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Abstract. This paper is concerned with a stochastic inverse methodology arising in
electromagnetic imaging. Nondestructive testing using guided microwaves covers a wide
range of industrial applications including early detection of anomalies in conducting ma-
terials. The focus of this paper is the identification of electromagnetic material parame-
ters and emphasis is on one dimensional scattering of a dielectric slab. The direct problem
can be solved numerically using the finite-difference time-domain method (FDTD). The
Markov Chain Monte Carlo method (MCMC) is applied to the inversion problem. Some
successful results of computational experiments are demonstrated in order to show the
feasibility and applicability of the proposed method.
Keywords: Microwave, Dielectric loss, Electrical cable, FDTD, Metropolis-Hasting al-
gorithm

1. Introduction. Recently, interest has been growing in structural health monitoring
(SHM) related to aging management of large scale systems, such as airplanes, bridges
and nuclear power plants. Various kinds of nondestructive testing (NDT) techniques such
as ultrasonic, eddy current, thermal are applied to the detection and the characteriza-
tion of material damage. Combining NDT with simulation is a key component of future
structural monitoring technologies. Mathematical descriptions of non-destructive test-
ing (NDT) can be formulated as either a forward or an inverse problem for the physical
domain of the inspection. A forward problem represents a real NDT system mathemat-
ically using the input and the output relationship with the appropriate admissible class
of material parameters, while an inverse problem involves the construction of a method
for recovering and/or visualizing material flaw information using the mathematical for-
mulation of the forward problem. Figure 1 demonstrates the overall configuration of the
proposed system. In this paper, a stochastic inverse methodology for NDT arising in
electromagnetic imaging is investigated. Nondestructive testing using guided microwaves
is used in a wide range of industrial applications including early detection of anomalies in
conducting materials, analysis of human muscle tissue, etc. The characterization of mate-
rial corrosion damage continues to be a very challenging problem. The problem is further
complicated by the dispersive nature of the insulation covering the corrosion. Estimating
the material properties in conventional measurements has been studied extensively [1].
For instance, L. F. Chen et al. have addressed the practical guidance on the development
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2340 F. KOJIMA AND J. S. KNOPP

Figure 1. Diagnosis system using forward and inverse analysis

of suitable measurement methodologies using micro guided wave for a variety of materi-
als in their book [1]. Our focus in this paper is in the identification of electromagnetic
material parameters and the emphasis is on one dimensional scattering of a dielectric
slab. Although prior work exists using nonlinear least square methods [2, 3, 4, 5, 6], it is
well known that the problem mentioned above has many solutions due to the fact that
it is ill-posed. Recently, interest has grown in stochastic inversion using Markov Chain
Monte Carlo (MCMC) methods [7, 8]. Although the book written by L. F. Chen [1] et
al. contains around thousands of references in a variety of applications, there is not any
literature using MCMC to characterize the material properties. The author first proposed
the parameter estimation method using the Gibbs sampling algorithm in [9]. The method
has great advantages for the more practical aspects of inversions such as setting initial
guesses and overcoming local minimums of the inverse solution. In this paper, a stochastic
inversion technique based on the Metropolis-Hasting algorithm is applied to our problem.

2. Formulation of the Inverse Problem. Let Dx(t, z), Hy(t, z) and Ex(t, z) be the
component of the electric flux density, and the magnetic and electric field at time t ∈ [0, T ]
and at location z ∈ [0, Z]. Using normalized electric flux densities and electric fields

D̃x =
1√
ε0μ0

Dx, Ẽx =

√
ε0
μ0

Ex, (1)

and from Maxwell equations, the electromagnetic propagation in z-direction is governed
by

∂D̃x(t, z)

∂t
= − 1

εr
√
ε0μ0

∂Hy(t, z)

∂z
+ Js(t, z) in [0, T ]× [0, Z] (2)

D̃x(ω, z) = ε∗r(ω)Ẽx(ω, z) (3)

∂Hy(t, z)

∂t
= − 1√

ε0μ0

∂Ẽx(t, z)

∂z
in [0, T ]× [0, Z] (4)
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Figure 2. Dielectric constant for a Debye medium over the frequency
range of 10 to 1000[MHz]

with zero initial states and absorbing boundary conditions. In system (2) and (4), ε0 and
μ0 denote the dielectric constant and magnetic permeability of vacuum, respectively.

The source current Js is the test signal in the inspection process and is given by

Js(t, z) = δ(z − zs)gs(t)I(0,ts)(t) (5)

where δ denote the Dirac distribution and zs ∈ [0, Z1) denotes the source point of test
signal. The test signal is truncated at a finite time ts by the indicator function I.

