UPDM and SysML for Systems Engineers
Graham Bleakley, IBM
graham.bleakley@uk.ibm.com

© Copyright IBM Corporation 2010
UPDM and SysML for Systems Engineers

Presented at the 2012 DoD Enterprise Architecture Miami, Fl, April 30 - May 3, 2012, Government or Federal Purpose Rights License

Approved for public release; distribution unlimited
This presentation will cover

- Describe how the views are related
- Identify the main viewpoints relevant for the Enterprise Architecture and Systems Engineering phases of development
- Show the patterns across the views and Viewpoints
- Discuss a generic workflow
- Points for discussion on UPDM/SysML modelling
DoDAF 2.0 Viewpoints

- **Capability Viewpoint:** Capture the capabilities that the enterprise is expected to realise and shows how they are deployed to organizations (prefix CV)
- **Operational Viewpoint:** Contains the views required to describe the Operational and high level functional aspects of the architecture (prefix OV)
- **Service Viewpoint:** Captures the views required to specify of the Services (i.e. interface, no implementation) required to support the Operational objectives of the architecture (prefix SvcV)
DoDAF 2.0 Viewpoints

- Systems Viewpoint: Captures the specification of the Systems that are required to be implemented or that already exist that help achieve the operational objectives (prefix SV)

- Project Viewpoint: Maps the enterprises to the projects and organisations that will realise the capabilities through the development of systems and services (prefix PV)
DoDAF 2.0 Viewpoints

- Standards Viewpoint: Contains all the information relating to the standards that constrain the other 3 viewpoints (prefix by StdV)
- All Viewpoint: Contains the summary information about the architecture being developed including the data dictionary (prefix by AV)
Model Element interaction Across Views

Separation of Elements and Views/Viewpoints

- Some elements seen in multiple views
- Some views ties the viewpoints together e.g. SV-5

Essential Views and model elements based upon Initial Guidelines for use, NAF 3 V1.0
View and Viewpoint interrelationships

- The Viewpoints are not independent but are heavily interrelated.
- Each face of Cube represents a viewpoint.
- Each window a separate view or product.
- Model Elements internal to cube used by multiple views.
- Views can act as:
 - Filters on the information in the architecture (OV-3, SV-5).
 - Diagrams allowing you to create the information that populates the architecture (SV-1, OV-2).
UPDM DoDAF is a set of traceability matrices

- Systems and Services support and implement Operational elements
- Services expose capabilities (service as an interface)
- Operational elements (activities) map to capabilities
- Capabilities are delivered by Projects
- Systems and Services are the realized by projects
- Everything constrained by standards

These relationships are captured in the various matrix views

All Viewpoint, encompasses summary information and all data definitions in the architecture

Data and Information Viewpoint, captures data models at different levels of abstraction
Enterprise View of UPDM DoDAF

Used by
- Planning
- JCIDS
- Operations
- Portfolio management

For
- Capability management
- Operations Planning
- Develop High level requirements for prime suppliers

Still need the
- All view,
- Standards view
- Parts of the Data and Information view

Still need the Data and Information Viewpoint, captures data models at different level of abstraction

All Viewpoint, encompasses summary information and all data definitions in the architecture
The Systems Engineering View of UPDM

DoDAF

Used by
- Portfolio management
- Operations planning
- Defense Acquisition System
- Systems Engineering teams
 - In forces
 - Primes/Tier ones
- Provides requirements to engineering teams

Still need the
- All view,
- Standards view
- Parts of the Data and Information Viewpoint, captures data models at different level of abstraction

All Viewpoint, encompasses summary information and all data definitions in the architecture

10 © Copyright IBM Corporation 2012
Key relationships for Systems Engineering

• Resources exchanged through information and data exchanges
 - Resource is almost anything in the architecture
Patterns in the Framework

<table>
<thead>
<tr>
<th>Capability</th>
<th>Operational</th>
<th>Systems</th>
<th>Services</th>
<th>Core Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>OV-2</td>
<td>SV-1/2</td>
<td>SvcV-1/2</td>
<td></td>
<td>Structure (IBDs)</td>
</tr>
<tr>
<td>OV-5</td>
<td>SV-4</td>
<td>SvcV-4</td>
<td></td>
<td>Behaviour (activity based)</td>
</tr>
<tr>
<td>OV-3</td>
<td>SV-3/6</td>
<td>SvcV-3/6</td>
<td></td>
<td>Data exchange Summarys (Table/Matrix views)</td>
</tr>
<tr>
<td>CV-6/7</td>
<td>SV-5a/b</td>
<td>SvcV-5a</td>
<td></td>
<td>Traceability matrices</td>
</tr>
</tbody>
</table>

Supporting Views

<table>
<thead>
<tr>
<th>Capability</th>
<th>Systems</th>
<th>Services</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OV-6b</td>
<td>SV-10b</td>
<td>SvcV-10b</td>
<td>Behaviour (statemachines)</td>
</tr>
<tr>
<td>OV-6c</td>
<td>SV-10c</td>
<td>SvcV-10c</td>
<td>Behaviour (sequence diagrams)</td>
</tr>
</tbody>
</table>
Key View dependencies for systems engineering

