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The Most Accurate Path from Point A to Point B is Not

Necessarily a Straight Line

Adam J. Rutkowski
Air Force Research Laboratory, Eglin AFB, FL, 32542, USA

Abstract

This work studies the problem of guiding a vehicle from a known initial location to a known goal
location as accurately as possible, without direct observation of the goal location (such as a bearing
measurement, or line-of-sight to the goal), and without direct position measurements, such as those
provided by GPS. The vehicle travels in a planar environment and has an onboard inertial measurement
unit and an onboard visual system to measure bearing angles to features in the environment. Taking
a zigzagging path toward the goal provides better position estimation than a straight path. For a
given energy budget, there is a certain path width, or amplitude, that results in the best estimation
performance, and this optimal path width depends on the sensor noise parameters.

A batch estimator is derived to analyze the effect of the entire time history of the vehicle trajectory
on final position estimation performance. The formulation results in a linear system of equations. The
path width that minimizes the condition number of the system matrix also minimizes the final position
estimation error when the feature bearing measurement noise is relatively large compared to the inertial
measurement noise.

Nomenclature

a acceleration
b accelerometer bias
Cd drag coefficient
J estimation objective function
x position vector, [x y]T

F vehicle thrust, N
m vehicle mass, kg
∆t timestep length, s
β inverse correlation time, 1/s
η random disturbance
θ bearing, degrees

Superscripts
i timestep
k feature number

Subscripts
f feature
g goal
v vehicle

Accent symbols
ˆ estimated quantity
˜ measured quantity

This paper appeared in the Proceedings of the 2012 AIAA Guidance, Navigation, and Control Conference as paper number
AIAA 2012-4761
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1 Introduction

The objective of this work is to guide a vehicle from a known initial location to a known goal location as
accurately as possible, without direct observation of the goal location (such as a bearing measurement, or
line-of-sight to the goal), and without relying on a direct position measurement system such as the Global
Positioning System (GPS). Several researchers have demonstrated that a visual system is an effective aid to
an inertial navigation system when GPS is not available [4, 5]. Furthermore, it has been demonstrated that
vehicle maneuvers can be used to improve position estimation accuracy. Bryson and Sukkarieh showed that
flying an occasional orbit maneuver or s-turn improves both heading and vehicle position estimation accuracy
[1]. Brink et al. demonstrated that estimation accuracy can be improved when a vehicle takes a continuously
zigzagging path toward a goal [2]. In general, estimation accuracy improves as both the frequency and
amplitude of the zigzagging path increase. However, paths with higher frequency and amplitude require
more energy, and without a kinetic model of the vehicle (taking into consideration mass, drag, etc.), it is
not possible to determine which combination of frequency and amplitude yield the best results for a given
energy budget. Furthermore, the work of Brink et al. did not include a guidance law to direct the vehicle
to the goal; rather, the vehicle made general progress along one Cartesian axis toward the goal.

Frew et. al have examined the problem of traveling from a known start location to a known goal location
without position measurements [3]. They developed a control strategy based on minimizing an objective
function that is the sum of four components - a control cost that limits control input, a navigation cost
that moves the vehicle toward the goal, an uncertainty cost that moves the vehicle to improve knowledge of
feature locations, and a safety cost that is used to avoid obstacles. However, they did not attempt to reach
the goal as accurately as possible; rather, they attempted to reach the goal to within a specified distance,
then return to the start location.

In this work, a guidance law is developed to maneuver a vehicle in a continuously zigzagging manner
such that a constraint on the amount of energy (or, more accurately, impulse) expended by the vehicle is
obeyed using a constant magnitude force over a specified time. In the final stage of the trajectory, a terminal
guidance algorithm directs the vehicle to the goal. A batch estimator is also developed to examine the effect
of the entire trajectory history on final position estimation accuracy.

2 Approach

For simplicity, the problem of traveling from a known initial location to a goal location without position
feedback is considered in 2D, as shown in Figure 1. The vehicle has an onboard IMU and vision system.
The IMU measures vehicle acceleration along the x and y axes, while the vision system measures the bearing
angle to prominent visual features (e.g. SIFT features or Harris corners) in the environment. The vehicle
orientation is constant and aligned with the global coordinate frame. The features are at initially unknown
locations and are observed ”on-the-fly”. Since the position of the vehicle and the features must be determined,
this is a simultaneous localization and mapping (SLAM) problem with the added requirement that the vehicle
must reach a goal location as accurately as possible.

