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Abstract – Performance evaluation of simultaneous 
tracking and identification (STID) systems consists of 
measures of performance, measures of effectiveness, and 
measures of force effectiveness. To investigate the 
capability of STID, we extend track purity to a current 
assignment ratio. Track purity determines the correctly 
associated measurements for a given scan where as the 
Current Assignment Ratio (CAR) determines the correct 
measurements for a given track.  Using the CAR aids 
sensor management algorithms in determining which 
targets have robust features for target identification in 
clutter, such that the target can be tracked. The CAR 
enables effectiveness evaluation of STID systems for 
mission success.  In the paper, we review the fusion 
performance evaluation literature, outline STID metrics, 
and demonstrate the use of the CAR in a scenario.  

Keywords: Performance Evaluation, JBPDAF, Current 
Assignment Ratio, Track Purity, Tracking, Identification 

1 Introduction 
Seminal texts in data fusion [1], target tracking [2, 3], and 
information fusion [4, 5] have addressed performance 
evaluation (PE); yet the community as a whole has yet to 
adopt standards from which systems are uniformly 
evaluated.  For example, the PE of multitarget 
simultaneous tracking and identification (STID) methods 
pose challenges for situational awareness.[6]  STID is a 
subset of information fusion (IF), which includes filtering, 
estimation, and prediction of data as well as a derivative 
evaluation over the context of the operating conditions of 
the sensors, targets, and environments.   

Initial work on tracking PE was focused on optimal 
methods [7] which do not necessarily hold in a dynamic 
environment. Key developments and methods have been 
postulated and evaluated by X. Li and Y. Bar-Shalom [8], 
K. C. Chang [9], and C-Y. Chong and S. Mori [10]. Each 
of these approaches offers insight into the problem by 
clarifying useful measures of performance (MOPs) over 
tracking methods. We revisit the work of the above 
authors by looking at track purity [11, 12] and extending 
the method for the novel STID analysis by using the 
current assignment ratio (CAR) [13]. Even in the last 
year, prominent researchers are looking at track purity as a 
metric of interest [14], as opposed to track lifetime [15] to 
understand the capability of forming tracks from 
measurements in clutter. The contributions of this paper 

are: a literature research summary in tracking evaluation, 
the application of purity-based methods to STID 
scenarios, and a general extension of how purity-based 
methods support measures of effectiveness (MOEs).   

Use of features, attributes, and categorical 
representations of targets has become more prominent as 
users (or analysts) desire to not only know where the 
target is, but who it is, and even more practical, what is the 
target’s behavioral intention. Initial use of track and ID 
methods sought to recognize landmarks for navigation 
[16, 17] and distinguish targets from clutter [18, 19]. By 
simultaneously processing target identification (who) and 
target tracking (where) can have mutual benefits to both 
reasoning systems [20,21]. To illustrate how ID 
information may help in data association, Figure 1 
illustrates the process of how a target-ID can refine the 
positional measurement to select the validated 
measurement from the cluttered measurements. Numerous 
approaches in joint tracking and recognition (category), 
classification (type), and identification (fingerprint) have 
been applied using emerging techniques such as Joint-
Belief Probabilistic Data Association (JBPDA) algorithm 
[21, 22, 23], pose-aiding radar [24], DSmT [25], and 
particle filters [26]. Features (or set-based feature 
combinations) from radar [27, 28, 29], infrared [30], and 
hyperspectral [31], data have been assessed. Recently, 
Dezert combined the proportional conflict redistribution 
(PCR) method with an interactive multiple-model (IMM) 
[32]. A STID algorithm can improve track quality, 
mitigate clutter confusion, and enhance target ID. Inherent 
in the research is the capability to discern target type 
location from different vantage points as fused from 
distributed platforms using sensor management. [33]  

 