The spatial domain [0, Z] is decomposed into two separate regions. The region z ∈
[0, Z1) is air and is assumed to have zero electric polarization and zero conductivity.
Hence, in (3), it becomes

ε∗r = 1. (6)

A target material in z ∈ [Z1, Z] is assumed to be a chemical material such as a polymer
where the dielectric constant and the conductivity are dispersive. A material like this is
well approximated by the Debye law described by

ε∗(ω) = εr +
σ

jωε0
+

χ1

1 + jωτ
(7)

where εr, σ, χ1 and τ denote a dielectric constant, conductivity, and frequency-dependent
parameters [3]. As indicated in Equation (7), a target material includes a medium whose
dielectric constant and conductivity vary over the frequency range. Figures 2 and 3
show a relative dielectric constant and conductivity as functions of frequency for a Debye
medium (7) with properties (21). From (7), it follows that the dielectric constant for a
Debye medium can be represented as

εr +
χ1

1 + (τω)2

and the frequency dependent conductivity can be rewritten as

ωε0

{
σ

ε0ω
+

χ1ωτ

1 + (τω)2

}
,

respectively.
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Figure 3. Conductivity for a Debye medium over the frequency range of
10 to 1000[MHz]

There are many interesting applications for identifying frequency dependent parameters
in the Debye model (7). Thus our inverse problem is to identify dielectric parameters

q = {εr, σ, χ1, τ}
from observations near the frequency dependent medium:

Y (t;q) = Ex(t, 0; Js) (8)

where Ex(t, z) is the solution of (2)-(4).

3. Numerical Scheme of Direct Problem. The detection signal (8) corresponding
to (5) can be obtained by numerical simulation using the finite-difference time-domain
(FDTD) method [10]. FDTD uses central-difference approximations to the space and
time partial derivatives. The resulting finite-difference equations are solved in a so-called
“leapfrog manner”. More precisely, the electrical field components in a volume of space
are solved at a given instant in time. Then the magnetic filed components in the same
spatial volume are solved at the next instant in time.

Taking the central difference formula for both the temporal and spatial derivatives,
Equations (2) and (4) can be approximated by

D̃
n+1/2
x [k]− D̃

n−1/2
x [k]

Δt

= − 1

εr
√
ε0μ0

Hn
y [k + 1/2]−Hn

y [k − 1/2]

Δz
+ Jn

s [k] (9)

Hn+1
y [k + 1/2]−Hn

y [k + 1/2]

Δt

= − 1√
ε0μ0

Ẽ
n+1/2
x [k + 1]− Ẽ

n+1/2
x [k]

Δz
(10)

where n implies time division, i.e., t = Δt ·n and where the terms in parentheses represent
grid point in the spatial domain, i.e., z = Δz ·k, respectively. In a one dimensional spatial
domain, there exist two boundary points z = 0, Z. An absorption boundary condition
is necessary at both end points, z = 0, Z in order to keep the outgoing electrical and
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INVERSE PROBLEM FOR ELECTROMAGNETIC PROPAGATION 2343

magnetic fields E and H from being reflected back into the target domain. This can be
accomplished by setting

D̃n
x [0] = D̃n−1

x [1] (11)

Ẽn
x [0] = Ẽn−1

x [1] (12)

D̃n
x [K] = D̃n−1

x [K − 1] (13)

Ẽn
x [K] = Ẽn−1

x [K − 1] (14)

where Z = K ·Δz. To transform Equation (3) into a time domain difference equation for
implementation into FDTD, the frequency term should be replaced by the time domain
representation. Noting that 1/jω in the frequency domain is equivalent to integration in
the time domain, Equation (3) becomes

D̃x(t) = εrẼx(t) +
σ

ε0

∫ t

0

Ẽx

(
t
′
)
dt

′
+

χ1

τ

∫ t

0

exp

(
−t

′ − t

τ

)
Ẽx

(
t
′
)
dt

′
. (15)

By approximating Equation (15) as a summation in the sampled time domain, the nu-
merical scheme can be represented by

D̃n
x = εr · Ẽn + In + Sn (16)

where

In = In−1 +
σ ·Δt

ε0
· Ẽn

x (17)

Sn = exp

(
−Δt

τ

)
Sn−1 + χ1 · Δt

τ
· Ẽn

x (18)

starting with zero initial states with respect to both D̃0
x and Ẽ0

x. Consequently, the forward
problem can be implemented by the repeated scheme mentioned above:

Y n(q) =

√
μ0

ε0
Ẽn

x [0](Js). (19)

Figure 4 depicts a simulation result for a direct problem (19). A sinusoidal wave was
applied to the test signal at zs = 5 ·Δz in Equation (5):

gns = sin(2 · π · f ·Δt · n) (20)

where f determines the frequency of the test signal. In the experiment, a sinusoidal wave
of 700MHz is applied to a dielectric medium with parameters

