ANALYSIS OF NON-TACTICAL VEHICLE UTILIZATION
AT FORT CARSON COLORADO

Thomas A. Smart
Automotive Insight
Birmingham, MI

Steven T. Eick
TARDEC
Warren, MI

ABSTRACT
The Department of Defense (DOD) is considering integration of electric vehicles into its non-tactical vehicle (NTV) fleet to support efficiency goals and sustainable power initiatives. In order to identify the best vehicles for electrification, DOD needs to understand the duty cycles and daily operating patterns of NTVs on bases. A six-month data acquisition study was conducted on 24 NTVs at Fort Carson, CO using GPS data loggers to monitor a variety of vehicle types and uses. Information was extracted on usage time, distance, vehicle speed and geographic location in order to compare vehicle driving profiles. The regenerative energy recovery potential for specific duty cycles was also quantified through a cumulative assessment of the number and severity of deceleration events. Of the duty cycles analyzed, the work trucks at Fort Carson were judged to be the best electric vehicle candidates.

Disclaimer: Reference herein to any specific commercial company, product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The Opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or DoA, and shall not be used for advertising or product endorsement purposes.

INTRODUCTION
The DOD owns/operates nearly 200,000 non-tactical vehicles (NTVs) worldwide. DOD is actively replacing NTVs with more efficient models, alternative fuel vehicles, and hybrid-electric vehicles to decrease petroleum demand. DOD is also considering the merits of a large-scale integration of plug-in electric vehicles (PEVs) into its NTV fleet on a number of military installations in the Continental United States (CONUS). This will support efficiency improvement goals as well as DOD sustainable power initiatives involving microgrids and vehicles capable of two-way power flow to the grid.

In order to identify the best vehicle candidates for electrification, DOD needs to understand the duty cycles and daily operating patterns of NTVs on CONUS bases. Vehicle mileage logs exist for the NTV fleet, allowing assessment of periodic usage. However, it is recognized that total mileage accumulated over finite periods of time is not a useful parameter by itself for identifying electrification candidates because it may derive from a mix of very long and very short trips that can make recharging problematic. If a vehicle travels distances during a day that exceed what a battery charge might support, it is useful to ascertain whether there are long stopover periods at a location where recharging could be feasible. Therefore, granular information on vehicle location vs. time and driving profile is desirable to support electrification plans. The key aspect when compiling such information is the ability to extract trends from this granular information for comparing driving profile characteristics of different vehicles in a quantitative way.

DUTY CYCLE DEVELOPMENT
The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) funded a six-month data acquisition study that was conducted in 2011-12 at Fort Carson, CO. A total of 24 vehicles representing a variety of NTV types and uses were monitored for approximately two weeks each using low-cost, non-intrusive Global Positioning System (GPS) data loggers to acquire vehicle location data as a function of time. OBD-II port data loggers were used on some of the vehicles to obtain additional information regarding engine idle time and fuel efficiency. From the data acquired, information was extracted on vehicle utilization including usage days, time, distance, speed and geographic location in terms of quantitative parameters in order to compare vehicle driving profiles.
1. REPORT DATE
21 AUG 2012

2. REPORT TYPE
Journal Article

3. DATES COVERED
21-08-2012 to 21-08-2012

4. TITLE AND SUBTITLE
Analysis of Non-Tactical Vehicle Utilization at Fort Carson Colorado

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Steven Eick; Thomas Smart

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Automotive Insight, 555 S. Old Woodward Ave, Ste 1001, Birmingham, MI, 48009

8. PERFORMING ORGANIZATION REPORT NUMBER
; #23067

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
#23067

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Submitted to 2012 NDIA Ground Vehicle Systems Engineering and Technology Symposium August 14-16 Troy, Michigan

14. ABSTRACT
The Department of Defense (DOD) is considering integration of electric vehicles into its non-tactical vehicle (NTV) fleet to support efficiency goals and sustainable power initiatives. In order to identify the best vehicles for electrification, DOD needs to understand the duty cycles and daily operating patterns of NTVs on bases. A six-month data acquisition study was conducted on 24 NTVs at Fort Carson, CO using GPS data loggers to monitor a variety of vehicle types and uses. Information was extracted on usage time, distance, vehicle speed and geographic location in order to compare vehicle driving profiles. The regenerative energy recovery potential for specific duty cycles was also quantified through a cumulative assessment of the number and severity of deceleration events. Of the duty cycles analyzed, the work trucks at Fort Carson were judged to be the best electric vehicle candidates.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
5

19. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
A standardized Summary Report was developed that illustrates key utilization profile metrics for each vehicle monitored. Daily usage statistics for mileage, time, number of trips and speed profile are presented in graphical form to provide a method of assessing trends and conditions to identify vehicle electrification candidates. Geo-plots were also developed using mapping software to show a vehicle’s daily track on either map or satellite photo backgrounds.

This provides an understanding of distance traveled away from potential recharging points. An example of one of these summary reports is shown below in Figure 1 for one of the work trucks at Fort Carson. This truck is judged a good candidate for electrification – the daily usage is predictable with an average of 29 mi/day and a high of 51.3 mi, speed distribution is low with an average of 21.8 mph and 95% of speeds below 40 mph, and the vehicle stays on or near the base and returns to the same parking location each night.

![Figure 1: Vehicle Utilization Summary Report – Work Truck](image-url)
TRIP STATISTICS

The Geo Map plot provided in the Summary Report for each vehicle shows whether it operated only within the base or also outside the base. For on-base driving, the Vehicle Speed distribution typically shows an appreciable drop in the percentage of Speed values greater than 35 mph, which reflects the speed limit on the base. When the vehicle speed reflects approximately equal times spent within and outside the base, the speed distribution tends to develop a bimodal appearance. Separating vehicle speed values by location, it is possible to show that all vehicles monitored have the same qualitative speed patterns regarding the speed bin at which the cumulative sum crosses the 50% and the 75% mark. More precisely, the quartile values can be calculated.

While the Trip table indicating the Trip distance, length and maximum speed for each trip is too granular to perceive trends between vehicles, the mean and the median of the Trip distance and Trip Duration (Usage Time) can be valuable metrics for comparing driving profile characteristics. For example, the driving profile for one of the work trucks monitored can be summarized at the trip level by the statistical parameters shown in Table 1 below.

<table>
<thead>
<tr>
<th>Param</th>
<th>Time (sec)</th>
<th>Distance (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>430.4</td>
<td>1.7</td>
</tr>
<tr>
<td>median</td>
<td>386</td>
<td>1.6</td>
</tr>
<tr>
<td>1st Quartile</td>
<td>229</td>
<td>0.3</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>662</td>
<td>2.4</td>
</tr>
<tr>
<td>Max</td>
<td>1734</td>
<td>6.9</td>
</tr>
<tr>
<td>Min</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The statistical analysis for this vehicle indicates that the distance travelled in 25% of the Trips is less than or equal to 0.3 miles with an average trip time of just under 4 minutes, while the distance traveled during 50% of the Trips (median value) is equal to or less than 1.5 miles with an average trip time of approximately 6.5 minutes. The average values of Time and Distance are larger than the median values which points to the existence of some longer Trips. However, the maximum Trip distance is still relatively short at only 6.9 miles. Thus, this vehicle could be a likely candidate for electrification.

The statistical results in Table 1 correlate with the daily values of the Summary Report which show that the daily distance during a number of the days observed is approximately 30 miles, and is made up of short trips since the number of trips ranges between 10 and 15. The two ways of summarizing duty cycle profiles are equivalent tools for understanding usage characteristics consistent with electrification benefit. In case the daily distance values are higher than the range for an electric vehicle, the quartile analysis may provide more insight on evaluating potential recharging issues.

ENERGY RECOVERY POTENTIAL ANALYSIS

Energy recovery is also an important aspect for vehicle electrification. It is recognized that not all kinetic energy is recoverable as electric power into the storage medium during deceleration because of maximum current limitations at the high end and efficiency loss at the low end. However, if vehicles like the work trucks ranging from 4,000 to 6,000 lbs curb weight were to be electrified with a 50 kW power pack, they could derive substantial benefit from regenerative braking energy recovery.