 
Figure 1. ID / Position Measurement Data Association. 
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Sensor management includes user placement and control 
of sensors, automated processing, and visualization of 
performance. [34] Information fusion systems must 
undergo rigorous tests before being operationally ready.  
Thus, routinely there are efforts to describe the objective 
and threshold metrics to guide testing of real-world 
systems. [35, 36, 37] To aid operational testing, numerous 
papers have tried to categorize the metrics of interest for 
not only the information fusion processing, but the system 
as a whole [38, 39, 40, 41, 42]. Various texts have 
provided MOEs in addition to the MOPs. [1, 4] 
 The tracking community has supplied numerous papers 
and methods in tracking metrics and performance 
evaluation (PE). Initial work includes performance 
analysis of trackers in clutter [43], dense targets [44], and 
the algorithms themselves [45, 46]. As the need for track 
evaluation increased there were papers that summarized 
metrics [47] and new instantiations of some of the metrics 
[48].  K. C. Chang, S. Mori, and C-Y. Chong [49, 50, 51], 
continued to mature the techniques as well as  X. R. Li 
and Z.-L. Zhao [52, 53, 54]. Numerous other examples 
exist of reporting results of research [55], tracking 
toolboxes [56], and most recently issues of computational 
costs and scalability [57]. As an example, W. D. Blair lists 
MOPs of accuracy, completeness, ambiguity, continuity, 
timeliness, and commonality [58]; which are similar to 
those proposed by Blasch of accuracy, timeliness, 
confidence, throughput, and cost [6]. 
 Performance evaluation of classification methods is 
quite mature in the literature due to the elements of pattern 
recognition, image processing, and the security 
surveillance industry. PE of classifiers typically includes 
receiver operator curves (ROCs) [59] that plot probability 
of detection versus probability of false alarms.  Advances 
from information fusion include: confusion matrix 
analysis [60, 61], applications of Bayesian [62] and 
Dempster-Shafer methods [63], and on-line tools [64]. 
 Similar to results from tracking and identification, there 
is a need for MOPs for situational awareness (SA). SA 
includes situational assessment and threat analysis with 
cues and inputs from users. Metrics and evaluation is not 
yet a well-established area of research, but can build from 
the developments of the tracking and classification 
communities. Examples include user involvement [65], 
situational awareness tools [66], and high-level MOEs 
[67]. Next we describe the measures of merit. 

1.1 Measures of Merit 

For complex Command and Control (C2) systems, the 
merit of the system can be established at various levels of 
observations.  The Military Operations Research Society 
(MORS) developed a hierarchy of MOMs [35] for 
Command, Control and Information Systems (C2IS) that 
can be summarized as follows: 

• Measures of Force Effectiveness (MOFEs): focus on how a 
force performs its mission or the degree to which it meets 
its objectives.  

• MOEs: focus on the impact of C2 systems within the 
operational context.  

• MOPs: focus on the internal system structure, 
characteristics and behaviour.  MOPs of a system may be 
reduced to measures based on time, accuracy, capacity or 
a combination that may be interdependent.  

• Dimensional Parameters: are the properties or 
characteristics inherent in the physical C2 systems.  

 
Since the boundaries between the different levels can be 
quite fuzzy, this hierarchy provides rough divisions of a 
continuum of scales of observations, and serves as a 
guideline for the evaluation process. Some authors [37] 
also suggest two other levels:  

• The measure of military utility, tries to remove some of the 
scenario dependency of the measures. 

• A measure of policy effectiveness, measures the worth of 
operations.  Sometimes a successful mission is not a 
guarantee of overall success, i.e., winning a battle does not 
necessarily mean that the war will be won.  

•  A measure of Command and Control effectiveness, which 
measures the decision support capabilities.  

 
Figure 2(a) shows the encircling relationship of the 

metrics and Figure 2(b) shows a balanced approach for 
metric analysis important to the user. 
 

 
Figure 2.  MOPs and MOEs relations. 

Figure 3 highlights the summary from the NATO Code of 
Best Practices for C2 Assessment [68] which highlights 
the importance of the metrics as well as the tradeoffs.  

 
Figure 3. MOM tradeoffs (from C. Wallshein [68]). 

 
Figure 4 develops the MOMs in relation to the C3I system 
as a whole. Effectiveness is based on function, structure, 
and capability. The NATO Code of Best Practices for C2 
Assessment also describes methods of evaluation through 
tests and scenarios of interest.  The MOEs afford speed of 
data analysis, efficiency in communication, and risk 
reduction (or safety) from threats.    
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Figure 4. MOEs for C3I testing (from S. H. Starr [68]). 

