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APERIODIC PHOTONIC-PLASMONIC STRUCTURES WITH 
BROADBAND FIELD ENHANCEMENT 

 
 
1. Introduction 
 
This report documents project work performed by Boston University, between September 2009 and  
September 2010, under a contract (W911NF-07-D-0001) awarded to the Battelle Memorial Institute by 
the Natick Soldier Research, Development and Engineering Center (NSRDEC).  The project was 
aimed at combining plasmonic field enhancement effects in rigorously designed metal-dielectric 
arrays of nanoparticles with periodic and aperiodic geometries for the demonstration of field-
enhanced isomerization with minimum background absorption. The objective was to develop 
metal-dielectric nanostructures on transparent substrates (quartz, silicon nitride) which can 
create the largest possible field enhancement engineered over broad frequency bands, while 
minimizing linear absorption of anisotropic dyes. Based on coupled dipoles and rigorous null-
field theory (T-matrix) calculations, we discovered and explained the fundamental mechanisms 
governing broadband plasmonic scattering and near-field enhancement in a number of 
plasmonic structures. A large number of photonic-plasmonic structures with different 
geometries (from periodic to quasi-periodic and pseudo-random) have been designed by 
rigorous electrodynamics theory for maximum enhancement at 532nm and investigated 
experimentally. Based on our modeling, we built an intuitive Fourier optics approach to Wood’s 
anomalies in nanoplasmonics and demonstrated for the first time [1-3] large and controllable 
field enhancement effects spanning across the entire visible band, as discussed below. We then 
fabricated all the structures using electron beam lithography, explored the respective roles of 
morphology, particle shapes, and size, and correlated our theory with experiments by dark field 
scattering spectroscopy and spectroscopic ellipsometry. We quantified the nonlinear optical 
properties (nonlinear index) of azobenzene doped polymers and explored the integration of 
limiting devices with micro-fluidics technology. Finally, we designed, built and tested a novel 
instrument, which we call a plasmonic scatterometer, for the accurate measurement of the 
angular scattering profiles and radiation diagrams of complex nanoplasmonic structures (see the 
details in the Instrument section). All these steps are articulated along several stages of design, 
fabrication and experimental characterization, as detailed in the following sections.  
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2. Design 
 
2.1. Prime Number Arrays 
 
Using a recently developed coupled dipole approximation (CDA) model [1], we have optimized 
the procedures for calculating the near and far field patterns of arrays of metal and dielectric 
nano-spheres embedded in a uniform medium, and defined novel figures of merit for the 
broadband plasmonic response of aperiodic arrays. 
 
We used the CDA model to perform a theoretical study of a novel class of plasmonic arrays 
based on the distribution of prime numbers.  We have demonstrated a much larger maximum 
field enhancement over a broader frequency range in these structures than in similar square 
periodic arrays, as shown in Fig. 1.  Further, we have demonstrated that the surface area of these 
arrays covered by enhanced plasmonic fields (hot spots) is larger than in reference periodic 
systems.  We have also explained the near field and far field scattering regimes of these novel 
plasmonic structures and understood general structural/property relations.  For more details see  
our paper published in Optics Express [publication 1]. 
 
 

 

Fig 1. Maximum field enhancement versus the wavelength for an 
isolated particle, and for periodic, coprime, prime, and Ulam arrays. The 
arrays are excited by a circularly polarized plane wave at normal 
incidence.  

 
2.2. Particle Swarm Optimized Arrays 
 
Through an international collaboration with Dr. Massimo Donelli at the University of Trento in 
Italy, we have interfaced our CDA numerical code with a particle swarm optimization (PSO) 
algorithm and used this to design the structural geometry of plasmonic arrays of gold and silver 
nanoparticles for maximum field enhancement at 532 nm and across a broad frequency band 
spanning the entire visible spectrum. Fig. 2 shows the maximum field enhancement spectrum of 
these arrays. For more details see our Optics Letters paper [publication 2]. 
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Fig 2. Maximum field enhancement |E| spectra of the optimized arrays of gold (a) and silver (b) 
nanoparticles, illuminated, at normal incidence, by a circularly polarized plane wave of unitary intensity. 
 