The mass of the vehicles monitored in this study was not known. However, some useful information may be calculated by looking at the change per unit time of a parameter, the vehicle velocity square (or \(VSS^2 \)), which is proportional to kinetic energy loss (power) once the appropriate constant for the mass is factored in. If two vehicles can be assumed to have similar mass and loading with both driven on level ground, this parameter can be used as a comparison tool.

The upper left chart in Figure 2 below shows the distribution of \(VSS^2 \) changes per second for a work truck that operated primarily on the base. The distribution is skewed to low values indicating braking events from low speed as suggested by the vehicle speed distribution shown to the right. The \(VSS^2 \) distribution for a work truck that was also used on the highway and at higher speeds is shown in the lower left portion of Figure 2. This vehicle has a broader and more centered \(VSS^2 \) distribution.
CONCLUSIONS

Selected Fort Carson non-tactical vehicles were monitored for two-week periods utilizing either GPS data loggers or OBD-II data loggers with GPS capabilities to extract duty cycle information. Data was acquired in the form of data series which enabled statistical analysis of the driving profile described by means of Global Parameters plus evaluation of driving characteristics with a finer scale on a daily basis. This is important for assessing recharging issues if these vehicles were to be electrified.

The types of vehicles monitored can be grouped into those that operate mainly within the base and its immediate proximity (work trucks, maintenance and delivery vehicles) and the ones that may make long trips away from the base, sometimes with overnight rest (pool vehicles, ambulances and shuttle vans).

Summary Trends by Vehicle Functional Type

- **Support Vehicles: Engineering, Maintenance & Supply, DPW Fleet Mgr.** – Utilized nearly every work day on the base or in the adjacent city area but rarely on weekends or for longer trips. Average daily mileage was 16 – 27 mi for four of the vehicles with an average speed below 30 mph, so this group appears to contain good candidates for electrification.

- **Pool Vehicles** – Usage varied considerably with short-distance, low-speed trips on some days and long-distance, high-speed trips on others. This suggests there is an opportunity to have some pure EVs as pool vehicles for local trips plus a mix of PHEVs or charge-sustaining HEVs for longer trips.

- **Work Trucks** – These box trucks on a light or heavy-duty pickup chassis are used to transport an operator and tools to on-base locations for maintenance and repair. They make frequent short trips with low total daily mileage and normally return to their primary storage location, making these the best candidates for electrification of the vehicle types examined.

- **Ambulances** – Tend to be used seven days per week but daily trip count and mileage vary significantly and include some high-speed, long-distance trips. Idle time can also be high due to the need to power on-board equipment during a deployment. As a result, electrification potential is low.

Figure 2: Distribution of changes in vehicle velocity per second squared referenced to vehicle speed distribution
Transport and Shuttle Buses – A Bluebird transport bus used on or around the base averaged 12 trips per day with low total mileage, making it a good electrification candidate. The shuttle buses monitored were used for much longer trips, including overnight and at high speeds, meaning they would be more difficult to electrify.

Table 2 below shows key metrics summarizing vehicle usage for each of the vehicles monitored in this study, grouped in functional categories. The operational location for each vehicle is also shown.