 
 We have summarized key developments in fusion 
performance evaluation over tracking, classification, and 
system level analysis. Research over the entire spectrum 
would be longer than a paper; so we highlight one aspect 
in the scope of the larger efforts. Here, we focus on 
extending the track purity MOP to afford MOE analysis 
for track and ID systems. Section 2 is a summary of 
performance evaluation with developments of track purity 
and the Current Assignment Ratio (CAR). Section 3 
briefly describes the belief track and ID method in a 
scenario to demonstrate the use of the CAR.  Section 4 
provides a conclusion and discussion.    

2 Performance Evaluation 
The recommended Measures of Performance (MOPs) 
quantify the following: 
• Information accuracy: evaluates the quality of the 

positional tracking of the ground truth platforms in 
terms of the positional accuracy, the track purity, and 
the correct assignment ratio. 

• Information consistency:  looks at the coherence in the 
information between a sensor’s database and the task 
coordinator database and the coherence between the 
organic and the non-organic system data. When a 
bad ID is associated to a track the inconsistency in 
the information can manifest itself as a track 
switching. Track switch inconsistency can be 
identified with track purity, correct assignment ratio, 
and track continuity.  

• Picture clarity:  addresses the expected enhancement in 
terms of object identification as well as the system 
robustness to problematic sensor information 
generating false, redundant, or spurious tracks. 

• Picture completeness:  evaluates how much of the real 
world the system knows. For the purpose of this 
analysis the real world is reduced to a specified 
region of space (the volume of interest, VOI) during 
a given time interval (the time interval of interest). 

• Track management statistics:  permit an evaluation of 
how well the system behaves in real time. The load 
on the computer is measured in terms of the number 
of tracks and objects it has to process and the time it 
takes to execute the different operations. Another 
question addressed by track management statistics is:  
how well handover of a track from a sensor to the 

other is performed in both systems.  This is done by 
comparing the time and modality (manual, 
automatic) of track deletion with track continuity.  

 
Some of these measures are performed on a single 

track (or ground truth platform) for an analysis of the 
information stability. Others are statistical measures based 
on many tracks/ground truth platforms and are used to 
establish an average system behaviour. A Measure of 
Force Effectiveness (MOFE), the model-based measure, is 
also proposed as an overall estimator of the system value.  
 A better understanding of the system performance 
will be gained if an effort is made to partition the different 
measures according to the type of tracks and region of 
interest (air, surface, underwater).   

2.1 Track Purity and CAR 
Track purity (TP), a concept coined by Mori et. al. [11], 
assesses the percent of correctly associated measurements 
in a given track, and so evaluates the association/tracking 
performance. The track purity MOP is not explicitly 
dependent on detection performance, but it is dependent 
on the setting of association gates (which depends on the 
probability of detection Pd) and the ground truth platform 
density.  Track purity measures the consistency with 
which a track is updated with measurements from a single 
ground truth platform or a set of ground truth platforms. 

Correctional local MOPs, such as track purity, measure 
how well the tracks in an IF system are being associated 
with measurements of ground truth platforms. The track 
purity MOP is based on the calculation of a confusion 
matrix C for which the elements Cji are constructed by 
counting reports.  Given the tracks t1 , ..., tb and a set of 
ground truth platforms g1 , ..., ga , C is: 
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Here, Cji is the number of reports originating from 

ground truth platforms gi which were assigned to track tj (i 
= 1, ..., a; j = 1, ..., b) by the IF algorithm.  Also, C0i  (the 
“ambiguity vector”) consists of the number of reports that 
could not be assigned to any ground truth platform (i = 1, 
..., a).  When Cji is large, a strong association between tj 
and gi is implied. 

Track purity is defined as the percentage of correctly 
associated measurements contained in a given track. The 

1578



purity of the track tj is defined as the normalised value of 
the largest element in the row defined by tj: 

 1

1

max jii a
j a

ji
i

C
TP t

C

≤ ≤

=

⎡ ⎤ =⎣ ⎦
∑

 (1) 

The TP measure can be estimated for each single track, 
but is more meaningful when statistics of the TP quantity 
are calculated. A recommended statistic is the Weighted 
Average of Track Purity (WATP) taken over all tracks and 
ground truth platforms. The WATP statistic should be 
calculated separately for each type of track for air, surface 
and underwater platforms. It has a particularly convenient 
form if the weight given to each track is the number of 
measurements for that track, and if the weight given to 
each ground truth platform is the number of measurements 
originating from that ground truth platform.  The resulting 
definition of the WATP is as follows: 
 