2.3. Wood’s Anomaly 
 
Using our CDA model, we have demonstrated that it is possible to use the Wood’s anomaly to 
feed the strong near field enhancement observed in small clusters of metallic nanoparticles at 
designed spectral positions.  Fig. 3 illustrates this designable enhancement in a triangular array 
of silver dimers.  Equation 1 specifies the Wood’s anomaly condition [2]. 
 

inco n
m

a  sin                                                                                                               (1) 

 
Where, a is the lattice constant, n is the refractive index of the surrounding medium, inc is the 
angle of incidence, and m is an integer.  For normal incidence (inc = 90o) in freespace (n = 1) 
and selecting the first diffractive order (m = 1), Equation 1 becomes, 
 

ao                                                                                                                                (2) 
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When this condition is met the first diffracted order feeds into the strong dimer plasmonic 
resonance creating a narrow peak in the field enhancement spectrum. 
 

 
Fig 3. (a) Maximum field enhancement of a dimer of 100 nm diameter silver spheres with 
various edge-to-edge separation indicated by the color. (b) Same dimers arranged in a 
triangular periodic lattice with lattice constant 550 nm. (c) and (d) Scaling of maximum 
field enhancement with dimer edge-to-edge separation for single dimer and the array. 

 
This work spared a study using periodic arrays of dimers using depolarization ellipsometry.  A 
discussion of these activities can be found in the Experiments section of this report.  This work 
has produced a paper which will be submitted to Nano Letters for publication.  We used a more 
advanced semi-analytical tool for the theory of this paper, the description of which is included 
with the experiment for the sake of clarity. 
 
2.4. Chirped Arrays 
 
Expanding on the concept of Wood’s anomaly, we have designed an array with a broadband 
plasmonic response by chirping a square periodic lattice of dimers.  Fig.  4 shows an array of 
100 nm diameter silver dimers with 25 nm edge-to-edge separation with the lattice constant 
linearly chirped between 400 and 700 nm and its corresponding field enhancement spectrum (a).  
Here, the local near uniform spacing of adjacent dimers causes the Wood’s anomaly condition 
to be met over a large frequency band. 
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Fig 4. (a) Linearly chirped square array of dimers.  (b) Maximum field enhancement spectrum of chirped array. 

 
Further expanding this work we investigated the role of the lattice base element of the photonic-
plasmonic response. This analysis uses three bases; monomers, dimers, and trimers shown in 
Fig 5.  In our analysis we used silver spheres with 100 nm diameter and a minimum separation 
within the bases of 25 nm. 

 
Monomer:     Dimer:        Trimer 

  
 

Fig 5. Bases for chirped photonic plasmonic arrays 
 
Fig 6 shows the scattering efficiency and maximum field enhancement spectra calculated for 
each of these bases when illuminated with a normally incident plane wave polarized in the Y 
direction (along the axis of the dimer in Fig 3). 

 
Fig 6. (a) Scattering efficiency and (b) maximum field enhancement spectra of three isolated bases. 

 
We reduced the complexity of the array by chirping in only one direction (+X) and holding the 
spacing in the other direction (Y) constant.  Fig 7 a-c show these one-dimensional chirped 
arrays for the three different bases.  The arrays are linearly chirped in the +X direction from 400 
– 700 nm with N =15 columns.  The slope of the chirping is 21.4 nm/column.  The spacing in 
the Y direction is 400 nm. Fig 7 d-i shows the scattering efficiency and maximum field 
enhancement of each array compared with that of the isolated base. 
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Fig 7. One-dimensionally chirped rectangular arrays of (a) monomers, (b) dimers, (c) trimers.  The scattering 
efficiency and maximum field enhancement respectively of (c and f) monomer, (d and g) dimer, (e and i) trimer. 
 
