RDT&E for Emerging Contaminants

Andrea Leeson, Ph.D.
Environmental Restoration Program Manager
SERDP/ESTCP
1. REPORT DATE
JUN 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
RDT&E for Emerging Contaminants

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Strategic Environmental Research and Development Program (SERDP), Environmental Security Technology Certification Program (ESTCP), 4800 Mark Center Drive, Suite 17D08, Alexandria, VA, 22350-3605

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 14-17 June 2010 in Denver, CO.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 45

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
DoD’s Environmental Technology Programs

Science and Technology

Demonstration/Validation
Environmental Drivers
Sustainability of Ranges, Facilities, and Operations

Maritime Sustainability
Threatened and Endangered Species

Toxic Air Emissions and Dust

Noise

UXO & Munitions Constituents

Urban Growth & Encroachment

Climate Change & GHG
Environmental Drivers
Reduction of Current and Future Liability

Contamination from Past Practices
- Groundwater, Soils and Sediments
- Large UXO Liability
- Emerging Contaminants

Pollution Prevention to Control Life Cycle Costs
- Elimination of Pollutants and Hazardous Materials in Manufacturing Maintenance & Operations
- Achieve Compliance Through Pollution Prevention
Scales of Research

SERDP

ESTTCP

Small rxn vessels
Columns, microcosms
Tanks, large reactors
Test cells, controlled field sites
Field sites
Emerging Contaminant Defined

- Synthetic or naturally-occurring chemical or microbe
- Not commonly monitored
- Potential to enter the environment and cause known or suspected adverse environmental or health effects
- Sometimes heretofore undetectable

From USGS website
Current Research on Emerging Contaminants

- Perchlorate
- NDMA
- 1,4-Dioxane
- PFCs
Perchlorate Issue

- Broad Use & Occurrence
 - DoD
 - Rocket propellant
 - Insensitive munitions
 - Pyrotechnics and flares
 - Agricultural
 - Natural deposition
<table>
<thead>
<tr>
<th></th>
<th>FY00</th>
<th>FY01</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY07</th>
<th>FY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Situ Remediation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco-toxicology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-Situ Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERCHLORATE RDT&E

<table>
<thead>
<tr>
<th></th>
<th>SERDP</th>
<th>ESTCP</th>
<th>AWWARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Situ Remediation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco-toxicology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-Situ Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eco-Toxicology

- SERDP initiated studies in 1998
- A comprehensive program
 - amphibians
 - fish
 - invertebrates
 - birds
 - small mammals
- Laboratory and field studies
- Work is the basis for EPA eco-risk assessment
- Investment Completed
- Comprehensive book being written
Vadose Zone Treatment

- Blower
- Vaporizer
- Electron Donor
- Perchlorate Source
- Extraction Well
- Injection Well
Ex Situ Treatment

- 1998 drinking water treatment R&D was initiated by an industry consortium (AWWARF)
 - Completed in 2004
- Successful ESTCP waste water bio-treatment transitioned in 2000
- Only ion-exchange currently used for drinking water
- FY2005 initiatives
 - ESTCP Congressional program to dem/val new approaches (ion exchange, biotreatment, tailored GAC)
 - SERDP develop program for next generation treatment
In Situ Treatment

- SERDP initiated bioremediation R&D in 1998
 - Fundamental and applied studies
 - Showed potential and method for cost effective treatment
 - Investment completed

- Dozens of field demonstrations ongoing across DoD

- Fully commercialized
 - Two full-scale applications

![Microbial Biodegradation of Perchlorate](image-url)

Influence of Different Electron Donors on Perchlorate Biodegradation in Aquifer Microcosms from Site 16
Treatment Approaches

- **Active Treatment**
 - Soluble Electron Donor
 - Continuous pumping

- **Semi-Passive Treatment**
 - Soluble Electron Donor
 - Intermittent Pumping

- **Passive Treatment**
 - Slow Release Electron Donor
 - No Pumping

Considerations:
Mixing, O&M Costs, Biofouling, Secondary Groundwater impacts
Perchlorate Sources

- DoD Sources
 - Manufacturing
 - Demilitarization
 - Test and Training Ranges

- Natural Sources (FY05 Start)
 - Cause
 - Distribution
 - Fate
 - Identification

- Non Military Sources (FY05 Start)
 - Magnitude
 - Extent
 - Identification

Isotopic Identification of Perchlorate Sources
Road Flares

- **Background**
 - 20-40 million flares sold annually

- **Laboratory**
 - Lab studies showed 5-6% potassium perchlorate in unburned flares (10g for a 15 min flare)
 - Complete burning reduced perchlorate by 99% - still have up to 66 mg perchlorate in flare residue

