OPEN MANAGEMENT GROUP DATA-DISTRIBUTION SERVICE (OMG-DDS) AS A DATA TRANSPORT FOR VEHICULAR INTEGRATION FOR C4ISR/EW INTEROPERABILITY (VICTORY) SERVICES

Leonard Elliott
Vehicle Electronics and Architecture
TARDEC
Warren, MI
1. REPORT DATE
16 AUG 2012

2. REPORT TYPE
Briefing

3. DATES COVERED
01-07-2012 to 01-08-2012

4. TITLE AND SUBTITLE
OPEN MANAGEMENT GROUP DATA-DISTRIBUTION SERVICE AS A DATA TRANSPORT FOR VEHICULAR INTEGRATION FOR C4ISR/EW INTEROPERABILITY SERVICES

5. AUTHOR(S)
Leonard Elliott

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

8. PERFORMING ORGANIZATION REPORT NUMBER
#23220

9. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

10. SPONSOR/MONITOR’S REPORT NUMBER(S)
#23220

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Submitted to 2012 NDIA Ground Vehicle Systems Engineering and Technology Symposium August 14-16 Troy, Michigan

14. ABSTRACT
VICTORY is a U.S. Army initiative to improve upon current military ground vehicle electronics architecture by providing C4ISR/EW system interoperability and portability. VDM and OMG-DDS P/S solutions appear to be suitable for addressing integration problems which fall into the current scope of VICTORY.

15. SUBJECT TERMS
VICTORY data Messages, Publish subscribe, Open management Group

16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Public Release

18. NUMBER OF PAGES
18

19a. NAME OF RESPONSIBLE PERSON
unclassified
Introduction

• VICTORY is a U.S. Army initiative to improve upon current military ground vehicle electronics architecture by providing C4ISR/EW system interoperability and portability.
• VICTORY Data-Messages (VDM) are VICTORY’s customized publish-subscribe (P/S) messaging solution.
• OMG-DDS is an open-standard COTS P/S messaging solution.
• Investigate replacing VDM with OMG-DDS interfaces
VICTORY Overview

• The VICTORY technical approach
 – Incorporate open-standards
 – Shared services (VICTORY services)
 – Data-bus centric (VICTORY Data-Bus [VDB])

• VICTORY Standards development
 – Working groups (government, industry)
 – Adopt-adapt-author methodology

• Current scope of VICTORY
 – No real-time applications
 – No safety critical applications
 – Intra-vehicle communication (i.e. high-availability)
• VICTORY core services (Position, Orientation, Direction-of-Travel, and Time)
• Service data interface
 – Publish data to VDB using available formats or VDMs
• Service management interface
 – Monitoring/control functions available via Simple Object Access Protocol (SOAP) Remote Procedure Calls (RPC)
Publish-Subscribe Communication Overview

- Provides loose-coupling and scalability
- P/S communication implementation
 - Centralized broker
 - Multi-broker
 - Peer-to-peer
- P/S technologies generally provide API and/or wire protocol standards
 - API standard: code portability
 - Wire protocol standard: “on-the-wire” interoperability
- Integration pattern supported by many COTS messaging technologies
• Several COTS technologies supporting P/S:
 – Java Message Service (JMS): standard Java API, centralized or brokered topology
 – Advanced Message Queuing Protocol (AMQP): standard wire protocol, multi-brokered
 – OMG-DDS: standard API and wire protocol, peer-to-peer implementations

• OMG-DDS is a good candidate for on-vehicle COTS P/S solution
 – Data-Centric Publish Subscribe (DCPS) API standard
 – Real-Time Publish Subscribe (RTPS) wire protocol
 – Peer-to-peer implementation (middleware spawn threads in app)
 – Mechanisms for supporting real-time P/S
VICTORY Data Message (VDM)

- Customized messaging solution supporting P/S on VDB
 - Used for services with no standard data type/protocol (e.g. Time service uses NTP/PTP not VDM)

- Provides scalability and loose-coupling
 - Internet Group Management Protocol (IGMP) to manage subscriptions
 - UDP multicast for data distribution

- Quality of Service (QoS)
 - Differentiated Service Code Point (DSCP): 6-bit field in the IP header
 - Indicates traffic priority
VICTORY Data Message (VDM)

- Standard message features including sequence numbers, format indicators, identifiers, and timing information
- Binary header with and XML payload:
VICTORY Data Message (VDM)

- **VDM P-S Behavior (control via SOAP RPC)**
 - Increase/decrease publishing frequency
 - Enable/disable publishing
 - Change multicast address and port for publishing

- **TARDEC reference implementation**
 - Standard POSIX libraries (e.g. sys/sockets.h)
 - C++
 - Red Hat Enterprise Linux (RHEL) on x86_64
 - RHEL on i386.
 - Ubuntu on ARM Cortex-A8

- **Good performance over high-availability network**
OMG-DDS Overview

- Open-Standard, COTS, real-time P/S, with multiple vendors.
- Extensive QoS for turning P-S behavior:
 - Deadline: The maximum time between data samples.
 - Durability: Previously published data can be stored and sent to late joining subscribers.
 - Lifespan: Specifies how long data sent by user application is considered valid.
 - Liveliness: Allows readers to detect when matching writers are no longer available.
 - Ownership: Specifies ownership of a Topic by a specific writer.
 - Reliability: Allows recovery of samples lost by the network.
OMG-DDS Insertion into VICTORY Services

- Convert VICTORY Position Service
 - Replace VDM interface with OMG-DDS
 - Test with multiple OMG-DDS implementations (RTI Connext DDS 4.5f and PrismTech OpenSplice 6.1.1)