 1

1 1

max
b

i ji
j

b a

ji
j i

C
WATP

C

=

= =

=
∑

∑∑
 (2) 

The following elements are needed to compute Track 
Purity (TP) or WATP: 

a. The list of correct (CO) track numbers for which TP will 
be computed (provided by the operator), 

b. For each CO track pertaining to the selected CO track 
number, one needs the CO track number, the valid time 
and the ground truth platform number to which the CO 
track is attached, and 

c. For each ground truth element corresponding to any 
ground truth platform number present in the selected CO 
tracks, one needs the time stamp and the ground truth 
platform number. 

 
The confusion matrix is the starting point of many MOPs 
and its construction requires a lot a computation.  
Basically, we have to associate each CO Track report to a 
target in the ground truth.  The choice of association can 
be made by a function of association that we will name 
Associate.  This function will take as argument a track T at 
the time t, and the complete lists of tracks and ground 
truth’s targets. Associate can be driven by positional 
and/or ID data. The resulting confusion matrix depends on 
the function Associate and it can be useful to test the 
related MOPs with some variations of Associate. Here is a 
procedure to construct the confusion matrix that uses 
Associate:  

 
a. Collect data to have all CO track reports for each track and 

each history point of all targets in the ground truth, 
b. Initialize the confusion matrix by filling each entry with 

zeros,  
c. For each track, process all CO track reports by: 

1) Using the association function Associate, to find the 
corresponding target in the ground truth, and 

2) Adding 1 to the related entry of the confusion matrix. 
 
So the given algorithm can be automated if the 

association function is feasible. First, the function 
Associate needs all the data aligned in time with the given 
CO track report. This can take a lot of computing time 
since it is proportional to the number of tracks and targets.  
The first step can be computed automatically without 
difficulty. The second step is to determine and use an 
association criterion that will select a target from the list of 
all targets in the ground truth. The second step can also be 
automated since we can always select a target and, by 
hypothesis, the target list is not empty.  The criterion can 
be based on position, ID, or both.  Investigation has to be 
made to find the best criterion.  Here, we will give some 
examples of criteria. 

 
a. A rapid and easily implementable criterion is to choose the 

target that is the closest to the CO track.  It is fast since it 
only proportional to the number of targets.  However it can 
lead to erroneous results like associating all tracks with the 
same ground truth.   

b. A better criterion is to use a Nearest Neighbour or a JVC 
association algorithm which requires more computation 
since it is proportional to the number of tracks and the 
number of targets. Based on position and/or ID, an 
intermediate association matrix has to be created to find 
the right association.  Since each track belongs to a target 
in the ground truth, there is no problem when the number 
of tracks is lower or equal to the number of targets.  The 
problem occurs when the number of tracks is greater than 
the number of targets (this may happen when a lot of 
spurious tracks are present).  It would cause the algorithm 
to be unable to associate the CO track with a target.   

 
The Current Assignment Ratio (CAR) [13] measures the 
performance for a ground truth platform instead of 
measuring the performance for a track.  The CAR MOP 
for ground truth platform gi is defined as the normalized 
value of the largest element in the column defined by gi 
(i.e., by an analogous equation to TP, but maximising and 
summing over columns rather than rows).  It assesses the 
percentage of contacts from a ground truth platform 
associated with the correct track.  

 1

1

max
( )

jij b
i b

ji
j

C
CAR g

C

≤ ≤

=

=

∑
 (3) 

The higher the value of TP and CAR, the better the 
association performance is. Both measures are important 
and both should be measured, since the matrix Cji has no 
special symmetry. Since the requirements to obtain this 
measure are the same as for TP, the difficulty and 
relevance to the present study are the same.  
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The CAR could be measured for a single ground truth 
platform, but a statistical quantity for many ground truth 
platforms is more significant. A useful statistic is the 
weighted average of CAR taken over all ground truth 
platforms (WACAR). It has a particularly convenient form 
if the weight given to each track is the number of 
measurements for that track, and if the weight given to 
each ground truth platform is the number of measurements 
originating from that ground truth platform.  The resulting 
definition of the WACAR is as follows: 

 1

1 1

max
a

j ji
i

a b

ji
i j

C
WACAR

C

=

= =

=
∑

∑∑
 (4) 

An example is presented in Figure 4: 

 
Figure 5. Example of object-to-track Association 

 
In this case the confusion matrix is: 

 Platform 1 Platform 2 
Track A 7 1 
Track B 2 6 

From this matrix the track purity is calculated as TP(A) = 
7/8 = 87.5% and TP(B) = 6/8 = 75% and WATP = 
(7+6)/(7+1+2+6) = 13/16 = 81.3%. Similarly the correct 
assignment ratio is CAR(1) = 7/9 = 77.8% and CAR(2) = 
6/7 = 85.7% WACAR = (7+6)/(7+2+1+6) =13/16=81.3%. 