εr = 2.0, σ = 0.01, χ1 = 2.0, τ = 0.001[μsec]. (21)

4. Stochastic Inverse Methodology. The output least square method is a conven-
tional inverse methodology which seeks the optimal solution of

J(q) = minq∈Q
K∑
i=1

∣∣Y (ti;q)− Y i
d

∣∣2 . (22)

However, it is well known that those experimental tests might not achieve good conver-
gence results because of the complicated dependence in the related direct problem (8). In
this paper, we propose a new stochastic inverse methodology for identifying those parame-
ters. Using a Bayesian formula, the full probability model is specified by the deterministic
Formula (8). The posteriori density function with respect to the set of unknown parameter
vector can be represented by

π(q|Yd) ∝ l(Yd|q)π(q). (23)

5 
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Figure 4. Simulation result

Suppose that measurements are made

Y i
d = Y (ti;q) + ηi, ηi ∼ N(0, ξ2), (i = 1, 2, . . . , K). (24)

Then the likelihood functional can be written by the following form:

l(Yd|q) ∝
K∏
i=1

1√
2ξ

exp

(
−|Y (ti;q)− Y i

d |2
2ξ2

)
. (25)

In our estimation algorithm, prior distributions for unknown parameters π(q) are specified
as

π(q) =
4∏

l=1

π(ql). (26)

Then we specify full conditional distributions for posteriori density function through the
likelihood functionals. The full conditional distribution π(ql |) (l = 1, 2, 3, 4) has the
representation

π(ql |q−l ,Yd) ∝ π(ql)
K∏
i=1

1√
2ξ

exp

(
−|Y (ti;q)− Y i

d |2
2ξ2

)
(27)

where q−l denotes the remaining component except ql .
Our estimation algorithm is based on sampling procedures from the posteriori distri-

bution from which a sample can be drawn via Markov chains. To this end, a transition
kernel p(q, φ) must be constructed in such a way that the posteriori function Equation
(23) is the equilibrium distribution of the chain. A simple way to implement this is to
consider the reversible chains where the kernel p satisfies

π(q)p(q, φ) = π(φ)p(φ, q). (28)

The feature of the Metropolis-Hasting algorithm is that this reversible kernel p is con-
structed by

p(q, A) =

∫
A

k(q, φ)α(q, φ)dφ+ I(q ∈ A)

{
1−

∫
k(q, φ)α(q, φ)

}
dφ (29)

6 
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Table 1. Estimation summary using MH algorithm

Quantities True Values Estimated Values
εr 2.00 1.99

log10 σ −2.00 −1.95
χ1 2.00 1.68

log10 τ −9.00 −9.05

for any subset A of the parameter space. In the above expression, the acceptance proba-
bility

α(q, φ) = min

{
1,

π(φ)k(φ, q)

π(q)k(q, φ)

}
(30)

plays an essential role in MH algorithms [8]. There exist varieties of the proposal kernel
functions k for practical implementations. Thus the process version of the MH algorithm
is given by the following steps:
Step 1: Initialize the iteration counter j = 1 and set the initial guess of the chain q0.
Step 2: Initialize the component i = 1.
Step 3: Move the ith component of the parameter vector of the chain to a new value φi

generated from the prescribed transition kernel ki

(
q
(j−1)
i , φi

)
.

Step 4: Calculate the acceptance probability of the move αi

(
q
(j−1)
i , φi

)
given by Equa-

tion (30). If the move is accepted, update the chain q
(j)
i = φi. If the move is rejected, set

q
(j)
i = q

(j−1)
i .

Step 5: Change the counter from i to i + 1 and return to Step 3 until the dimension of
parameter vector, i.e., dim(q) = 4.
Step 6: Change the counter from j to j + 1 and return to Step 2 until convergence is
reached.

5. Simulation Experiments. Throughout our numerical experiments, simulation data
are generated using the direct problem in Section 3. Taking into account that actual
measurement procedures can be well approximated by Equation (24), some random noise
is added to the simulation data to test our inverse methodology. The second variance term
in Equation (24) was provided using a conventional Gaussian random generator. The set
of true parameters in the experiments is selected by Equation (21). Table 1 shows the
estimated results in the experiments.

6. Conclusion. The inverse methodology arising in electromagnetic imaging was dis-
cussed within the Bayesian framework. We propose the statistical method for identifying
electromagnetic material parameters on a one dimensional scattering problem of a dielec-
tric slab. The direct problem was obtained by numerical simulation using FDTD method.
The stochastic inverse problem was solved via the Metropolis-Hasting algorithm.
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