We define the near-field enhancement factor as the ratio of the maximum field enhancement 
spectrum of the array to that of the isolated base.  This value is plotted for the three arrays in Fig 
8.  Notice that even though the maximum field enhancement spectra for the dimer and trimer 
(Fig 7 h and i) do not appear to be similar, their enhancement factors, particularly in the 500-
900 nm range, are almost identical.  This indicates that there is some underlying array function 
which may be able to be used to predict the maximum field enhancement spectrum from that of 
the isolated base. 
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Fig 8. Near-field enhancement factor (max field 
enhancement of array divided by that of isolated base) of all 
three arrays. 

 
Finally, we investigated the position of the field maxima at various wavelengths. We simulated 
chains of silver dimers linearly chirped from 500 to 700 nm with the number of dimers N = 15 
and 100, which translates to slopes of 21.4 nm/column and 3 nm/column respectively.  The 
results are shown in Fig 9.  There is almost no difference in the scattering efficiency of two 
linear arrays, but the longer chain has a much higher field enhancement due to the more long 
range feedback from the nearly momentum matching properties of the chirped array. 

 

 
Fig 9. (a) Scattering efficiency, (b) maximum field enhancement, and (c) near-field enhancement factor of chirped 
line with N = 100. 
 
Our theory is that chirping the greeting creates a type of quasi-Wood’s anomaly at all the 
wavelengths in the chirping range.  If this is true, then the X position of the maximum field 
enhancement should change linearly with wavelength.  Fig10 shows the X positions of the 
maximum field enhancement for each of the line arrays (N = 15 and N = 100).  We see indeed 
that this curve varies linearly between 400 and 700 nm.  If these results can be experimentally 
realized it means that we can engineer the exact location of hot spots over a broad frequency 
range. 
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Fig 10. X position of the maximum field enhancement as a 
function of wavelength for both arrays, N = 15 and N = 100. 

 
This work is currently being included in  a paper to be submitted for publication. 
 
2.5. Generalization of Photonic-Plasmonic Coupling 
 
Using our CDA model, we have observed that we can design Wood’s anomalies in which we 
couple long range photonic modes of periodic gratings to the enhanced localized surface 
plasmons (LSP) on quasi-statically coupled dimers.  We have also observed that by chirping the 
lattice constant of the arrays we can create broadband coupling to these LSP. Additionally, 
further evidence of similar phenomenon has recently been published by this group [3]. In order 
to understand the relationship between the grating’s spatial frequencies and the coupling to LSP 
in complex arrays we look as a first approximation at scalar Fourier optics.  We start with the 
simple model which only allows propagating diffracted orders and look for the relationship 
between the wavelength and the characteristic length of the array to satisfy the Wood’s anomaly 
condition for a normally incident scalar plane wave. 
 
The general relation between the angles of the wavevector and spatial frequency of the wave is, 
 














yy

xx




1

1

sin

sin
                                                                                                                (3) 

 
When a plane wave is transmitted through a thin optical element with complex amplitude 
transmittance f(x,y) which is a sum of many harmonic functions of different spatial frequencies, 
the transmitted optical wave is also the sum of an equal number of plane waves dispersed into 
different directions. Each spatial frequency is mapped into a corresponding direction in 
accordance with the spatial frequency condition (Equation 3). The amplitude of each wave is 
proportional to the amplitude of the corresponding harmonic components of f(x,y) [4]. 
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That is, for complex amplitude transmittance 
 

   yxyxyx ddyxjFyxf  )(2exp),(),(                                                     (4a) 

 
the transmitted wave is, 
 

     yxzyxyx ddzjkyxjFzyxU  exp)(2exp),(),,( .                             (4b) 

 
Where the complex envelope F(x,y) is the Fourier Transform of f(x,y) and kz = (k2-kx

2-ky
2)1/2 

= 2(-2-x
2-y

2)1/2 [4]. 
 
In metallic diffraction gratings, Wood’s anomaly occurs at the point when the first diffraction 
order propagates exactly in the plane of the array. That is when kz0.  Applying this condition 
we find that, 
 

02 222  
yxzk                                                                                            (5a) 

2
22 1










 yx                                                                                                             (5b) 

Equation 3b is the equation of a circle with radius -1 which is plotted in Fig 11.  We will use 
this equation to calculate the conditions for partial Wood’s anomalies in our arrays. 