2.2 Summary of Measures 

The problem of track level and ID-level fusion has 
characteristic tradeoffs about which the sensor 
management system must arbitrate over a given scenario. 
Here we list some of the salient metrics. 
 
Measures of Performance 
1. Information Accuracy 

Positional Accuracy 
Track Purity 
Correct Assignment Ratio 
Accuracy of the filter covariance 

2. Information Consistency 
Proportion of target groups recognized  
Proportion of recognized SA ROI in organic SA 

3. Information Currency 
Time in VOI Prior to Detection 
Time from Detection to Confirmation 
Data throughput 

4. Situational Clarity 

Time of Positive Classification / Positive Identification 
Probability of detection and False Alarm Rate (FAR) 
Target Confidence  
Accuracy of Bayesian Percent Attribute Miss (BPAM) 
Spurious Track Mean Ratio 
Target Track Exchange Rate 

5. Situational Completeness 
 Completeness History 
 Value – area coverage 
6. Track Management Statistics 

Time of track initiation / deletion 
Track Continuity / Track Lifetime 
Track swaps, broken tracks 
Real-Time system Parameters 

 
Measures of Effectiveness 
1. Scenario Measures 
 Timeliness of information  

Survivability as a function of detected targets 
2. Threat evaluation 

Percentage of Targets Correctly Assessed 
Target Nomination Rate 
Degree of Exactness in the Threat List Ranking 
Information Gain 
Protection (Protection = 1 – Threat Level) 

2. Decision Support 
Usability  
Surveillance picture 

 Safety over all target position/IDs/intents (Safety = 1 – risk) 
 
Measures of Force Effectiveness 
1. Resource Management 

Response Time over network communications 
Time between target confirmation and weapon release 
Cost of Battle over resources and people  

2. Command-Level Support 
  Mission Analysis 
 Interoperability to send and receive contextual data 
 
(see also the summary from Llinas, [4]) 

3 Track and ID Scenario 

3.1 Problem Formulation 

Consider an environment in which a tracker is monitoring 
multiple moving targets with stationary clutter. By 
assumption, the tracking sensor is able to detect target 
signatures. Assume that the 2-D region is composed of T 
targets with f features. Dynamic target measurements z are 
taken at time steps k, which include target kinematic and 
identification features z(k) = [x t(k), f 1,… f n]. A final 
decision from the STID algorithm is rendered as to which 
[x, y] measurement is associated with the target-type.  
 The multisensor-multitarget tracking and 
identification problem is to determine which measured 
kinematic features should be associated with which ID 
features in order to optimize the probability that targets are 
tracked and identified correctly after z measurements. The 
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multilevel feature fusion problem is formulated and solved 
by using concepts developed using the belief filter [21]. In 
the belief filter, the "association rule" uses the 
measurement with the highest target probability in a joint-
belief probability data association (JBPDAF). The ID 
information is a result of the fused classification results 
where the aggregated classification is over 20 degree 
window pose measurements for the various targets. 

3.2 Scenario and Track and ID Results 

As detailed in the Figure 6 below, by the true trajectory; 
the targets 1) start with position and velocity, 2) pass by 
each other at a close distance, and 3) finish with a 
specified direction. There was added noise to the true 
target position and clutter comprised of 5 spurious 
measurements around a target.  While we could use ID-
derived results from our previous work in radar [21], 
EO/IR [30], or HSI [31]; we chose the results reported in 
[30] for the derivation of the true ID and clutter as a 
function of pose. Likewise the JBDAF [21, 30] determines 
the belief in the target type amongst clutter.   

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01
x 104 Measurements (with clutter)

X

Y

 

 
Target 1
Target 2
Target 3

 
Figure 6. Track Scenario with Clutter Measurements. 