- Evaluate
 - Development effort
 - API completeness and conformance (i.e. vendor-specific code)
 - Interoperability
OMG-DDS Insertion into VICTORY Services

- Convert VICTORY XML Schemas (XSD) to OMG-DDS Interface Definition Language (IDL).

```xml
<xsd:simpleType name="latitudeBounds_t">
  <xsd:restriction base="xsd:double">
    <xsd:minInclusive value="-90"/>
    <xsd:maxInclusive value="90"/>
  </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="longitudeBounds_t">
  <xsd:restriction base="xsd:double">
    <xsd:maxInclusive value="180"/>
    <xsd:minExclusive value="-180"/>
  </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="absolutePosition_t">
  <xsd:sequence>
    <xsd:element name="latitude" type="vmt:latitudeBounds_t"/>
    <xsd:element name="longitude" type="vmt:longitudeBounds_t"/>
    <xsd:element name="altitude" type="xsd:double"/>
    <xsd:element name="mgrs" type="xsd:string" minOccurs="0"/>
  </xsd:sequence>
</xsd:complexType>
```

```cpp
module VICTORY
{
  module Types
  {
    struct doubleMeasurement_t
    {
      double value;
      double uncertainty;
      boolean estimated;
      boolean valid;
    }; //@top-level false
    // Military Grid Reference System
    struct MgrsPos_t
    {
      string<10> gridZoneDesignator;
      long easting;
      long northing;
    }; //@top-level false

    struct AbsPos_t
    {
      doubleMeasurement_t latitude;
      doubleMeasurement_t longitude;
      doubleMeasurement_t altitude;
      boolean hasMgrs;
      MgrsPos_t mgrs;
    }
    #pragma keylist AbsPos_t
  }; //Types
}; //VICTORY
```
OMG-DDS Insertion into VICTORY Services

- Modify Position Service code to use OMG-DDS interface (several days of training and ~100 lines of code)

On Publisher (i.e. Position Service)

1. Declare and initialize DDS Entities
2. Map received sensor data to DDS-data types
3. Call Data-Writer `write()` to Publish

On Subscriber (i.e. Position Service Client)

1. Declare and initialize DDS Entities
2. Call Data-Reader `take()` to read sample
3. Map received DDS data to user-types

UNCLASSIFIED
OMG-DDS Insertion into VICTORY Services

- Tested all combinations of RTI and PrismTech for modified Position Service and Position Service Client.
- Default OMG-DDS QoS used (VDM behavioral equivalent):

<table>
<thead>
<tr>
<th>QoS & Attributes</th>
<th>Writer</th>
<th>Reader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline</td>
<td>Infinite</td>
<td>Infinite</td>
</tr>
<tr>
<td>Domain ID</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Durability</td>
<td>Volatile</td>
<td>Volatile</td>
</tr>
<tr>
<td>Latency Budget</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>Liveliness duration</td>
<td>Infinite</td>
<td>Infinite</td>
</tr>
<tr>
<td>Liveliness kind</td>
<td>Automatic</td>
<td>Automatic</td>
</tr>
<tr>
<td>Ownership</td>
<td>Shared</td>
<td>Shared</td>
</tr>
<tr>
<td>Reliability</td>
<td>Reliable</td>
<td>Best Effort</td>
</tr>
<tr>
<td>Topic</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Type</td>
<td>AbsPos_t</td>
<td>AbsPos_t</td>
</tr>
</tbody>
</table>
Code Modification Results

- Vendor specific code changes (3 statements)
 - Casting of generic data writer to type-specific data-writer
 - User defined type-support – no native *interface* support for C++
 - Disable default vendor-specific transport setting
- Example:

```cpp
#ifdef RTI
ddsSpecificWriter =
    VICTORY::Types::AbsPos_tDataWriter::narrow(
        ddsDataWriter);
#endif

#ifdef PRISMTECH
ddsSpecificWriter = VICTORY::Types::
    AbsPos_tDataWriter::_narrow( ddsDataWriter);
#endif
```
Interoperability Results

- Applications on separate hosts worked out-of-the-box
- Applications on same host required modification
 - RTI Connext DDS defaults to shared memory transport (fast)
 - Change transport to standard UDP transport:

    ```
    #ifdef RTI
    ddsDomPartQos.transport_builtin.mask = DDS_TRANSPORTBUILTIN_UDPv4;
    #endif
    ```
• Features of VDM and OMG-DDS compared.

<table>
<thead>
<tr>
<th>Aspect</th>
<th>VDM</th>
<th>OMG-DDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COTS Available</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lines of Code</td>
<td>1500</td>
<td>100</td>
</tr>
<tr>
<td>Licensing Issues</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Standard API</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Standard Wire Protocol</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Unbrokered Architecture</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

• Notable Issues:
 – VDM Development complexity
 – Licensing OMG-DDS (based on # developers, computing platform, tools, etc).
Conclusion

• VDM and OMG-DDS P/S solutions appear to be suitable for addressing integration problems which fall into the current scope of VICTORY.

• OMG-DDS is a powerful tool
 – Built on open-standards
 – Multiple vendor implementations
 – Well-supported API and wire protocol
 – May enable more capabilities on VDB

• Continue to investigate
 – VDM versus OMG-DDS cost for vehicle program
 – Performance
 – OMG-DDS advanced features and use cases

• The VICTORY Work Group should consider adopting OMG-DDS as an incremental enhancement or real-time extension should the need for more complex P/S behavior arise.