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Multiscale Modeling of Stiffness, Friction and Adhesion in Mechanical Contacts 

FA9550-0910232, Mark O. Robbins, Johns Hopkins University 
 

The mechanical behavior of contacts plays a critical role in the function of devices from 
aircraft engines to microelectromechanical systems (MEMS). As the demands for performance 
from these devices increase or their size shrinks, traditional continuum models of contact 
behavior become inadequate. Overcoming these limitations will require improved understanding 
of interconnected processes on a wide range of scales from atomic interactions at interfaces to 
surface roughness on nanometer to micrometer scales and to deformation and loading at 
macroscopic scales. 

One objective of the proposed research was to develop and extend multiscale modeling 
methods that are capable of bridging between atomistic and continuum models. The first part of 
this report describes a Green’s function method that allowed us to extend the scale of simulations 
from ~100nm to ~3m. 

The second objective was to use these multiscale methods to improve understanding of 
aspects of contact mechanics that are important to Air Force applications. For example, the 
mechanical behavior of complex assemblies such as gas turbines is strongly influenced by the 
stiffness of mechanical joints and the dissipation associated with partial slip in these joints. At 
the other extreme of length scales, MEMS devices often fail due to undesired adhesion that is 
affected by surface roughness and interfacial forces. Energy loss due to friction forces is 
important to devices at all scales. 

The second section of the report describes studies of single asperity contacts that test the 
applicability and limits of commonly used continuum descriptions. One study showed that 
adsorbed monolayers present on most surfaces have a profound impact on contact properties. A 
second showed that thermal fluctuations lead to normal pressures that are comparable to the ideal 
yield stress. This makes it difficult to extend continuum definitions of contact to atomic scales. 
The third study looked for partial slip in contacts with tips up to 2m in radius. The partial slip 
predicted by continuum models for these scales was not seen. However a simple scaling law was 
discovered for an unexpectedly strong size dependence in the coefficient of friction. 

The third section of the report describes studies of multi-asperity contacts. The contact 
correlation function for the commonly used bearing area model was obtained and shown to 
disagree with numerical calculations. Extensive calculations of the stiffness of multiasperity 
contacts were used to test a simple scaling relation that depends on a few experimental 
parameters. Finally, a new theory of adhesive contact between rough surfaces was developed that 
can capture the changes in contact area with load, adhesion strength and other parameters. 

The report concludes with a list of papers published and in preparation, and a list of talks on 
funded research. 

. 
1.  ALGORITHMIC DEVELOPMENT 

A great challenge to tribological studies is that the response is determined by physics on a 
wide range of length scales. Friction and adhesion forces result from interactions between atoms 
on opposing surfaces. An accurate model must include the explicit geometry of these atoms. On 
the other hand, the separation between atoms is controlled by the elasto-plastic response below 
the surface. To correctly capture subsurface effects, one must include the response to depths D 



that are comparable to the lateral extent along the surface L. Meeting both these criteria in a 
single calculation presents great computational challenges. 

Our current fully atomistic simulations of contact are limited to linear dimensions less than 
100nm. The corresponding number of atoms is up to 50 million, and calculations take days on a 
hundred processor cores. Part of the proposal was to search for algorithms that allowed much 
larger systems to be studied. The key idea is that subsurface deformations vary slowly and may 
be modeled with more efficient coarse-grained methods. 

The method that we found most effective was a generalization of the Green’s function 
approach of Campana and Muser (2006) that was implemented into the molecular dynamics code 
LAMMPS by Kong et al. (2009). Atoms above some plane are treated fully atomistically. The 
linear elastic response of atoms below this plane is fully captured using a lattice Green’s 
function. The method is fast because the Green’s function is sparse in reciprocal space. A 2D fast 
Fourier transform (FFT) of atomic displacements in the plane is performed. Forces can then be 
calculated by multiplying by a precalculated Greens function for each wave vector q and 
performing an FFT back to real space. The Greens function at each q is a matrix of dimension 3n 
where n is the number of layers that interact with the atomistic region (typically 1-3). The total 
time scales as L2lnL instead of L3.  

Our implementation of the method differs in several important ways. One corrects an error 
that we discovered in the algorithm. When interactions extend beyond the nearest layer of atoms, 
previous implementations did not correctly treat the change in interactions due to the change in 
layer spacing. This can be a significant effect in certain cases. We also developed an analytic 
method for calculating the Greens function at low temperatures. The previous implementation 
used separate simulations to find G. The final improvement was to implement the algorithm on 
graphics processor units (GPUs). This allowed us to treat L as large as 8192 atoms or total 
volumes of 550 trillion atoms on a single GPU. The comprehensive studies described below 
would not have been possible without this speedup. 

A paper describing the modifications in the algorithm is currently in preparation (Pastewka 
and Robbins 2012a) and an excerpt is included in Appendix I. We will make the implementation 
available as an open source add-on to LAMMPS. The group maintaining the files developed by 
Kong et al. (2009) has agreed to update the files to include our improvements and we are also 
talking to the developers of LAMMPS (lammps.sandia.gov) about incorporating it in future 
releases. 

 
2. MOLECULAR DYNAMICS SIMULATIONS OF SINGLE ASPERITY CONTACT 

One thrust has been molecular dynamics (MD) studies of contacts between a single spherical 
asperity and a substrate, or between two flat surfaces. In addition to providing understanding of 
the nature of these contacts at the atomic scale, these simulations provide tests of continuum 
models of contact that can be used to study multi-asperity contacts on larger length scales. 

Three specific studies are described below. The first examines the profound affect that a 
single layer of adsorbed atoms can have on contact and friction. The second shows that thermal 
fluctuations lead to large pressures that suppress the number of contacting atoms by orders of 
magnitude. Finally the effect of contact and tip size on the friction coefficient is evaluated. 
  



