WIPE SAMPLE INTERPRETATION

E2S2 Conference
Denver, 14-17 June 2010

George Murnyak, CIH
USAPHC

Environmental Health Risk Assessment Program
1. REPORT DATE
JUN 2010

2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
 Wipe Sample Interpretation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 U.S. Army Public Health Command, 5158 Blackhawk Road, Aberdeen Proving Ground, MD, 21010-5403

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 14-17 June 2010 in Denver, CO.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 26

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
• Describe the rationale and logic used to assess health risks associated with chemical contamination on indoor surfaces

• USAPHC developed TG 312 for office environments

• Will not address issues related to collecting a “good” wipe sample
Background and Scope

• Few published health-based wipe sample standard/guidelines

• The development of TG 312 was an evolutionary process over time

• Guide is written in two parts;
 – First part basic concepts/explanation for general preventive medicine community
 – Second part detailed discussion of methodology for health risk assessors
Evolution of Technical Guide 312

- Pesticide residues at military housing
- Johnston Atoll Chemical Agent Disposal System (JACADS)
- Developed screening levels for construction/demolition workers
- Research laboratory converted to office
- Explosive residues in storage buildings
- Past herbicide research in laboratory
Problem

• Contrast the health risk interpretation:
 - Drinking water
 - Food consumption
 - Surface wipe samples

• Basic EPA Risk Methodology equates health risk to magnitude of chemical intake.

• How to estimate an Average Daily Intake (ADI) from available environmental data?
EPA Health Risk Fundamentals

<table>
<thead>
<tr>
<th>Health Effects</th>
<th>Human Health</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer risk</td>
<td>ILCR</td>
<td>ILCR = Chemical Intake X Cancer Slope Factor</td>
</tr>
<tr>
<td>Noncancer</td>
<td>HQ</td>
<td>HQ = Chemical Intake Reference Dose</td>
</tr>
</tbody>
</table>

- **ILCR**: Incremental Lifetime Cancer Risk
- **HQ**: Hazard Quotient

EPA Health Risk Fundamentals

Cancer risk: The risk of developing cancer due to exposure to a chemical.

Noncancer: The risk of developing noncancerous health effects due to exposure to a chemical.

ILCR = Chemical Intake X Cancer Slope Factor

HQ = Chemical Intake Reference Dose
Cancer Example

ILCR = chemical intake × cancer slope factor

Example:
A person incidentally ingesting sediment containing arsenic with a calculated intake of 7.23E-08 mg/kg-day

\[
7.23E-08 \text{ mg/kg-d} \times 1.5 \text{ (mg/kg-d)}^{-1} = 1.08E-07
\]
A worker incidentally ingests surface water with a calculated intake of 3.66E-07 (mg/kg/day) of thallium.

\[
HQ = \frac{3.66E-07 \text{ (mg/kg/d)}}{7.00E-05 \text{ (mg/kg/d)}}
\]

\[
HQ = 5.2 \text{ E-03}
\]
Drinking Water Example

- Measure chemical concentration
- Estimate daily water intake
- Concentration x consumption = mg
Food Consumption

Example

- Measure concentration in fish tissue
- Estimate fish consumption
- Concentration \times consumption $= \text{mg}$
Wipe Sample Example

- Assume perfect sampling results of 50ug/100 cm2
- How do we use this surface sampling information to estimate intake?
Sampling Scenario
Child Day Care Center
Sampling Scenario
Locked Mechanical Room
Potential Exposure Pathways

- Direct dermal contact
- Indirect ingestion from “mouthing behavior”
- Inhalation of settled particles resuspended from surface
- Inhalation of semi-volatiles absorbed to surfaces (e.g., laminated, plastic)
Wipe Sample Interpretation

Exposure Assessment

- **Exposure Route**
 - Inhalation
 - Skin
 - Ingestion

- **EPA Method**
 - Total Intake
 - Estimated Health Risk Level

Equation

\[
\text{ADI}_{\text{ing}} = \left(\frac{\text{SA} \times \text{Fd} \times \text{FTss} \times \text{Cs} \times \text{Ff} \times \text{FTsm} \times \text{EVing}}{\text{BW} \times \text{AT}} \right) \times \text{EF} \times \text{ED} \times 10^{-3}
\]
Incidental Ingestion (fingers)

$$\text{PD}_{\text{ingest (fingertips)}} = \left(\text{SA} \cdot F_d \cdot FT_{ss} \cdot C_s \right) \left(F_f \cdot FT_{sm} \right)$$

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD_{ingest}</td>
<td>Potential ingestion dose (mg/event)</td>
</tr>
<tr>
<td>SA</td>
<td>Exposed skin surface area per event (cm2/event)</td>
</tr>
<tr>
<td>Fd</td>
<td>Fraction exposed skin surface area that actually contacts the surface (unitless)</td>
</tr>
<tr>
<td>FT_{ss}</td>
<td>Fraction transferred from surface to the skin (unitless)</td>
</tr>
<tr>
<td>Cs</td>
<td>Contaminant surface loading (mg/cm2)</td>
</tr>
<tr>
<td>F_f</td>
<td>Fraction exposed skin area that contacts the mouth (unitless)</td>
</tr>
<tr>
<td>FT_{sm}</td>
<td>Fraction substance transferred from the skin to mouth (unitless)</td>
</tr>
</tbody>
</table>
Wipe Sample Interpretation

