Award Number: W81XWH-11-1-0321

TITLE: F18 EF5 PET/CT Imaging in patients with brain metastases from breast cancer

PRINCIPAL INVESTIGATOR: Lilie Lin, M.D.

CONTRACTING ORGANIZATION: University of Pennsylvania
Philadelphia, PA 19104

REPORT DATE: July 2012

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The aim of this study is to estimate the degree of residual hypoxia after whole brain radiation therapy in patients with brain metastases from breast cancer as quantified by F18 EF5 PET/CT imaging. We enrolled two patients on this study who after completing radiation therapy were unable to complete the study as planned as they had progressive disease. One had progressive lung disease limiting her ability to lay supine for imaging, and the second patient developed leptomeningeal spread of her disease and declined further imaging studies. A third patient has been enrolled and is scheduled for imaging later in August 2012.

15. SUBJECT TERMS
18F EF5 PET/CT, breast cancer, brain metastases
Introduction:

Brain metastases are a frequent neurologic complication of many solid tumors and have been reported to occur in approximately 5-15% of breast cancer patients. As a result of better systemic
chemotherapeutic agents which have improved outcomes in breast cancer patients with metastatic disease, metastases in the central nervous system (CNS) have emerged as an important sanctuary site. Treatments to improve outcomes in patients with CNS disease is particularly important now as a growing proportion of patients may experience morbidity and/or mortality from CNS progression at a time when they have controlled extracranial disease. Whole brain radiotherapy is the standard treatment in patients with multiple brain metastases, however, 50% of patients may have local progression of one or more brain metastases at 6 months. Hypoxic and/or anoxic tissue may be a contributing factor to radiation resistance and high rates of local failure after standard radiotherapy. One method of overcoming radiation resistance is through the delivery of escalated doses of radiotherapy through stereotactic radiosurgery (RS), a non-invasive method of delivering highly conformal doses of radiotherapy in a single treatment, which has been demonstrated to improve local control and survival in select patients after WBRT. At present we do not have any method of determining a priori which patients may benefit from RS boost. The development of a noninvasive imaging biomarker to identify patients that are at highest risk of local relapse after WBRT would represent a significant step forward in the management of patients with brain metastases from breast cancer. We propose to use a noninvasive imaging method to detect residual tumor hypoxia in patients receiving WBRT.

Body:
Task 1. To estimate the degree of hypoxia after WBRT in patients with brain metastases from breast cancer as quantified by F18 EF5 PET/CT imaging.

Subtask 1a. Obtain IRB and DOD regulatory approval for prospective clinical trial entitled, “F18 EF5 PET/CT Imaging in patients with brain metastases from breast cancer” treated at the University of Pennsylvania Department of Radiation Oncology (months 1-3).

Protocol full approval was obtained from the University of Pennsylvania IRB on 09/23/11 and from U.S. Army Medical Research and Materiel Command (USAMRMC), Office of Research Protections (ORP), Human Research Protection Office (HRPO) on 10/12/11. At that time, the temporary transfer of PI responsibility was granted to Dr. Gary Freedman, as the PI (Dr Lin) was going on maternity leave. An amendment was approved by the Penn’s IRB on 01/18/12 to return the PI responsibility back to Dr. Lilie Lin on her return from Leave of Absence. U.S. Army Medical Research and Materiel Command (USAMRMC), Office of Research Protections (ORP), Human Research Protection Office (HRPO) approved this transfer on 02/12/12. Continuing Review of the protocol was approved by Penn’s IRB on 11/2/11 and the U.S. Army Medical Research and Materiel Command (USAMRMC), Office of Research Protections (ORP), Human Research Protection Office (HRPO) on 02/12/12.

Subtask 1b. Enroll and recruit patients for the clinical trial (months 3-21).
Accrual goal is 25 subjects; three subjects initially consented to the study. All three were unable to complete the imaging study at the required timepoint. This subject required a prospective protocol exception (deviation): after the subject was consented, it was found that she had very poor venous access and her imaging has been delayed until she can have a port placed. This exception was granted approval by the Penn IRB and by the Data Safety Monitoring Committee on 04/04/12. The Medical Monitor, Dr. Weijing Sun, was notified on 04/04/12 and did not raise objection to the exception. Unfortunately, she subsequently withdrew her consent for the study. The second patient developed progressive leptomeningeal disease and required spinal radiation leaving her fatigued and unable to complete the study. A third patient did undergo the research brain MRI at the required timepoint, however, when she came in for her F18 EF5 PET/CT imaging, she was unable to lie supine for the duration of the scan due to her progressive pulmonary disease and pleural effusion.
There have been no AEs or SAEs. A fourth patient was approached about the study and was interested, however, she developed progressive disease and has been placed on hospice.

The rate of accrual has been challenging with this protocol. At the time this protocol and grant was conceived, whole brain radiotherapy was more often recommended to patients with multiple brain metastases. We have had a change in the paradigm of treatment here at the University of Pennsylvania, where more patients are offered gamma knife radiotherapy upfront rather than whole brain radiotherapy which has impacted our accrual rates. Additionally, though we have had several patients that are interested in the study, many of them have concurrent extracranial disease. Patients with better performance status often receive upfront gamma knife radiotherapy instead which currently those patients are excluded from the study. To address these challenges, we are considering a modification of the protocol to open the window of imaging to include during radiotherapy as well as up to four weeks post treatment. Additionally, opening up the protocol enrollment to include patients receiving gamma knife radiotherapy has also been considered. Including patients with other types of primary malignancies has also been considered, however, was not approved by the scientific officer.

Key Research Accomplishments:
- IRB and CTSRMC (scientific review committee) approval of this prospective study at the University of Pennsylvania
- 3 patients were enrolled onto the study, however, were unable to complete the study as outlined for the reasons outlined above.

Reportable outcomes
None to date

Conclusion:
Accrual continues to be our most pressing challenge with this protocol. We will plan to make amendments to the study to make it more feasible for patients to undergo imaging by expanding the time period to make it increase flexibility as well as consider patients who are receiving gamma knife radiotherapy.