided. This benchmark test was created using measures from current

benchmark tests. Two databases of over 1.2 million records were created. One database

was created in PostgreSQL and the other in MySQL. The benchmark tests for each query

were run at each established interval (0, 10, 100, 500, 1,000, 5,000, 10,000 and 100,000)

and the results recorded. A timer was then added to the code used to generate the random

data for this thesis. The performance of the databases was tested as they loaded data, and

recorded the results.

While conducting the experiment, the importance of MySQL’s storage engine and

indexing was ascertained. The first time the MySQL database was loaded without the

proper storage engine and no secondary indexing applied, it loaded three times slower

than PostgreSQL. In executing the queries, MySQL returned performance times of one to

three seconds, while PostgreSQL returned performance times of 400–600 milliseconds.

The effects of the storage engine and indexing was not examine in this thesis, but the

latency associated with not employing the correct storage engine, and timing performance

with no indexing applied, was experienced.

Also learned was that PostgreSQL and MySQL use different terms at times. As an

example, OVERLAPS, in PostgreSQL means the same as INTERSECTS in MySQL. Not

knowing this difference originally caused inconsistent results in this experiment.

This thesis did not do what it was intended to do, which was to prove that one

database would outperform the other, but some differences in the two databases,

PostgreSQL and MySQL, did occur. Both databases excelled at certain tasks and fell

short on others.

 34

This thesis offered a different look at PostgreSQL and MySQL as spatial

databases handling multimedia data. Unlike other similar research, this thesis explored

the differences between these two databases as they produced larger result sets.

Understanding the effects of these databases as they yield larger result sets helps to make

more informed decisions for organizations trying to determine which database would

work best for them.

As a suggestion for future research, a comparative analysis of the R-tree indexing

that MySQL offers, and the GiST indexing that PostgreSQL offers against the quad tree

indexing offered by Oracle, is recommended.

 35

APPENDIX A. RANDOM DATA GENERATOR

Database db1 = new Database(model);

db1.init();

db1.openDB();

int n = 200; // This number is replaced by the number of X coordinate to create

int m = 200; // This number is replaced by the number of Y coordinate to create

Random randGenerator = new Random();

for(int i = 0; i < n; i++) //outer loop for the X coordinate

{

 // generates a random double number

double incr2 = (randomGenerator.nextInt(99) * 0.0001);

double centerX = -120.76465; //initialize X coordinate

 for(int j = 0; j < m; j++) //inner loop for the Y coordinate

 {

 double centerY = 35.716847; //initialize Y coordinate

 // generates a random double number

 double incr1 = (randomGenerator.nextInt(99) * 0.0002);

GeoImage gImage = new GeoImage();

 db1.addGeoImage(gImage, centerX, centerY);

 centerY += incr1; //adds a pseudo-random number to Y coordinate

 }

 centerX += incr2; //adds a pseudo-random number to X coordinate

 }

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

APPENDIX B. MILESTONE DATA GENERATOR FOR EQUALS
QUERY

Database db1 = new Database(model);

db1.init();

db1.openDB();

int n = 1; // This number is replaced by the number of X coordinates to create

int m = 10; // This number is replaced by the number of Y coordinates to create

for(int i = 0; i < n; i++) //outer loop for the X coordinate

{

 double centerX = -100.6565; //initialize X coordinate

 for(int j = 0; j < m; j++) //inner loop for the Y coordinate

 {

 double centerY = 65.6972; //initialize Y coordinate

GeoImage gImage = new GeoImage();

 db1.addGeoImage(gImage, centerX, centerY);

 }

 }

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

APPENDIX C. GENERAL MILESTONE DATA GENERATOR

Database db1 = new Database(model);

db1.init();

db1.openDB();

int n = 1; // This number is replaced by the number of longitudes to create

int m = 10; // This number is replaced by the number of latitudes to create

for(int i = 0; i < n; i++) //outer loop for the longitude

{

 double centerX = -100.6565; //initialize the X coordinate

 for(int j = 0; j < m; j++) //inner loop for the Y coordinate

 {

 double centerY = 65.6972; //initialize latitude

GeoImage gImage = new GeoImage();

 db1.addGeoImage(gImage, centerX, centerY);

 centerY += incr1; //increments the X coordinate by 0.00004

 }

 centerX += incr2; // increments the X coordinate by 0.00004

 }

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

LIST OF REFERENCES

[1] S. Ray et al., “A benchmark to evaluate spatial database performance,”
International Conference on Data Engineering—ICDE, 2011, pp. 1139–1150.

[2] New data types. (2012). [Online]. Available: http://technet.microsoft.com/en-
us/magazine/2008.04.datatypes.aspx?pr=blog.

[3] Cross compare SQL server 2008 spatial, postgreSQL/postGIS 1.3-1.4, MySQL 5-6.
(2012). [Online]. Available:
http://www.bostongis.com/PrinterFriendly.aspx?content_name=sqlserver2008_postgis_m
ysql_compare.

[4] MySQL 5.6 reference manual. (2012). [Online]. Available:
http://dev.mysql.com/doc/refman/5.6/en/index.

[5] What is b-tree?. (2012). [Online]. Available: http://encycl.opentopia.com/term/B-
Tree.

[6] J. M. Hellerstein et al., “Generalized search trees for database systems,” in Proc.
21st International Conference on VLDB, 1995, pp. 562–573.

[7] PostgreSQL 9.2.0 documentation, 12.9. GiST and GIN index types. (n.d.).
[Online]. Available: http://www.postgresql.org/docs/9.2/static/textsearch-
indexes.html.

[8] Explain extended. (2010). [Online]. Available:
http://explainextended.com/2010/02/02/searching-for-arbitrary-portions-of-a-date/

[9] A. Guttman, “R-trees. A dynamic index structure for spatial searching,” in Proc.
1984 ACM-SIGMOD Conference on Management of Data, 1984.

[10] MySQL vs postgreSQL and MySQL(DDL,DML,DQL,DCL). (2012). [Online].
Available: http://www.techie-pro.com/tag/mysql/.

[11] M. Stonebraker et al., “The SEQUOIA 2000 storage benchmark,”in SIGMOD
’93: Proc. of the 1993 ACM SIGMOD Intl conference on Management of data,
May 1993, pp. 2–11.

[12] R. Power, “Testing geospatial database implementations for water data,” in Proc.
of the 18th IMACS/MODSIM Congress, July 2009.

[13] J. Myllymaki and J. Kaufman, “Dynamark: A benchmark for dynamic spatial
indexing,” in Proc. of the 4th Intl Conference on Mobile Data Management
(MDM), January 2003, pp. 92–105.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

