DISCLAIMER
Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

DISTRIBUTION STATEMENT A. Approved for public release, distribution is unlimited. OPSEC # 23239
CONVOY ACTIVE SAFETY TECHNOLOGY (CAST) PRESENTATION

Author(s): Bernard Theisen

Performing Organization: U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

Submit to: 2012 NDIA Ground Vehicle Systems Engineering and Technology Symposium August 14-16 Troy, Michigan

Abstract:

Briefing Charts

Subject Terms: CONVOY ACTIVE SAFETY TECHNOLOGY

Distribution/Availability Statement: Approved for public release; distribution unlimited

Security Classification of:

- **Report:** unclassified
- **Abstract:** unclassified
- **This Page:** unclassified

Limitation of Abstract: Public Release

Number of Pages: 11

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Introduction

- CAST Background
- System Description
- Low Cost Sensor Fusion
- Vehicle Detection
- Vehicle Tracking
- Trajectory Generation
- PVF General Results
- Conclusion
CAST Background

Capabilities

- Improved Operator Safety and Security:
 - Eliminates Rear-End Collisions
 - Reduces Fatigue & Eliminates Road Departures
 - Enables Hands-Free Response to Attack
 - Reduces Collateral Damage to Civilian Population

- Improved Operator Situational Awareness:
 - Increased IED Detection Rate
 - Ability to Detect Threats at Greater Distance

- Automated Obstacle Detection and Avoidance

- Fully Operational Across Typical Mission Needs at speeds consistent with human operators

- Autonomous multi-vehicle convoys for March Units up to 25 vehicles
 - AutoMateTM kit still allows for manual operation of any tactical wheeled vehicle
 - Ability to maintain convoy speeds consistent with human operators

Flexibility to Commander in field
 - Fast, <10 sec, convoy configuration Ability to change parameters on the fly

History & Status

- Initiated by TARDEC (2005) on Very Limited Budget

- Conducted Initial Feasibility Demonstrations:
 - Fort Carson (February 2006)
 - Fort Gordon (November 2006)

- Conducted Extensive Warfighter Experiments:
 - Fort A.P. Hill (November 2007)
 - Nevada Automotive Test Center (November 2008)
 - Fort Hood (Robotics Rodeo) (September 2009)
 - Fort Benning (September 2010)

- Specified in Operational Needs Statement:
 - Validated & Signed by Dep Chief of Staff (Nov 2009)

- CAST forms basis of AMAS JCTD
<table>
<thead>
<tr>
<th>CAST Vehicle Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Following</td>
</tr>
<tr>
<td>– Follow the preceding vehicle by fusing video and radar data to plan a safe path-following trajectory</td>
</tr>
<tr>
<td>Road Following</td>
</tr>
<tr>
<td>– Maintain safe trajectories on both primary and secondary roadways by sensing road geometry</td>
</tr>
<tr>
<td>Interval Maintenance</td>
</tr>
<tr>
<td>– Maintain a safe following distance behind the preceding vehicle and eliminate rear-end collisions</td>
</tr>
<tr>
<td>Obstacle Detection & Avoidance</td>
</tr>
<tr>
<td>– Sense and avoid static and dynamic obstacles that are near or move to intercept a planned trajectory</td>
</tr>
</tbody>
</table>
System Description

- Camera
- Soldier/Machine Interface
- Ladar
- Wireless Link
- Controller
- GPS
- Throttle Actuator
- Yaw Rate Sensor
- MMW Radar
- Brake Actuator
- Odometer
- MMW Groundspeed Sensor
- Steering Actuator
Low Cost Sensor Fusion

- Sensor price point < $1,000
- Select sensors that cover maximum FOV
- Sensor’s failure mechanisms overlapped by operation envelope of other sensors
Vehicle Detection

- Real Time Kinematic Ground Truth of sensor measurements shows sensor performance
- No single sensor has full or even adequate detection of vehicle

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Reliable Measurements</th>
<th>Reliable %</th>
<th>Unreliable Measurements</th>
<th>Unreliable %</th>
<th>Error Avg</th>
<th>Error Dev</th>
<th>Error Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
<td>2766</td>
<td>16.10%</td>
<td>14416</td>
<td>83.90%</td>
<td>0.9</td>
<td>0.33</td>
<td>2.63</td>
</tr>
<tr>
<td>RADAR</td>
<td>7018</td>
<td>97.69%</td>
<td>166</td>
<td>2.31%</td>
<td>0.89</td>
<td>0.42</td>
<td>5.65</td>
</tr>
<tr>
<td>GPS</td>
<td>12880</td>
<td>74.49%</td>
<td>4412</td>
<td>25.51%</td>
<td>0.23</td>
<td>0.26</td>
<td>1.96</td>
</tr>
<tr>
<td>LVD</td>
<td>8476</td>
<td>93.38%</td>
<td>139</td>
<td>1.61%</td>
<td>0.96</td>
<td>0.32</td>
<td>2.41</td>
</tr>
</tbody>
</table>
Vehicle Tracking

• Use Multiple Kalmans, One for Each New Sensor Measurement
• These Kalman Filters Represent Multiple Hypotheses Of The Lead Vehicle’s Position, Speed, Heading, And Steering Radius.
• On Subsequent Input Cycles, Update Hypotheses
• Select Track Based on History, Lead Vehicle State, Number of Recent Supporting Measurements
Trajectory Generation

- The last step is to output a trajectory representing all past estimates of leader position.
- If the Trajectory Can Be Approximated as a Good Estimate of Leader Tran Relative Trajectory, Best Path is a Transform into Follower’s Tran Relative Frame
- Otherwise, PVF Generates a Trajectory by Smoothing and Filtering the Path of Previous Leader Position Estimates i.e., “Best” Kalman States Generated from Sensor Measurements.
PVF General Results

Ignoring false positives from camera

Ignoring false positives from radar
Conclusion

• The Use of Low Cost Sensors Can Provide an Effective Solution
 – Using Multiple, Overlapping Sensors with Exclusionary Failure Mechanisms
 – Knowledge of Sensor Performance and Associated Covariance
 – Specifically Tuned to Solve Specific Problem

• CAST Provides a Feasible Solution to Relieve the Soldier of Driving in Order to Focus on Other Tasks