 
Fig 11. Condition for in-plane scattering 

 
We now apply Equation 5b to our four standard arrays [3] to determine the efficiency of partial 
Wood’s anomaly coupling.  For a rough first order approximation we say that the complex 
amplitude transmittance f(x,y) equals the array geometry so that F(x,y)  is the Fourier 
transform of the array.  This is the case for a thin transparency but in reality is not the case for 
plasmonic metals because the field penetrates into the grating, altering the field distribution. 
Still it is a good first order approximation for engineering an array geometry, and conclusions 
drawn from it can be refined later.  Fig 12 shows the Fourier transform of our four standard 
arrays: periodic, Fibonacci, Thue-Morse, and Rudin-Shapiro with the Wood’s anomaly 
condition (Equation 5b) plotted for three wavelengths normalized to their characteristic length, 
a.  In all four structures the characteristic length is the minimum center to center separation of 
the lattice which is the lattice constant of the periodic array. 
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Fig 12.  Wood’s anomaly condition for (a) periodic, (b) Fibonacci, (c) Thue-
Morse, (d) Rudin-Shapiro arrays at three different normalized wavelengths. 

 
In Fig 12, the Wood’s anomaly is clearly visible for the periodic array.  For  equal to the lattice 
constant the circle lies exactly on the first diffractive order and for  greater than the lattice 
constant the only propagating order is the zero order.  For the aperiodic arrays there are clearly a 
greater distribution of spatial frequencies and therefore the incident wave a partially couples 
into a Wood’s anomaly like in-plane propagation at many frequencies to different extents. 
 
In order to describe the efficiency of the grating to diffract a specific wavelength into in-plane 
propagating waves, we define a radial distribution function, 












R

R
R

R
R

dRRF

dRRF

RRD

0

2

2

)(

)(

)(                                                                                               (6) 

 
Which is depicted in Fig 13. 
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Fig 13. Graphical description of radial distribution function 
 
The most important part of Equation 6 is the normalization.  Since we are only considering the 
coupling of the wave to propagation orders only spatial frequencies inside the Wood’s anomaly 
condition circle can be considered.  This means as we change the wavelength we not only 
change the coupling to the in-plane propagating diffractive order but to all propagating orders 
because we change the number of orders which are allowed.  The effect that this condition has 
on the distribution function can most clearly be seen if we look at the numerator and 
denominator separately for each of our four arrays.  This is shown in Fig 14.  The comparison of 
the distribution function for the four different arrays is shown in Fig 15. 
 

 
Fig 14.  The components of the radial distribution function.  (a-d) numerator, (e-h) denominator, (i-l) entire radial 
distribution function 

R

x

y
A

R

x

y
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Fig 15. Radial distribution function of four arrays 

 
Figs 14 and 15 show that for the periodic array there is a large amount of diffraction into the 
plane when  = a, which corresponds to the first diffracted order and is the standard condition 
for the Wood’s anomaly. There is an additional weaker peak at  = (2/3)a which corresponds to 
the second diffracted order. In the sub-wavelength region  > a, there is no in-plane diffraction 
because only the zero order propagates.  However, for the aperiodic arrays there are coupling 
pathways in the sub-wavelength region. These pathways appear to be dominated by the quasi-
periodic arrays (Fibonacci and Thue-Morse) in the near sub-wavelength region (1a <  < 4a) 
and the non-periodic array (Rudin-Shapiro) with a flat Fourier transform in the deep sub-
wavelength region ( > 4a).  For a comparison in our experiments we typically use lattice 
constants around a = 100 nm to 300 nm for  = 532 nm, 1.773a < < 5.32a and for  = 785 nm, 
2.617a < < 7.85a. 
 