- **Field**
 - Monitoring of background levels of perchlorate in highway runoff
 - Monitored highway run-off near a road flare deployed by State Police at an accident scene (I-95 MA)
 - Max ClO$_4^-$ concentration leaving highway: ~ 314,000 PPB
 - Peak load of ClO$_4^-$ leaving highway : 32.4 mg/min.
 - Total ClO$_4^-$ load to receiving waters : 1.3 g
 - Flares can be a significant point source of perchlorate
Fireworks

- **Background**
 - 221 million pounds consumed in U.S. in 2003
 - May contain up to 70 wt% potassium perchlorate
 - Case studies discussing contamination at display sites are limited

- **Field Study**
 - Concentration of perchlorate increased from ND to 5 mg/kg after firework display

<table>
<thead>
<tr>
<th>Parameter (mg/kg)</th>
<th>Charge 1</th>
<th>Charge 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perchlorate</td>
<td>389,000,000</td>
<td>355,000,000</td>
</tr>
<tr>
<td>Aluminum</td>
<td>77,000</td>
<td>120,000</td>
</tr>
<tr>
<td>Antimony</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Barium</td>
<td>440</td>
<td>190</td>
</tr>
<tr>
<td>Calcium</td>
<td>1,700</td>
<td>720</td>
</tr>
<tr>
<td>Magnesium</td>
<td>80,000</td>
<td>120,000</td>
</tr>
<tr>
<td>Potassium</td>
<td>160,000</td>
<td>160,000</td>
</tr>
<tr>
<td>Sodium</td>
<td>ND</td>
<td>150</td>
</tr>
<tr>
<td>Strontium</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

- Perchlorate concentration in fireworks charge was 389 g/kg. Aluminum, magnesium and potassium were also present at high concentrations.
Natural Sources: Where it all started

Chilean NO$_3^-$ Deposits (Atacama Desert)

- Desert for at least last 1 MY
- ClO$_4^-$ (>1%) identified over 100 years ago
- Deposits also contain IO$_3^-$, CrO$_7$ (mg/kg in some strata)
Does Natural Perchlorate Impact other Areas?

Concentration (ppb)
Distribution of Perchlorate in Surface Soils
ClO₄⁻ Concentration Distribution in Groundwater from Selected Areas

[Graph showing concentration distribution with labels for Amargosa Mountains, NHP, CHP*, SHP*, Alb, Big Bend*, Edwards, UAE, African, and their respective N values.]
Proposed Perchlorate Accumulation Mechanisms

- Atmospheric Production and Deposition
- Partial Transport in Undisturbed Arid Areas
- Accumulation over long Periods
- Flushing Possible from Irrigation or Climate Shifts
- Not Stable in Anaerobic Environments and Some Plant Uptake
What’s the Overall Significance?

- **Exposure**
 - Plants?
 - Milk?
 - GW?

- **Future GW impacts**
 - Desert Urbanization
 - Climate Change
 - Irrigation

- **Site Assessment**
 - Establish Background
 - Isotopic Differentiation
Natural vs. Anthropogenic Perchlorate

Key Question: Can You Distinguish Natural from Man-Made Perchlorate?
Isotope Ratio Analysis to Differentiate Perchlorate Sources

- Objectives
 - Analyze Isotope Ratios in Commercial, Military, and Natural Perchlorate Sources.
 - Develop broad database quantifying difference between natural and anthropogenic perchlorate.
 - Analyze Isotope Ratios of Perchlorate in Groundwater Plumes with Anthropogenic Origin and Suspected Natural Sources.
 - Demonstrate/validate isotopic procedure for forensic analysis.

- Elements in a compound can have widely different isotopic ratios based on mode of formation (e.g., 18O in NO$_3$ from nitrification vs. atmospheric).

- Stable isotope ratios provide a unique “fingerprint” of a chemical compound, another dimension of information invisible from dissolved concentrations.
First Objective: Analyze Isotope Ratios in Commercial, Military, & Natural Perchlorate Sources

- **Military sources**
 - Propellant-grade perchlorate
 - Demilitarization activities
- **Commercial sources**
 - Reagent grade perchlorate
 - Fireworks
 - Emergency flares
 - Cotton defoliants
 - Bleach
- **Natural sources**
 - Chilean caliche
 - Natural fertilizers with Chilean nitrate
 - Southwest US: Evaporites
 - Potash salt
Results: Forensic Isotopic Analysis of Perchlorate $\delta^{37}\text{Cl}$ and $\delta^{18}\text{O}$

Chlorine markedly "heavier" in anthropogenic Perchlorate (n = 25).

$\delta^{37}\text{Cl}: 0.6 \pm 0.9$
Range: -3.1 to 1.6

$\delta^{18}\text{O}: -17.2 \pm 2.8$
Range: -24.8 to -12.5

Oxygen consistently "heavier" in natural Perchlorate (n = 7).