Exposure Assessment

Exposure Route

Inhalation

Surface Contamination

Skin

Ingestion

Total Intake

EPA Method

Estimated Health Risk Level

ADI derm = \[\sum (SA_i \times Fd_i) \times FTss \times Cs \times ABS \times EVderm \times EF \times ED \times 10^{-3} \frac{BW \times AT}{} \]
Wipe Sample Interpretation

Exposure Assessment

Exposure Route

- **Inhalation**
 - Surface Contamination
 - Skin
 - Ingestion

EPA Method

\[\text{ADI inh} = \left(\frac{f_{\text{resp}} \times C_s \times 10^4 \times A_s \times R}{V(\lambda_{\text{dep}} \times \lambda_a)} \right) \times \frac{I_{\text{inh}} \times ET \times EF \times ED \times 10^{-3}}{BW \times AT} \]
Wipe Sample Interpretation

Safe Wipe Level Calculation

- **Exposure Route**
 - Surface Contamination
 - Skin
 - Inhalation

- **EPA Method**
 - Total Intake
 - Estimated Health Risk Level

Safe Health Risk Level

Exposure Calculations

Safe Surface Wipe Level
Wipe Sample Interpretation

Example Comparisons

<table>
<thead>
<tr>
<th>Substance</th>
<th>Source</th>
<th>Safe level (ug/100 cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium</td>
<td>DOE</td>
<td>3 and 0.2</td>
</tr>
<tr>
<td></td>
<td>TG 312</td>
<td>4.7</td>
</tr>
<tr>
<td>PCB</td>
<td>TSCA</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>EPA</td>
<td>1.60 and 9.04</td>
</tr>
<tr>
<td></td>
<td>TG312</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Michaud et al.</td>
<td>0.00002</td>
</tr>
<tr>
<td>2,3,7,8 TCDD</td>
<td>EPA WTC</td>
<td>0.0000354</td>
</tr>
<tr>
<td></td>
<td>TG312</td>
<td>0.00125</td>
</tr>
<tr>
<td></td>
<td>Michaud et al.</td>
<td>0.00125</td>
</tr>
</tbody>
</table>
References

Department of Energy, 10 CFR Part 850, Chronic Beryllium Disease Prevention Program; Final Rule

Toxic Substance Control Act, PCB Regulations: 40 CFR Part 761.61, PCB remediation waste.

Acknowledgements

• Ms. Hsieng-Ye Chang, MS, JD, PE
 DuPont de Nemours

• Ms. Ronie Shackelford, BA, MA
 USAPHC (Provisional)
Inhalation of Resuspended Surface Particles

\[C_{air} = \frac{f_{\text{resp}} \cdot C_s \cdot 10^4 \cdot A_s \cdot R}{V \cdot \lambda_{\text{dep}} + V \cdot \lambda_a} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{air})</td>
<td>Resuspended air concentration (mg/m(^3))</td>
</tr>
<tr>
<td>(C_s)</td>
<td>Contaminant surface loading (mg/cm(^2))</td>
</tr>
<tr>
<td>(f_{\text{resp}})</td>
<td>Fraction respirable (unitless)</td>
</tr>
<tr>
<td>(10^4)</td>
<td>Units conversion, cm(^2) to m(^2)</td>
</tr>
<tr>
<td>(A_s)</td>
<td>Source area (m(^2))</td>
</tr>
<tr>
<td>(V)</td>
<td>Room volume (m(^3))</td>
</tr>
<tr>
<td>(R)</td>
<td>Resuspension rate (1/hr)</td>
</tr>
<tr>
<td>(\lambda_{\text{dep}})</td>
<td>Deposition loss rate (1/hr)</td>
</tr>
<tr>
<td>(\lambda_a)</td>
<td>Air exchange rate (air changes per hour [ACH])</td>
</tr>
</tbody>
</table>
Direct Dermal Contact

\[PD_{\text{dermal}} = \left[\sum_{i=1}^{n} (SA_i \cdot Fd_i) \right] \cdot FT_{\text{ss}} \cdot C_s \]

<table>
<thead>
<tr>
<th>PD_{\text{dermal}}</th>
<th>Potential dermal dose (mg/event)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SA_i)</td>
<td>Exposed skin surface area per event (cm(^2)/event)</td>
</tr>
<tr>
<td>(Fd_i)</td>
<td>Fraction exposed skin surface area that actually contacts the surface (unitless)</td>
</tr>
<tr>
<td>(i)</td>
<td>Body part in contact with the surface (e.g., hand, forearm)</td>
</tr>
<tr>
<td>(n)</td>
<td>Total number of body parts in contact with the surface</td>
</tr>
<tr>
<td>(FT_{\text{ss}})</td>
<td>Fraction transferred from surface to the skin (unitless)</td>
</tr>
<tr>
<td>(C_s)</td>
<td>Contaminant surface loading (mg/cm(^2))</td>
</tr>
</tbody>
</table>