Portions of this work will be included in future papers on aperiodic plasmonic arrays. 
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3. Experimental Activities 
 
3.1. Depolarization Ellipsometry 
 
We experimentally measure depolarization from periodic arrays of plasmonic dimers using 
spectroscopic ellipsometry. We show that at the Rayleigh cutoff, the depolarization has a sharp 
peak due to an increase in angularly dispersed scattering. We find that depolarization is 
maximized when the Rayleigh cutoff overlaps with the peak of the plasmon resonance of the 
isolated dimer. Results are confirmed with rigorous T-matrix simulations. 
 
Fig16 shows the experimental geometry and results.  (a) shows the experimental geometry.  
Dimers which are strongly coupled in the near field are arranged into a periodic lattice which 
provides diffractive coupling to the localized surface plasmon resonance.  (b) shows the 
measured ellipsometry  and  coefficients which agree with previously published data on 
these types of arrays [2].  (c) shows the depolarization spectra for an array of dimers and a 
comparable array of monomers.  The dimers produce a dramatically larger depolarization than 
do the monomers. (d) shows that the strength of the depolarization varies with the minimum 
interparticle separation with more closely spaced dimers depolarizing the field more. 
 

 
Fig 16:  (a) Schematic of ellipsometry experiment. (b) Ellipsometric parameters  and  for an array of 
gold dimers illuminated at 60o. (c) Depolarization of an array of dimers and monomers. (d) Depolarization 
of arrays of dimers with various minimum inter-particle separation indicated in the legend. Scaling of 
maximum depolarization with minimum separation (inset). 
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From a review of literature of ellipsometry of rough surfaces we determined the origin of the 
depolarization we measured was spatial as opposed to temporal [5].  We modelled this with the 
T-matrix method [1,6] by calculating a spatially averaged Stoke’s vector over a solid angle  
about the specular direction. The T-matrix method is used to calculate the Mueller matrix at N 
discrete angles over the . The elements of the average Mueller matrix 
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The degree of polarization of the spatially averaged field is then, 
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And the percentage of depolarization is  21%100   Pdp . 

 
The results of simulations of chains of dimers with various minimum interparticle separation 
dmin are shown in Fig. 17.  (a) shows that the depolarization peaks when the grating mode 
overlaps with the localized surface plasmon resonance and that the amplitude varies with 
minimum particle separation. (b) shows the scaling of maximum depolarization with minimum 
separation.  The data is fit by a logarithmic regression with R2 = 0.9965. 
 

 
Fig 17. (a) Simulated depolarizaton for chains of dimers with various separation compared to that of monomers and 
an isolated dimer. (b) Scaling of the maximum depolarization with minimum separation. 
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This work is the subject of a paper which will be submitted to Nano Letters [publications 3].  
This manuscript includes further details for an analysis of the effect of the angle of incidence. 
  
3.2. Optical Limiting 
 
We have started a set of optical limiting experiments at Natick  to use designed planar 
plasmonic arrays to lower the input power and increase the switching rate of azobenzene doped 
liquid crystal cells similar to results previously reported by Osgood et. al. [7] for dispersed 
carbon nanotubes.  We are using three array types representing three different classes of design 
strategies we have pursued. Examples of the electron beam fabricated arrays are shown in Fig 
18. 
  

 
Fig 18. SEMs of 100 nm gold cylinder arrays of quartz. (a) triangular dimer with 530 nm lattice constant, (b) 
Fibonacci, (c) designed structure with particle swarm optimization. 
 
We made three liquid crystal cells two of which had arrays of gold particles and one of silver.  
We attempted to perform two time resolved experiments.  First a pulsed pump probe experiment 
in which the time dynamics of the polarization of a continuous wave (CW) 690 nm laser probe 
is measured as a 5 ns high fluence 532 nm Nd:YAG  laser pump induces a switch in the liquid 
crystal from its  nematic to isotropic state.  A diagram of the experimental setup is shown in Fig 
19 (a).  Next the time dynamics of the limiting of a CW 530 nm laser were measured from the 
opening of a mechanical shutter until the liquid crystal (LC) had entirely switched phase.  A 
schematic of this setup is shown in Fig 19 (b). 