2.1 Kinetics

The vehicle kinetics are modeled using the decoupled set of equations in (1), where the drag force components,
Dx and Dy, are proportional to the velocity components along their respective axes.

mẍv = Fx − Cdẋv
mÿv = Fy − Cdẏv

(1)

The solution of the kinetics equation along the x-axis is given by (2), and the solution along the y-axis
has the same form.
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2.2 Sensing

The IMU model provides an acceleration measurement, ã, that is the sum of the true acceleration, ẍ, a
Gaussian white noise component, ηa, and a bias component, b, as given by (3).

ãi = ẍi + bi + ηia (3)

The bias follows a first order Gauss-Markov process described by (4) and (5), where the Gaussian white
noise term η∆b has a standard deviation of σ∆b, and over time, the bias will have a standard deviation of σb.

σ∆b = (1− exp(−2βa∆t))0.5σb (4)

bi = exp(−βa∆t)bi−1 + ηi∆b (5)

The visual system model is omnidirectional and capable of identifying features at an infinite distance.
The feature bearing measurement is computed according to (6), where atan(y, x) is the 4 quadrant inverse
tangent, and the bearing measurement noise, ηθ, is zero-mean Gaussian with a standard deviation σθ.

θ̃ = atan(yf − yv, xf − xv) + ηθ (6)

2.3 Estimation

Since the estimation performance depends on the entire trajectory history, a batch estimator is used to solve
for all states at all points in time. A batch estimator was chosen instead of a recursive estimator, such
as an Extended Kalman Filter (EKF), with the hope to gain insight into how the entire time history of
the trajectory influences the estimation performance. Furthermore, the batch estimator does not require a
delayed feature initialization scheme that is commonly used with an EKF [1].

The state vector is arranged according to (7), where x̂f = [x1
f y1

f ... x
Nf

f y
Nf

f ]T , b̂ = [bx by]T , and

x̂v = [x1
v y

1
v ... x

N
v yNv ]T for N total timesteps and Nf total features.

x̂ = [x̂Tf b̂
T

x̂Tv ]T (7)

3
DISTRIBUTION A



Notice that although the accelerometer bias is modeled as a first order Gauss-Markov process (as in (5)),
the accelerometer bias is treated as constant in the state vector. This is done to simplify the estimation
procedure and reduce the dimension of the resulting equations.

The state vector is estimated by minimizing an estimation objective function (8) that consists of two
parts, a feature bearing estimation error, Jf , defined in (9), and an acceleration error, Ja, defined in (10).

J =

n∑
i=1

nf∑
k=1

wi,kJf (ti, k) + λ

n−1∑
i=2

Ja(ti) (8)

Jf (ti, k) =
((
x̂iv − x̂kf

)
sin θ̃i,kf −

(
ŷiv − ŷkf

)
cos θ̃i,kf

)2

(9)

Ja(ti) =
(

ˆ̈xiv − (ãix − b̂ix)
)2

+
(

ˆ̈yiv − (ãiy − b̂iy)
)2

(10)

The feature bearing objective function of (9) is derived from the fact that in the ideal case, tan(θ) =
sin(θ)/ cos(θ) = (yf − yv)/(xf − xv). At a given moment in time, multiplying Jf by weighting terms
wi,k and summing over all features leads to an objective function that is the basis of the classic Stansfield
estimator [6]. If the weighting terms, wi,k, are chosen appropriately, the Stansfield estimator provides an
elegant approximation to the maximum likelihood estimator for vehicle position when the feature locations
are known. However, for the current problem, the features are in unknown locations. This is where the
acceleration error term comes in. The acceleration objective function describes the disagreement between
the acceleration measurements and estimates, and the term λ describes the relative importance between
acceleration errors and bearing errors.

The estimated acceleration is derived directly from the estimated position using the central difference
scheme of (11).

ˆ̈xiv =
x̂i+1
v − 2x̂iv + x̂i−1

v

(∆t)2
(11)

The state estimate is determined by setting the derivative of J with respect to x̂ to zero. This leads to
the following linear system, where the system matrix L depends only on the feature bearing measurements,
and the vector R depends only on the accelerometer measurements.

Lx̂ = R (12)

The equation (12) is solved twice, once with the weights wi,k set to one for all features at all points in
time, then again with the weights proportional to the inverse of the square of the estimated range from the
first solution. The improvement in estimation accuracy that results by adjusting the weights in this manner
and solving (12) a second time will be demonstrated in the results section.

