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Final Report

This report summarizes activities under Air Force Office cikgtific Research (AFOSR) Grant No. FA9550-
09-1-0260 entitled “Nonlinear Dynamics and Quantum Transim Small Systems.” The Pl is Ying-Cheng Lai
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1 Objectives

e Nonlinear dynamics and chaos in microelectromechanic&iNlyland nanoelectromechanical (NEM) sys-
tems;

e Electronic transport in graphene systems.

2 Accomplishments and New Findings

2.1 Nonlinear dynamics and chaos in microelectromechani¢t@MEM) systems

MEMS/NEMS are characterized by their small size, low powmrsumption, and ultra fast speed. Recent years
have witnessed a growing interest in the fundamental dycsuwi MEMS/NEMS and their potential applica-
tions. It is conceivable that future military systems maptatn MEMS/NEMS components. To understand and
generate various nonlinear dynamical phenomena incluchiags in MEMS/NEMS can thus be of great interest
from the standpoint of defense.

During the project period, we first focused on understantiegdynamical mechanism of intrinsic localized
modes (ILMs) in MEMS oscillator arrays, a phenomenon thdttheen observed in a number of experiments. We
found that spatiotemporal chaos is ubiquitous and it pesvia natural platform for actual realization of various
ILMs through frequency control. In particular, unstableipéic orbits associated with ILMs are pivotal for
chaos to arise and these orbits are key to stabilizing ILMmfspatiotemporal chaos by frequency modulation.
We then articulated a global control scheme to induce isitritocalized modes at an arbitrary site in MEM
cantilever arrays. The idea is to locate the particularilesetr beam in the array that one wishes to drive to
an oscillating state with significantly higher amplitudenhthe average, and then apply small adjustments to
the electrical signal that drives the whole array system. déleeloped detailed theoretical and computational
analyses to validate the method. The control scheme maydjal iiis applications where the goal is to defeat
certain MEM based electronic devices. Finally, we turned attention to NEMS and carried out a detailed
bifurcation analysis for a common class of electrostdijicdtiven nanowires using a multi-physics model. We
found that the nano-scale system can exhibit distinct ehatstes: chaos with symmetry-breaking and extensive
chaos possessing the full symmetry of the system. We fuek@ored potential applications of extensive chaos
in nanowire systems: ultra-fast random number generatdithese were collaborative works with Dr. David
Dietz from AFRL at Kirtland AFB.

2.2 Electronic transport in graphene systems

There is tremendous interest in graphene recently duepoftigtial applications in nano-scale electronic devices
and circuits. It is possible that future military systemsyrgantain some graphene components. To understand
various fundamental aspects of quantum transport dynamkey to developing graphene-based devices.

2.2.1 Relativistic quantum scars

A remarkable phenomenon in quantum systems whose dynamibte iclassical limit are chaotic is scarring.
In particular, in the semiclassical regime a wavefunctian be regarded locally as a superposition of many
plane waves. Due to classical chaos, the directions of weeplvaves are uniformly distributed. Intuitively,
one may expect the wave functions to have uniform concémtran the position space. Signatures of non-
uniform distribution of the wave function were, howevesaivered by McDonald and Kaufman in 1979. Heller
discovered in 1984 the striking “scarring” phenomenon thatwavefunctions often tend to concentrate on paths
corresponding to unstable periodic orbits in the clasdigat, and the eigenfunctions associated with different



eigenvalues can focus on different periodic orbits. Indsetate electronic devices the quantum scarring states,
also referred to as quantum “pointer states,” can have #isimt effect on electronic transport and conductance.