16 
 

 
 

Fig 19. Schematics of limiting experiments.  (a) Pulsed pump-probe: the two analyzers are crossed.  The 
LC sample rotates the polarization when it is in the nematic phase.  Time dynamics of the CW probe 
laser are measured on the power meter as a single pulse from the pump laser caused the LC to transition 
to the isotropic phase leading to zero transmission through the cross analyzers. (b) CW limiting setup: 
the two analyzers are crossed.  A mechanical shutter opens and the time dynamics of the transmission of 
the CW 530 nm laser are measured on the power meter as the LC switches from its nematic to isotropic 
phase. 

 
Although successful in measuring the time dynamics using the pump probe set up, we could not 
see a significant difference when the arrays were present.  Fig 20 shows results for a switch with 
one particular pump energy (which was not directly measured but is identified by use of a 0.4 
optical density (OD) neutral density filter) for (a) the Fibonacci array, (b) no array, and (c) a 
side by side comparison.  The switching in these measurements goes from low to high.  
Although there appears to be an increase in the switching rate for the Fibonacci array it must be 
noted that the transmission starts at a higher value likely due to the depolarization effect from 
the highly scattering gold nano-particle array. An additional possible reason for this apparent 
effect is that the presence of the array could help the LC orient on the unrubbed surface. 
However the most important observation made about these samples, which influences the 
interpretation of the results, is that they are very non-uniform. This was determined by placing 
them between cross polarizers and illuminating from the back with unpolarized white light.  As 
the sample is rotated with respect to the polarizers the transmission varies inconsistently 
throughout the sample.  This will be further addressed in the section on our new experimental 
strategy. 
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Fig 20.  Pump-probe results. (a) Fibonacci array, (b) no array.  Pump red, probe blue. Probe normalized to its 
maximum.  (c) comparison on probe from (a) & (b) in unnormalized units. 
 
No results for any of the three samples were attained for the CW experiment because the 
absorption of our samples was too high and no signal whatsoever could be measured.  Fig 21 
shows the OD of four samples as a function of wavelength.  Samples 1 and 2 have gold arrays 
and were filled at Natick.  Sample 3 has silver arrays and was filled by us. These are compared 
with an existing sample of identical specifications. The difference between our samples and this 
existing one is that for the existing sample the top and bottom substrates were pushed and 
rubbed together before sealing in order to remove excess dye which makes the cell thinner and 
lowers the absorption.  This is not possible with our sample since rubbing them back and forth 
will destroy our arrays. If we can make cells with thicknesses at least as thin as this sample we 
will be able to perform CW experiments.  Fig 22 shows the results of the CW limiting 
experiment for the existing sample in which the input power varied.  It is clear that the 
switching rate increases for higher powers.  This is consistent with the results in [7]. 
 

 
Fig 21.  Optical density of four LC samples.  Samples 1 and 2 have arrays and 
were made for us by Natick. Sample 3 has arrays that we made.  The existing 
sample was made by Natick by rubbing back and forth to remove excess dye. 
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Fig 22.  Time dynamics of CW limiting experiments from the existing sample.  Input power is changed. 
 
Our current inability to control the thickness and uniformity of the LC cells makes it impossible 
for us to perform the CW experiments and interpret the pulsed experiment.  Further, it will not 
be possible measure any effect if the cells are too thick so that the amount of optically active 
material in the region of high field enhancement close to the array is a very small fraction of the 
entire LC volume. Our new strategy for these experiments will be to build a micro-fluidic 
channel around the arrays so as to better control the thickness and uniformity of the LC. The 
steps for fabricating the micro-fluidic channel are shown in Fig 23 and outlined below. 
 

(1) Define the area of the channel with photolithography on a silicon substrate, develop and 
pour PDMS (a hydrophilic polymer) over the area. 