In the matrix L, there are several terms involving sin2(θ), cos2(θ), and sin(θ) cos(θ). If these terms are
computed directly from the bearing measurements, the noise in θ̃ will cause these terms to be biased from
their expected values. This will in turn cause the vehicle and feature position estimates to be biased, as will
be shown in the results section. This can be fixed if one knows the magnitude of the noise in θ̃, which can
be determined from a calibration procedure of the bearings measurement device. The corrections in (13) are
based on approximating sin(ηθ) ≈ ηθ and cos(ηθ) ≈ 1− η2

θ .

sin2(θ) ≈ (1− σ2
θ) sin2(θ̃)− σ2

θ cos2(θ̃)

1− 2σ2
θ

cos2(θ) ≈ (1− σ2
θ) cos2(θ̃)− σ2

θ sin2(θ̃)

1− 2σ2
θ

sin(θ) cos(θ) ≈ sin(θ̃) cos(θ̃)

1− 2σ2
θ

(13)
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2.4 Guidance

2.4.1 Midcourse

A natural way to achieve the excitation necessary for observability of the states is to simply let the vehicle
zigzag toward the goal. To achieve this behavior, the vehicle exerts a constant thrust along the x-axis, Fx,
and switches the sign of the constant magnitude lateral force, Fy, whenever the vehicle moves from a location
between two parallel boundaries to a location outside the boundaries. These boundaries are labeled as yLB
and yUB in Figure 1, where yUB = yBO + yB and yLB = yBO − yB .

2.4.2 Terminal

After a certain amount of time, the vehicle is directed to a prespecified goal location using Algorithm 1.
For this work, only the y-coordinate of the goal location, yg, is specified. At a given time ti < tN , y∗ is
the position along the y-axis that the vehicle would reach at time tN if Fy = −Fymag sign(y − yg), and the
time-to-go tgo = tN − ti. During midcourse, when y∗ gets close to yg, this is the point when Fy must point
toward the goal, otherwise, the vehicle would never reach the goal. The points y∗∗ and y∗∗∗ are also checked
when the condition specified by y∗ alone does not allow sufficient time to reach the goal. Expressions for y∗,
y∗∗ and y∗∗∗ are given in (14)–(16).

Algorithm 1 Terminal Guidance

if (|yi| > 0.99y∗) then
F iy = −Fymag sign(yi)

else if (y∗∗ > yg and yiv < yg and ẏi > 0) then
F iy = −Fymag

else if (y∗∗∗ < yg and yiv > yg and ẏi < 0) then
F iy = Fymag

end if

y∗ =
Fy
Cd
tgo +

(
−ẏi sign(yi)− Fy

Cd

)
m

Cd

(
1− exp

(
−Cdtgo

m

))
(14)

y∗∗ = −Fy
Cd
tgo +

(
ẏi +

Fy
Cd

)
m

Cd

(
1− exp

(
−Cdtgo

m

))
+ yi (15)

y∗∗∗ =
Fy
Cd
tgo +

(
ẏi − Fy

Cd

)
m

Cd

(
1− exp

(
−Cdtgo

m

))
+ yi (16)

The meaning of y∗∗ and y∗∗∗ is apparent in Figure 2. Near the point xv = 70, with no terminal guidance,
Fy is positive and remains so until the vehicle reaches the upper bound yUB = 3. However, the vehicle
does not reach the goal. Using only y∗ guidance, the sign of Fy switches to negative at the point when yv
becomes positive, but this thrust cannot overcome the momentum of the vehicle to force it back to the goal
location in time. Using the full terminal guidance law, y∗∗ becomes > yg when yv is still < yg, thus from
Algorithm 1, the sign of Fy switches to negative just in time for the vehicle to reach yg at tN .

3 Results

In the first test scenario, there are two rows of feature points, one row of feature points located at y = 15
and the other at y = −15. The features are equally spaced along each row with a spacing of 15 m. The
vehicle travels for 150 seconds, and the bearings sensor and inertial sensor take measurements at 10 Hz.

The resulting trajectory estimate when yB = 5 is shown in Figure 3. The mean final position estimation
error is 0.16 m over 1000 Monte Carlo runs. In comparison, the dead-reckoned final position estimate using
only IMU data sampled at 100 Hz with perfect bias initialization had a mean error of 33.85 m as computed
from 1000 Monte Carlo runs.
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Figure 2: (left) Effect of terminal guidance on trajectory. The goal location has yg = 0. (right) Applied
lateral force.

For one of the Monte Carlo runs, the true and estimated accelerometer bias are also plotted in Figure 3.
The estimated components (4.93×10−3, 1.588×10−2) of the accelerometer bias are nearly equal to the mean
of the true bias components (5.29×10−3, 1.595×10−2), which is the best one can hope for when approximating
a varying quantity as a constant.

It is clear from Figure 3 that the corrections given in (13) are necessary to avoid a biased final position
estimate. Furthermore, solving (12) twice, where the weights for the second solution are based on the first
solution, produces a lower mean final position error than the first solution (0.16 m vs. 0.23 m). The weights
could be adjusted again based on the second solution of (12), then (12) could be solved a third time with
the hope of obtaining an even more accurate solution. However, for this particular scenario, no improvement
was obtained by solving (12) a third time.