Most existing works on scarring were concerned exclusivati non-relativistic quantum mechanical sys-
tems described by the Schrodinger equation, where thendepee of the particle energy on momentum is
guadratic. A question is whether scarring can occur in ikésic quantum systems described by the massless
Dirac equation, where the energy-momentum relation isalinélhis question, besides being fundamental to
physics, is also important for device applications. Inipatar, graphene, a single, one-atom-thick sheet of car-
bon atoms arranged in a honeycomb lattice, was realizedpeargrents in 2004. Due to its peculiar hexagonal
lattice structure, the band structure exhibits a lineaeddpnce of the energy on the wave vector about the Dirac
points, signifying relativistic motion. Devices made oaghene are potentially capable of operating at much
higher speed than those based on conventional silicorretecs.

The ASU work reported the first evidence of relativistic guam scars in closed graphene confinements
exhibiting chaos in the classical limit. Signatures of sacars were also found in open graphene quantum dots.
This result is expected to be fundamental to relativistiarqum solid-state electronics, a new field in applied
physics and engineering.

2.2.2 Energy-level statistics in graphene systems

We then addressed one of the outstanding problems in quattaos: energy-level statistics in relativistic quan-
tum systems. We demonstrated, using chaotic graphene eordimts where electronic motions are governed
by the Dirac equation in the low-energy regime, that the lfepacing statistics are those given by Gaussian
orthogonal ensemble (GOE) random matrices. Weak magnetit dan change the level-spacing statistics to
those of Gaussian unitary ensemble (GUE) for electronsaptggne. For sufficiently strong magnetic field, the
GOE statistics are restored due to the appearance of Laadels.| Our results indicate that graphene systems
can have properties not shared by either non-relativistamtum or purely relativistic quantum systems, and the
distribution of energy levels may have implications to drape-based devices that use quantum dots, a kind of
"open” billiard structure.

2.2.3 Electronic transport in graphene nanojunctions and ®chastic resonance

We also investigated electronic transport in graphenejoantions and found that the transmission (or the con-
ductance) can exhibit a non-monotonic behavior with resfeeariation in the disorder strength, mimicking a
stochastic resonance. The general setting for this rerblrl@enomenon is where the graphene device pos-
sesses localized states in the absence of disorder, calizied edge states specific to graphene. A small amount
of disorder can then break the localization and lead to aamsdgment in the transmission. For strong disorder,
Anderson localization sets in, causing the transmissiotletvease. The phenomenon is robust and can occur
with or without magnetic field.

2.2.4 Geometry-dependent conductance fluctuations in grdggne quantum dots

Quantum point contacts (QPCs) are common in the metal-grapinterface for various device applications.
Utilizing graphene quantum dots with zigzag horizontalraries as a paradigm, we found that the conductance
of the dots can exhibit significant oscillations with theitioas of the QPCs. The oscillation patterns are a result
of quantum interference determined by the band structutkeofinderlying graphene nanoribbon. In particular,
the power spectrum of the conductance variation scars dectise set of bands of the ribbon. The computational
results were substantiated by a heuristic theory that desvselection rules for quantum scarring.



2.2.5 Quantum chaotic scattering in graphene systems

We investigated transport fluctuations in both non-reistity quantum dots and graphene quantum dots with both
hyperbolic and nonhyperbolic chaotic scattering dynarmdhe classical limit. We found that nonhyperbolic
dots generate sharper resonances than those in the hypexdse. Strikingly, for the graphene dots, the reso-
nances tend to be much sharper. This means that transmasiemductance fluctuations are characteristically
greatly enhanced in relativistic as compared to non-xélit quantum systems.

2.2.6 Klein tunneling and fractal-like conductance fluctudions in graphene quantum point contacts

The ASU work addressed the quantum transport problem in@rgegraphene system subject to external poten-
tial, a situation that can be expected in all kinds of futurgppene based electronic devices with quantum dots
and quantum point contacts. The main finding was that elestoften tend to take on propagating paths that
have absolutely no counterpart in non-relativistic quamgystems. Strikingly, such uniquely relativistic quan-
tum paths can lead to an extreme form of conductance fluohgthot seen previously in any quantum transport
systems. This phenomenon has profound implications todtieldpment of graphene based devices that require
stable electronic properties.