(2) Peel off hardened PDMS. 
(3) Remove photoresist residue. 
(4) Nano-imprint a periodic grating into the channel for the LC to align with. 
(5) Place and clamp PDMS channel over plasmonic arrays and make pin holes for injection 

of LC. 
(6) Connect a syringe pump via tubing to the pinholes and fill the array with LC. 
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Fig 23. Steps for fabricating micro-fluidic channels around plasmonic arrays. 

 
We have constructed several micro-fluidic channels using PDMS.  Fig 24 shows (a) the 
photoresist mold to make the PDMS channel, (b) the PDMS channel on a quartz substrate and 
(c) arrays of Cr nanoparticles inside the PMDS channel.  The channel is 18 μm tall as measured 
with a profilometer.  We are planning to make thinner and more sturdy channels using diluted 
photoresist and spin on glass in place of PDMS. 
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Fig 24. (a) Photoresist mold to make the PDMS channel. (b) PDMS channel on a quartz 
substrate. (c) Arrays of Cr nanoparticles inside the PMDS channel. 

 
3.3. Enhancement of Kerr Nonlinearities in Azobenzene Doped Polymers 
 
We have been working on producing uniform thin films of four third order-nonlinear Kerr effect 
dyes in a PMMA host.  These include two azobenzene dyes, Disperse Red 1 (DR1) and Methyl 
Orange (MO), as well as two others Poly(1-vinylnaphthalene) molecular weight 30,000 (Poly-
30k) and Poly(1-vinylnaphthalene) molecular weight 100,000 (Poly-100k).  We abandoned the 
plan to dissolve the dyes and powder PMMA in chloroform because we were unable to obtain 
uniform films.  Our new strategy involves dissolving the dyes in toluene and diluting 
Microchem PMMA 950 A5 electron beam lithography resist [1] with the toluene solution.  We 
have had good success.  Using a Woolman V-VASE ellipsometer we measured the thickness of 
the film made from a 1:1 mixture of PMMA (in anisole) to toluene spun at 2000 rpm for 45 s to 
be 214.765+/-0.564 nm and 206.5 nm with a profilometer.  We have made solutions of all four 
dyes which are 5% nonlinear dye by weight of solute (dye + PMMA) and 2.6% solute by 
volume in a 1:1 mixture of anisole to toluene.  Fig. 25 shows the calibration curve for film 
thickness as a function of spin speed as measured with ellipsometry.  As can be seen we have 
achieved films as thin as about 200 nm with this particular recipe.  It should be noted that there 
are error bars on the plot but they are too small to be seen on this scale. 

(a) (b) 

(c) 



21 
 

 
Fig 25. Spin speed calibration of 5% DR1, 95% PMMA by weight  

in a 2.6% solution of anisole:toluene 1:1 
 

The principle method we are using to evaluate the nonlinearities of these films is zscan [8].  
Zscan is a simple yet powerful technique for measuring the magnitude and sign of the nonlinear 
refractive index n2 and the two-photon absorption coefficient 2.  The basic setup we use is 
shown in Fig 26.  A TEM00 Gaussian laser beam is focused by a lens and a sample is moved by 
a motorized stage along the axis of the lens through the focus of the beam.  This imparts on the 
beam a nonlinear phase shift which changes as a function of the sample’s position z along the 
axis.  The phase shift produces a known change in the far field pattern which can be sensed by 
placing an aperture on the axis of the beam before measuring its intensity with a power meter.   
 
 

 
Fig 26. Zscan setup 

 
For weak nonlinear phase shifts at the beam waist 0 the transmittance of the closed aperture 
experiment is known to fit the form [8], 
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where, x = z/z0 and z0 is the confocal parameter of a Gaussian beam.  The approximate variation 
between the transmittance at the peak and valley is (Tpv), and the distance between the peak 
and valley (zpv)  is [8], 
 

||406.0 0 pvT ,                                                                                                    (10a) 

 

072.1 zz pv  .                                                                                                               (10b) 

 
0 is related to the nonlinear index as [8], 
 

020 ILn eff                                                                                                                 (11) 

 
where Leff = [1-exp(-L)]/ is the sample’s effective length and I0 is the laser intensity at the 
beam waist.  The nonlinear index can be either positive (n increases with increased intensity) or 
negative (n decreases with increased intensity).  Fig 27 shows the theoretical closed aperture 
zscan transmittance (Equation 9) for both positive and negative values of n2. 