$\delta^{37}\text{Cl}: -12.8 \pm 2.0$
Range: -14.5 to -9.2

$\delta^{18}\text{O}: -6.3 \pm 2.5$
Range: -9.3 to -2.2
NDMA

- **Toxicology**
 - NDMA is a potent mutagen, teratogen, & carcinogen.
 - EPA 10^{-6} Lifetime Cancer Risk = 0.7 ng/L.
 - California DHS; 10 ng/L Action Level; California OEEHA 3 ng/L PHG (12/2006)

- **Sources**
 - 1,1-Dimethylhydrazine Rocket Fuel\([(CH_3)_2NNH_2]\]
 - Aerozine 50 (Mixture of Hydrazine and 1,1DMH)
 - Disinfection Byproduct (Chloramine)
 - Industrial, Agricultural and Food Sources.

- **Treatment**
 - Pump-and-Treat with UV Irradiation
 - 1000 mj/cm^2 for 10-fold reduction
 - (10X for Cryptosporidium)
Biological Degradation of NDMA

- Summary of Previous Research:
 - Mammalian Metabolism
 - Cytochrome P-450 System
 - Biological Degradation
 - Several Papers 1970’s – 1980’s
 - Biodegradation Observed in Soils and Lake Water, Intestinal Bacteria
 - Persistent in Groundwater
 - No Environmental Isolates Capable of Growth on NDMA
 - One Isolate Capable of Cometabolism
 - Methylosinus trichosporium OB3b
Potential Remedial Applications

Ex Situ

In Situ
NDMA Summary

- Treatable by UV Oxidation
- *In Situ* and *Ex Situ* Biotreatment Possible
 - May require propane biostimulation to reach low levels
- *Ex Situ* Metal Catalyst Treatment Showing Promise (*Data not shown*)
I,4-Dioxane

1,4-Dioxane

1,1,1-Trichloroethane
The 1,4-Dioxane Problem

- Used extensively as a stabilizer in chlorinated solvents
 - Primarily used with 1,1,1-TCA
 - 1,1,1-TCA found at 809 NPL sites (www.atsdr.gov; 2004)
- 1,4-Dioxane has recently emerged as a contaminant of concern
 - Low action levels in several states: California (3 ppb); Florida (5 ppb); Maine (70 ppb); Massachusetts (50 ppb); Michigan (1 ppb); North Carolina (7 ppb)
 - Risk of closed sites being re-opened
- Little detailed information on the fate of 1,4-dioxane in groundwater
 - Few biodegradation studies
Current Treatment Options for 1,4-Dioxane

- *In situ* oxidation
 - Reported to work in some cases
- Advanced Oxidation (HiPOx)
 - Some full-scale systems in place
- Biological Treatment
 - Co-metabolic process (propane/THF)
 - Biological treatment has proven to be challenging
- No universal solution yet available
Perfluoroalkyl Contaminated Groundwater

- FY11 SON: In Situ Remediation of Perfluoroalkyl Contaminated Groundwater
- Objectives:
 - Improve understanding of mechanisms involved in F&T processes in groundwater under varying natural & engineered conditions.
 - Determine impact of co-contaminants on F&T processes.
 - Improve understanding of behavior of perfluoroalkyl contaminants under typical remedial technologies for co-contaminants.
 - Develop remedial strategies for perfluoroalkyl contaminants, including consideration of the necessity for treatment train approaches to facilitate treatment of co-contaminants.
What Are Perfluorochemicals (PFCs)?

- General formula: $F(CF_2)_n-R$
 - Hydrophobic alkyl chain of varying length (typically C$_4$ to C$_{16}$)
 - Hydrophilic end group
- Man-made compounds with unique chemical properties
 - Very stable and persistent in the environment
 - Ionic form of PFCs – highly soluble, non-volatile, and poorly sorb to soil
- Primary PFCs of interest
 - Perfluorooctane sulfonate (PFOS)
 - Perfluorooctanoic acid (PFOA)
What Are PFCs Used For?