- Source where element is shown
- Target where the element is referenced from
- Dashed lines show trace references
- Traceability matrices CV-6, CV-7, SV-5a/b, SvcV 5
- Structure OV-2, SV-1, SVCV-1
- Behaviour OV-5, SV-4, ScvV-4
- Sequence Diagrams, OV6, SV-10c, SvcV-10c
- Info exchanges OV-3, SV-3/6, SvcV-3/6

© Copyright IBM Corporation 2012
High level workflow (core)

- **Develop capability views**
 - Enterprise visions
 - Capability hierarchy and dependencies

- **Develop Operational views**
 - Behavior, structure,
 - Derive data exchange matrices
 - Trace back to capabilities

- **Develop systems/service views**
 - Behavior, structure,
 - Derive data exchange matrices
 - Trace back
 - Systems to operations that they implement
 - Trace back Services to the
 - Operations they support
 - Capabilities they expose

Develop Capability views, CV-1, CV-2, CV-3

Develop Operational views, OV-2, OV-3, OV-4, OV-5

Trace back Activities (Operational) to Capabilities (CV-6)

Develop System View SV-1/2, SV-3, SV-4s, SV-6

Develop System View ScvV-1, ScvV-4s,

Trace back Systems and Activities(SystemFunctions) to Operational Views (SV-5a/b)

Trace back Activities(ServiceFunctions) to Operational Views (SvcV-5) and Capabilities (CV-7)

© Copyright IBM Corporation 2012
The generic workflow applied to the OVs

Step-1 BlackBox behavior

Step-3 Allocate behavior to structure (WhiteBox)

Step-2 Define Structure

OV-5

OV-3

OV-2/4

OV-6c

© Copyright IBM Corporation 2012
The generic workflow applied to the OVs

Step-3 Allocate behaviour to structure (WhiteBox)

Step-6 generate OV-3 Information exchange summary

Step-4 Define Scenarios Optional

Step-5 Define Information Exchanges

OV-2/4

OV-3

OV-5

OV-6c
Architecture and Implementation workflow

Specifier: DoD/ MOD/ Agencies/ Tier 1

PV/Acv Views

CV/StV Views

Operational Views

Expected Delivery Timescales

Actual Delivery Timescales

Implementers: Tier1/Tier2 Systems/ Software Engineering

Systems Engineering

System Architecture Baseline

Requirements Analysis

Test Scenarios

System Analysis & Design

Model/Requirements Repository

System Acceptance

(Sub-)System Integration & Test

Module Integration & Test

Software Engineering

SW Analysis & Design

SW Implementation & Unit Test
Relating UPDM and SysML models Discussion

- Handling requirements
 - In UPDM requirements driven from the level above
 - Non functional requirements captured as constraints
 - Also work with Parametric diagrams
 - It is possible to import requirements into UPDM models and tie them to Capabilities

- 3 main options
 - Keep SysML models as part of UPDM models
 - Import parts of UPDM models directly into a SysML model
 - Reference UPDM elements from SysML models

- Options as part of these are
 - Embed SysML elements directly in the UPDM elements
 - Ties the elements too closely into UPDM but I think there will be issues
 - Separate out SysML models and trace to UPDM elements
 - Keep to the patterns in UPDM re traceability to the upper levels

- 4th option
 - Separate UPDM and SysML models and trace through third party tool (i.e. DOORS)
Relating UPDM and SysML models Discussion

- Keep SysML models as part of UPDM models
 - Models become very large and monolithic
 - Hard to maintain and manage
Relating UPDM and SysML models Discussion

- Import parts of UPDM models directly into a SysML model
 - Evolve the model with SysML elements
- End up with separate models
- Disconnect between the high level specification of a System in the UPDM model and the SysML
- Issues with the need to maintain consistency between the views
- Issues with pushing more detail up into the UPDM views as there will then be inconsistency in the detail and you may lose relations/dependencies to the elements at the higher level
 - Interchange issue as you are replacing elements you may lose ownership of relationships (might be OK in the same tool, but XMI ?)
 - Need Diff-Merge capability for XMI ?
Relating UPDM and SysML models Discussion

- Reference UPDM elements from SysML models
 - Maintain the consistency of the UPDM model
 - Maintain the patterns of the UPDM structure in the SysML model
 - Trace between SysML and UPDM easily
 - End up with a number of Branch SysML models that reflect the lower level system structure
 - Cannot use the UPDM elements as they are read only (Advantage)

- Initial proposal
 - Combination of taking UPDM models by reference and importing the lower levels of the UPDM architecture and removing UPDM stereotypes
 - Change to SysML elements
 - Trace back to reference elements
 - Gives the possibility of reuse and also shows the reference to original elements
Summary

- Brief review of Viewpoints
- How elements are related across the viewpoints
- Identification of patterns in the view points
- Generic Workflow
- UPDM and SysML