<table>
<thead>
<tr>
<th>Function</th>
<th>No. Util.</th>
<th>No. Days</th>
<th>Time at Speed (hh:mm)</th>
<th>Total Mileage (mi)</th>
<th>Highest Daily Mileage (mi)</th>
<th>Percent Idle Time (%)</th>
<th>No. trips</th>
<th>Avg Spd (mph)</th>
<th>Operational Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>12</td>
<td>13:17</td>
<td>226</td>
<td>36</td>
<td>23</td>
<td>94</td>
<td>22.5</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Maint/Supply Activ</td>
<td>9</td>
<td>8:40</td>
<td>244</td>
<td>67</td>
<td>15</td>
<td>65</td>
<td>28.5</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Maint/Supply Activ</td>
<td>10</td>
<td>9:06</td>
<td>193</td>
<td>37</td>
<td>14</td>
<td>97</td>
<td>21.0</td>
<td>Base/Ctr</td>
<td></td>
</tr>
<tr>
<td>DPW Fleet Mgr</td>
<td>11</td>
<td>8:34</td>
<td>171</td>
<td>38</td>
<td>26</td>
<td>93</td>
<td>19.9</td>
<td>BaseS/City</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>11</td>
<td>18:54</td>
<td>694</td>
<td>111</td>
<td>30</td>
<td>74</td>
<td>37.6</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Pool</td>
<td>11</td>
<td>27:24</td>
<td>1491</td>
<td>314</td>
<td>11</td>
<td>147</td>
<td>54.5</td>
<td>Base/South</td>
<td></td>
</tr>
<tr>
<td>Pool (Exec. Van)</td>
<td>7</td>
<td>15:41</td>
<td>958</td>
<td>332</td>
<td>6</td>
<td>42</td>
<td>61.3</td>
<td>Base/NM</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>15</td>
<td>21:28</td>
<td>494</td>
<td>54</td>
<td>12</td>
<td>165</td>
<td>23.2</td>
<td>Base/South</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>7</td>
<td>6:06</td>
<td>184</td>
<td>73</td>
<td>20</td>
<td>78</td>
<td>30.0</td>
<td>Base/South</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>13</td>
<td>12:16</td>
<td>253</td>
<td>30</td>
<td>33</td>
<td>153</td>
<td>20.6</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>11</td>
<td>9:25</td>
<td>199</td>
<td>66</td>
<td>11</td>
<td>113</td>
<td>21.4</td>
<td>Base/BaseSo</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>11</td>
<td>14:37</td>
<td>319</td>
<td>51</td>
<td>22</td>
<td>157</td>
<td>21.8</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>11</td>
<td>8:36</td>
<td>215</td>
<td>66</td>
<td>17</td>
<td>79</td>
<td>25.0</td>
<td>Base/BaseSo</td>
<td></td>
</tr>
<tr>
<td>Delivery Flat Bed</td>
<td>8</td>
<td>3:18</td>
<td>58</td>
<td>16</td>
<td>19</td>
<td>52</td>
<td>17.8</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>Work Truck</td>
<td>9</td>
<td>6:28</td>
<td>116</td>
<td>42</td>
<td>18</td>
<td>70</td>
<td>18.1</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Ambulance</td>
<td>17</td>
<td>15:15</td>
<td>372</td>
<td>52</td>
<td>10</td>
<td>116</td>
<td>30.5</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Ambulance</td>
<td>8</td>
<td>12:36</td>
<td>394</td>
<td>102</td>
<td>23</td>
<td>142</td>
<td>30.6</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>Ambulance</td>
<td>14</td>
<td>22:08</td>
<td>789</td>
<td>217</td>
<td>42</td>
<td>85</td>
<td>35.6</td>
<td>Base/Pueblo/Denver</td>
<td></td>
</tr>
<tr>
<td>Ambulance</td>
<td>15</td>
<td>23:01</td>
<td>669</td>
<td>88</td>
<td>48</td>
<td>102</td>
<td>29.0</td>
<td>Base/BeaverCr./City</td>
<td></td>
</tr>
<tr>
<td>Ambulance</td>
<td>15</td>
<td>23:12</td>
<td>778</td>
<td>145</td>
<td>14</td>
<td>166</td>
<td>33.6</td>
<td>City/Pueblo</td>
<td></td>
</tr>
<tr>
<td>25-Psgr Bus</td>
<td>1</td>
<td>5:56</td>
<td>273</td>
<td>273</td>
<td>2</td>
<td>7</td>
<td>47.3</td>
<td>WestRange</td>
<td></td>
</tr>
<tr>
<td>25-Psgr Bus</td>
<td>3</td>
<td>12:10</td>
<td>546</td>
<td>286</td>
<td>38</td>
<td>10</td>
<td>44.8</td>
<td>Mountains</td>
<td></td>
</tr>
<tr>
<td>Transport Bus</td>
<td>5</td>
<td>4:29</td>
<td>90</td>
<td>34</td>
<td>16</td>
<td>60</td>
<td>20.2</td>
<td>Base/City</td>
<td></td>
</tr>
<tr>
<td>25-Psgr Bus</td>
<td>9</td>
<td>38:40</td>
<td>1761</td>
<td>290</td>
<td>53</td>
<td>34</td>
<td>45.5</td>
<td>Mountains</td>
<td></td>
</tr>
</tbody>
</table>