From a general viewpoint, the answer to the question, “Whieeeaparticle enters a region where there is an
external potential, which paths will the particle followi&' perhaps trivial, because conventional wisdom holds
that the particle will travel through regions where the ptisd energy is smaller than the particle energy. Indeed
this answer is correct in classical physics and even in etativistic guantum mechanics. What was uncovered is
that, for graphene systems, the favorable paths for parteh actually be in regions where the potential energy
is much larger than the particle energy. This can be undmstmly by relativistic quantum mechanics. The
most significant manifestation of this phenomenon is thagtiantum transport properties can depend extremely
sensitively on the external potential, posing an obstdrdéemust be overcome if graphene is to be used in future
electronic devices.

2.2.7 Modulating quantum transport by transient chaos

We proposed a scheme to modulate quantum transport in macioses based on classical chaos. By apply-
ing external gate voltage to generate a classically fodmdaegion, transient chaos can be generated and the
escape rate associated with the underlying non-attractiagtic set can be varied continuously by adjusting the
gate voltage. We demonstrated that this can effectivelyutadel the quantum conductance-fluctuation patterns.
A theory based on self-energies and the spectrum of the gleazeet non-Hermitian Hamiltonian of the open
guantum system was developed to understand the modulagohanism.

2.3 Nonlinear wave and chaos in optical metamaterials
2.3.1 Transient chaos in optical metamaterials

We investigated the dynamics of light rays in two classeptital metamaterial systems: (1) time-dependent sys-
tem with a volcano-shaped, inhomogeneous and isotropiaatdfe-index distribution, subject to external elec-
tromagnetic perturbations, and (2) time-independentesystonsisting of three overlapping or non-overlapping
refractive-index distributions. Utilizing a mechaniagitical analogy and coordinate transformation, the wave-
propagation problem governed by the Maxwell's equations lwa modeled by a set of ordinary differential
equations for light rays. We found that transient chaoticahgics, hyperbolic or nonhyperbolic, are common in
optical metamaterial systems. Due to the analogy betwegétriay dynamics in metamaterials and the motion
of light and matter as described by general relativity, @suits reinforce the idea that chaos in gravitational
systems can be observed and studied in laboratory expdemen



2.3.2 Branched wave structure and scaling in random opticamedium

Experiments had revealed that branched, fractal-like vpatterns can arise in a variety of physical situations
ranging from microwave and optical systems to solid-statéads, and that the wave-intensity statistics are non-
Gaussian and typically exhibit a long-tail distributionhélorigin of branched wave patterns has been an issue
of active debate. We proposed and investigated a “minimaltieh of optical wave propagation and scattering
with two generic ingredients: (1) a finite-size medium farelar wave propagation and (2) random scatterers
characterized by a continuous refractive-index profile. fédend that branched waves can emerge as a general
phenomenon in a wide parameter regime in between the wesdtessng limit and Anderson localization, and the
distribution of high intensities follows an algebraic segllaw. The minimal model can provide insights into the
physical origin of branched waves in other physical systaswell.

2.4 General research on nonlinear dynamics, chaos, and cohep systems

In addition, we investigated a number of basic issues inineal dynamics, such as synchronization in chaotic
systems and the effect of noise, robust chaos and expesinaaestigation in electronic circuits, nonlinear-
dynamics based characterization of two-phase flows, ang@ssive-sensing based prediction of catastrophe.
Particularly worth mentioning is the last problem, where dexeloped a general approach to predicting catas-
trophes in nonlinear dynamical systems under the assumibiai the system equations are completely unknown
and only time series reflecting the evolution of the dynaimieaiables of the system are available. Our idea
was to expand the vector field or map of the underlying systemad suitable function series and then to use the
compressive-sensing technique to accurately estimate the various terms in tharesion. This work was a result
of collaboration with Dr. Vassilios Kovanis in the Sensorisdbtorate at Wright Patterson AFB.
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