 
Fig 27. Theoretical closed aperture zscan data 

 
We were unable to obtain zscan data from the azobenzene doped PMMA samples previously.  
We believe the films were too thin (200 nm) and the concentration of azobenzene was too low 
(5% by weight) to see an effect.  We have made thicker samples with higher concentrations.  
The films are 5, 10, and 20% Disperse Red 1 (DR1) by weight.  The DR1 was dissolved in 
Microchem PMMA 950 A5 electron beam lithography resist [9] without additional dilution.  
The solutions were spin coated at 1000, 2000, and 3000 rpm on quartz substrates and baked at 
90o C for 15 min. The thickness of these films has not been measured, but based on 
measurements of the resist without DR1 it should be greater than 500 nm.  We performed 
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spectrophotometry measurements of the linear absorption of these samples.  Fig 28 shows the 
optical density of samples with different concentrations of DR1 spun at different speeds.  It 
shows that there is a peak in the linear absorption at 490 nm.  This resonance is where the trans-
cis photoisomerization occurs which gives rise to the highest nonlinear change in the refractive 
index [10]. 
 

 
Fig 28. Optical density measurements of the DR1 doped PMMA films 

 
We performed zscan measurements with our Ti-Sapphire laser at 800 nm with pulse widths of 
200 fs.  Un-normalized results are shown in Fig 29.  This curve is characteristic of a negative n2 
as is expected from azobenzene [10]. 
 

 
Fig 29. Un-normalized zscan data from DR1 doped PMMA film 
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4. Instruments 
 
4.1. Scatterometer 
 
We have built a scatterometer (also known as a polar nephelometer) for measuring angular 
scattering properties of lithographically defined microscopic arrays of nanoparticles.  
Instruments of this kind have been used for measurements on random ensembles and single 
particles.  Collections of particles behave very differently than isolated ones; however, random 
orientation and position creates an averaging out of angular scattering properties.  In our 
research we design particle arrays with complex ordering which gives rise to unique scattering 
properties.  To the best of our knowledge this will be the first scatterometer capable of probing 
microscopic arrays of nanoparticles in well controlled positions.  This will give us the capability 
to measure angular scattering intensity, polarization dependence on angular scattering, coherent 
back scattering, extinction, and bright and dark field images. 
 
The instrument is shown schematically in Fig. 30 and pictures of various components are shown 
in Figs 31-34.   
 

 
Fig 30. Schematic of scatterometer 

 
The system consists of a side microscope which was custom-built for our laboratory which 
allows us to perform bright and dark field imaging with a calibrated true color CCD and 
spatially selective dark field spectroscopy with a monochrometer and photon multiplying tube.  
The system was modified to add a fiber coupled probe on an automated rotating arm.  The fiber 
couples the scatted light to a spectrometer. With this system we are able to measure the angular 
scatting spectrum of arrays of nanoparticles. An image of the system is shown in Fig 31. 
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Fig 31. Scatterometer full system 

 
The automated rotational stage moves the detection arm around the sample as is shown in Fig 
32. 

 

 
 

Fig 32. Automated variation of collection angle 
 

The system may also be used with an automated rotating analyzer (a polarizer on the collection 
side).  This can be used with a polarizer on the excitation side (inside microscope) to determine 
the change in the angle of polarization by the sample or without the polarizer to determine the 
bi-attenuation of the sample.  The system with the rotating analyzer is shown in Fig. 33. 
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Fig 33. System with automated variable analyzer 
 

Finally, the system can also be used with an automated liquid crystal variable phase retarder to 
dynamically change the state of polarization of the scattered light.  This allows for the 
determination of the full elliptical state of polarization of the scattered light.  The system with 
the variable phase retarder is shown in Fig 34. 

 

 
 

Fig 34. System with automated variable phase retarder 

13/002 
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