- Used to make:
 - Fluoropolymer coatings and products that resist heat, oil, stains, and grease.
 - Clothing
 - Furniture
 - Food packaging
 - Heat resistant non-stick cooking surfaces
 - Electrical wire insulation
 - Fluorosurfactants
 - Aqueous film forming foam (AFFF)
 - Chromium plating mist suppressants
 - Stain repellants
 - Photolithographic chemicals
Aqueous Film Forming Foam

- AFFF
 - Developed in 1960s by 3M and U.S. Navy for use on Class B fires (flammable liquids)
 - Contains fluorosurfactants other compounds as required) per MILSPEC MIL-F-24385F(SH)
 - Low surface tension and positive spreading coefficient enable film formation on top of lighter

- PFCs in AFFF
 - Historically, AFFF contained PFOS and small percentage of PFO (disassociated form of PFOA)
 - 3M, sole producer of PFOS in the U.S., discontinued production of PFOS in 2001
 - Continued use of stockpiled PFOS-based AFFF not currently restricted under U.S. regulations
 - AFFF now produced using smaller chain PFCs (<C₆) fuels
Growing Regulatory Interest in PFCs

- Interest driven by findings of PFCs in:
 - Occurrence in biological organisms and environmental media
 - Groundwater near PFC manufacturing and disposal facilities
 - DuPont Washington Works Facility, West Virginia
 - 3M Cottage Grove Facility, Minnesota
 - Numerous landfills and disposal sites in Minnesota
 - Soil and groundwater near fire training facilities in Minnesota
 - Soil and compost at north Georgia wastewater treatment facility
 - Sewage sludge and agricultural soils in Alabama
 - Public water supply systems in New Jersey
Federal Regulation Related to Cleanup

- CERCLA - not a hazardous substance, pollutant, or contaminant
- Not RCRA regulated waste (listed or characteristic)
- PFOA/PFOS not currently regulated under the USEPA Safe Drinking Water Act
 - Recently included on the USEPA Drinking Water Contaminant Candidate List (CCL3)
- USEPA Provisional Health Advisory Values
 - PFOA – 0.4 µg/L
 - PFOS – 0.2 µg/L
- Developed in response to contaminated agricultural sites in Alabama but values can be used to assess exposure at other sites
- Based on
 - 10-kg child consuming 1 L drinking water per day.
 - Default relative source contribution (RSC) – 20%
State Environmental Guidelines/Action Levels

<table>
<thead>
<tr>
<th>Guideline / Action Level</th>
<th>Media</th>
<th>PFOA</th>
<th>PFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnesota Health Risk Limit</td>
<td>Groundwater</td>
<td>0.3 µg/L</td>
<td>0.3 µg/L</td>
</tr>
<tr>
<td>North Carolina Interim Maximum Allowable Concentration</td>
<td>Groundwater</td>
<td>2 µg/L</td>
<td>-----</td>
</tr>
<tr>
<td>New Jersey Preliminary Guidance Value</td>
<td>Drinking Water</td>
<td>0.04 µg/L</td>
<td>-----</td>
</tr>
<tr>
<td>California – under review for possible Prop. 65 listing</td>
<td>NA</td>
<td>√</td>
<td>-----</td>
</tr>
<tr>
<td>Washington Persistent Bioaccumulative Toxins Rule</td>
<td>NA</td>
<td>-----</td>
<td>√</td>
</tr>
</tbody>
</table>
Environmental release of PFCs

- Historical testing or emergency activation of fire suppression systems in hangars
-Leaks from storage tanks and pipelines
- Historical fire fighter training exercises
Scope

- Scope of potential impact difficult to define
- Site investigations have not typically included analysis for PFCs, given their emerging status
- Scope of potential problem can be estimated using the number of “Fire/ Crash/Training” sites as a surrogate for actual site data
 - May underestimate problem by not including AFFF spills, pipeline leaks, or testing/emergency activation of aircraft hangar fire suppression systems
Potential Impacts to DoD Restoration Program

DoD Fire/ Crash/ Training Sites

<table>
<thead>
<tr>
<th>Service</th>
<th>Total Sites</th>
<th>Remedy in Place (RIP)</th>
<th></th>
<th>Response Complete (RC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force</td>
<td>353</td>
<td>296</td>
<td>47</td>
<td>249</td>
<td>104</td>
</tr>
<tr>
<td>Army</td>
<td>94</td>
<td>7</td>
<td>6</td>
<td>79</td>
<td>15</td>
</tr>
<tr>
<td>Navy</td>
<td>132</td>
<td>115</td>
<td>17</td>
<td>51</td>
<td>56</td>
</tr>
<tr>
<td>DLA</td>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FUDS</td>
<td>12</td>
<td></td>
<td>1</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>594</td>
<td>419</td>
<td>71</td>
<td>389</td>
<td>180</td>
</tr>
</tbody>
</table>

Data obtained from the DoD Knowledge Based Corporate Reporting System (KBCRS), 2008
Cleanup Challenges

- Many conventional treatment approaches are not effective for PFCs in water (e.g., direct oxidation, air stripping, vapor extraction)

- Technologies currently available to treat PFCs in water include
 - Granular activated carbon (GAC) is most effective method
 - Drinking water treatment (municipal and private wells)
 - Landfill water treatment
 - Reverse osmosis is effective for higher concentration industrial waste streams

- Bench-scale research to develop alternative treatment approaches continues
Home Pages