The mean final position error for different values of yB and two different values for the standard deviation
of the bearings sensor measurement noise is shown in Figure 3. In general, it appears that there is an optimal
spacing between the bounds that results in the best estimation performance, and this optimal spacing tends
to be lower for lower values of σθ. The exact and approximate values of the condition number, computed
using cond and condest in Matlab, are also shown in Figure 3. Notice that the condition number and the
mean final position error are both minimized at nearly the same value of yB when σθ = 1o. However, when
σθ = .3o, the noise in the bearing measurements becomes less important compared to the noise in the IMU
measurements. Since the vector R depends on the IMU measurements, and the condition number indicates
the sensitivity of the solution of (12) to changes only in L (and thus noise in the bearing measurements), the
condition number of L is not a good indicator of system performance when the bearing measurement noise
is relatively small compared to the inertial measurement noise.

The batch estimation procedure may seem like a computationally expensive approach, but the linear
system given in (12) can actually be solved quickly due to the sparsity of L. For this particular scenario,
L is a 3024×3024 sparse matrix, and the solution of (12) is obtained in 0.012 seconds in Matlab R©on an
Intel R©Xeon R©W3550 CPU. Recall that (12) is solved twice to obtain the estimate, first with the weights wi,k

set to one, then again with the weights proportional to the inverse of the square of the estimated feature
ranges. When the overhead required to form L and R is taken into account, each trajectory solution in our
implementation requires about 0.05 seconds to compute for this scenario.

In the second test scenario, there is only one row of feature points located at y = 15. Figure 4 shows the
mean estimation error for different values of yB and yBO. The trajectory is also shown when yB = 5 and
yBO = 15. Notice that when yBO is closer to the feature points, the bounds do not need to be as far apart
to achieve a desirable estimation accuracy. Also, in contrast to the previous scenario, the estimation error
does not tend to increase as quickly with increasing bound separation.
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Figure 3: (top left) The true vehicle trajectory is shown for yB = 5 and σθ = 1o, along with an estimate
of the trajectory from one of the 1000 Monte Carlo runs and a 20σ covariance ellipse on the final position
estimate for all Monte Carlo runs. The mean estimation error in final position in this case is 0.16 m. The true
feature locations are marked with ’+’ symbols, and the 20σ covariance ellipses for the feature locations are
also shown. The bounds yUB and yLB are marked by parallel lines. (top right) The true accelerometer bias
and its estimate are plotted over time. (middle left) Trajectory estimation results with yB = 5 and σθ = 1o

without applying the corrections of (13), the covariance is roughly the same, but the final position estimate
is biased by -6.67 m along the x-axis. (middle right) If the estimator is run only once without re-weighting
based on estimated feature distance, the mean estimation error in final position increases to 0.23 m. (bottom
left) The mean position error, computed from 1000 Monte Carlo simulations for 1 ≤ yB ≤ 15 is shown for
two different levels of feature bearing noise. (bottom right) The exact and approximate condition numbers
of the matrix L as respectively computed with cond and condest in Matlab R©are shown for various values of
yB .
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Figure 4: (left) The mean position error is shown for various values of yB and yBO in the second test scenario
(described in the text). (right) The trajectory when yB = 5 and yBO = 15

4 Conclusions and Future Work

In this work, a batch estimator for vision-aided inertial navigation was developed and used to study the
problem of traveling from a known location to a goal location without position feedback. A guidance law
was developed to excite the motion of the vehicle to improve observability of the vehicle states. For a given
energy budget, there is a certain path width, or amplitude, that results in the best estimation performance,
and this optimal path width, as defined by the parameter yB , depends on the sensor noise parameters. The
formulation of the batch estimator results in a linear system of equations. The path width that minimizes the
condition number of the system matrix also minimizes the final position estimation error when the feature
bearing measurement noise is relatively large compared to the inertial measurement noise. However, if the
feature bearing measurement noise is relatively small, the condition number of the system matrix is not a
good indicator of the final position estimation error.

Although the batch estimator developed in this work can be used as an analysis tool for determining the
optimal path width that results in minimum final position error, it does not yet help in developing heuristic
rules for determining an optimal flight path while in flight. It is only useful in finding the optimal path
width given all the measurements up to the goal location, yet the measurements of course are not known a
priori. For future work, the condition number of the batch estimator may be used to discover paths that
produce even better estimation performance than the class of trajectories explored in this work. Analysis of
the information provided by the measurements during these trajectories may then be used to develop rules
for trajectory planning that can be implemented in real time.
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