 
Figure 7 shows the track-only effectiveness when 

targets do not have ID information. The separation allows 
for the determination of a validation gate size that 
associates the correct measurements to tracks. However, 
as targets are close, the tracker has track switches as 
measurements from one track and assigned to a different 
track. Confusion Matrix, TP, and CAR for the entire run: 

 

C  =  
⎣
⎢
⎡

⎦
⎥
⎤197  3  0

 5  193  2
 5  21  174

 

 
 Track 1 Track 2 Track 3 
Track Purity 0.985 0.965 0.870 
CAR 0.952 0.889 0.989 

 
Note that WATP = 0.940.  From these results we see 

that Track 2 has a high purity but lower CAR. Track 3 
exhibits the opposite analysis with a low purity and high 
CAR.  Track 1 moves in linear fashion, while Track 2 and 
3 are maneuvering. Track 2 has a short overlap with Track 

1 in the beginning, while Track 3 has a large overlap 
period from which there is confusion with Track 2.  The 
key here is that TP shows the incorrect assignment of 
measurements (Track confusion) while CAR demonstrates 
the how the target can be confused with the other targets 
(ID confusion). Since a MOE includes situational 
awareness, both track and ID information is required. 
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Figure 7. Tracking without ID information. 

Figure 8 shows that TP, CAR, WATP, and WACAR are 
improved with a STID system. 
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Figure 8. Tracking with ID results. 

 Track 1 Track 2 Track 3 
Track Purity 0.975 0.995 0.975 
CAR 0.980 0.996 1.000 

3.3 Measures of Performance 

In an effort to do an analysis for MOEs, we plot a spider 
chart of the other metrics (normalized to 1 over the results 
for each metric), as shown in Figure 9. Space limits a 
detailed analysis; however (1) accuracy is high because 
the tracks are known, (2) confidence is from the ID 
information, (3) timeliness is from the measurement 
reporting, (4) throughput is from the usefulness of the data 
(good measurements), and (5) value is related to the 
opportunity cost. Given the area of coverage, the value of 
the situational analysis requires analyzing the entire space.  
Here it is lower due to the scenario in which the analysis 
of the closely spaced targets requires a focused attention 
of the sensors while giving up entire area coverage.  
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Figure 9. Measures of Performance. 

MOEs are also important as related to the preference of 
the user to have a surveillance picture of the region of 
coverage, as shown in Figure 10. 1 
 

 
Figure 10. Measures of Effectiveness. 

Timeliness is similar to the MOP, yet this is for the MOE 
information.  Survivability is related to the detection of the 
targets, and safety (Safety = 1 – Risk) is related to 
knowing all the target types and identities. Likewise, 
protection (Protection = 1 - Threat) is related to the area of 
coverage. Interoperable is related to the communication 
and delivery of the correct target/track information. Note 
that with a limited simulation, the normalized metrics 
highlight any discrepancies. For instance, over 200 
position measurements there are numerous instances for 
timeliness and survivable updates. However, safety, 
protection, and interoperable are simulated as related to 
the track (versus each measurement). We will explore 
these metrics in future papers but they are presented for 
discussion.   

4 Discussion & Conclusions 
Performance evaluation of classification results and target 
tracking techniques has posed difficulty in 
standardization. We presented numerous efforts to 
develop metrics and tools for evaluation. To further 
extend knowledge in the area, we looked at the TP metric 
and determined that it could be used for higher-level 
                                                           
1 Note that these are notional MOEs; however, since many MOEs are left 
undefined, there is no standard for consistency for commercial or public 
development to ensure the safety of targeted information.  

fusion analysis as supporting MOEs. We examined the 
STID scenario using the belief filter to highlight the 
usefulness of a Current Assignment Ratio in addition to a 
Track Purity metric.   

The research aim is for system-level information fusion 
evaluation over the sensor, target, and environmental 
operating conditions and variations. We initiated a 
discussion on the presentation of all MOPs and MOEs in a 
spider plot for a user to grasp the complete performance of 
the STID system. Future work will explore the sensitivity 
of the results, the presentation of the MOE metrics, and 
use of operational data to validate the approach.  For 
example, we seek to explore sensor management, image 
fusion, and terrain updates [69] as impacting the MOEs. 
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