Adsorbed Monolayers 
One study (Cheng et al. 2010) examined the effect of adsorbed monolayers on a spherical tip 
with a radius R that is typical of atomic force microscope (AFM) experiments. Previous studies 
of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip 
constructed from discrete atoms lead to significant deviations from continuum theory and 
dramatic variability in friction forces (Luan and Robbins 2005, 2006). However surfaces are 
rarely bare. Most are coated by a monolayer of water, hydrocarbon or other adsorbed material 
after any exposure to air. 

We found that introducing an adsorbed monolayer leads to larger deviations from continuum 
theory, but decreases the variations between tips with different atomic structure. Although the 
film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except 
for certain tips at high loads. Some specific findings that are detailed in the paper are: 

1) The contact area increases dramatically with a single molecular layer (Fig. 1). The area at 
the lowest load studied was higher than the highest area predicted by continuum theory.  

2) The contact stiffness is reduced by an order of magnitude for small displacements, but 
approaches the continuum result at large displacements. The extra compliance comes 
from compression of the monolayer but is equivalent to continuum results for a thicker 
layer that is much softer than the solid. 

3) Monolayers naturally lead to a friction that scales linearly with load, much as was seen 
for flat surfaces (He et al. 1999, Muser et al. 2001). In contrast, bare surfaces exhibit very 
different scaling with load and friction forces that vary by two orders of magnitude (Luan 
and Robbins 2005, 2006). 
 

          
  

 
Figure 1. Squares show contacting atoms 
(a) with an adsorbed monolayer and (b) 
without a monolayer. The load and all 
other parameters are the same and 
~0.3nm is an atomic diameter. 

 

 
Figure 2. Displacement  of tip (closed symbols) and 
substrate (open symbols) for different tip geometries and 
continuum prediction (solid line). The much larger tip 
displacement indicates a low stiffness from compression of 
the adsorbed layer. R is the tip radius, N the load and E* the 
effective contact modulus. 



Effect of Thermal Fluctuations on Contact 
Thermal fluctuations are generally ignored in continuum treatments of contact mechanics 

and in many simulations that attempt to test continuum theories at atomic scales. A detailed 
study (Cheng and Robbins 2010b) of the effect of thermal fluctuations on contact was completed 
for the simplest possible geometry – two atomically flat surfaces. The results show that it is very 
difficult to extend the continuum definition of contact area to atomic scales. The results were 
then shown to describe single asperity contact of a sphere on a plane. 

The flat surfaces were (001) surfaces of fcc crystals with the same (commensurate) or 
different (incommensurate) lattice constants. An amorphous surface obtained by removing all 
atoms above a reference plane was also considered. From a continuum perspective the true area 
of contact between such atomically-flat, nonadhesive, surfaces should be equal to the apparent 
area at any positive load. However, simulations show that the fraction of atoms experiencing a 
contact force at any instant in time is orders of magnitude smaller than unity and rises roughly 
linearly with load over several decades in load. 

Fig. 3 illustrates results for the three types of surfaces. The x-axis corresponds to the 
compressive strain perpendicular to the surface and extends up through the range associated with 
the hardness of typical materials. Yield usually occurs at strains of 10-4 to 10-2 and the fraction of 
area in contact rises linearly from about 0.3% to 30% over this range. Even the fraction of atoms 
that contact at any instant of the entire simulation (triangles) remains well below unity except in 
the very special case of two identical flat crystals (Fig. 3a). 

These counterintuitive results are quantitatively explained by a very simple model for 
thermal vibrations (solid lines in Fig. 3 and 4). Each atom feels a potential well from its surface 
that can be approximated by a single spring keff. From dimensional analysis, this must be 
keff=cAaE

*/ where  is the molecular diameter, Aa the surface area per atom, E* the contact 
modulus and c a constant of order unity. The simulations showed c=0.92 for Lennard-Jones 
interactions. The thermal pressure associated with the rms thermal fluctuation xrms about the 
lattice site is: 

    pT=keff xrms/Aa = cE* (xrms/). 
From the Lindemann criterion, xrms/ is 10% at the melting temperature Tm, and rises as T0.5. 
Thus pT/E* ≈ 0.1 (T/Tm)0.5 and the fraction of area required to support a normal load L is 
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This simple argument is in reasonable agreement with Fig. 3 where T/Tm ≈ 1/4. 
The analytic argument produces two other predictions that are confirmed by the simulations. 

One is that the distribution of local forces at any instant has a simple exponential form. The 
second is that the time averaged force on an atom fc is directly related to the fraction of time pc 
that it is in contact. As illustrated in Fig. 4, this relation is independent of whether the atom is on 
a commensurate, incommensurate or amorphous surface and whether the surface is flat or 
spherical. Note that the force must be close to the ideal yield stress before atoms spend more than 
half their time in contact and the actual yield stress is typically orders of magnitude smaller. 



 
 
Scale Dependence of Friction 
Traditional continuum theories of single asperity contact have no intrinsic microscopic length 
scale. All results depend only on ratios of macroscopic lengths such as the radius of curvature R 
and contact radius a (Johnson 1985). Hurtado and Kim (1999a,1999b) suggested that friction 
should be scale dependent in certain limits. They argued that contacts could advance through 
propagation of dislocations across the interface rather than uniform sliding. The Burgers vector 
of the dislocation (~) and core size of the dislocation introduce microscopic length scales. Just 
as dislocations reduce the yield stress in bulk crystals, dislocations led to a reduced, scale 
dependent friction. 

In addition to lowering friction, Hurtado and Kim’s model provided a scale dependent 
mechanism for partial slip, where sliding occurs within the outer ring of a contact and gradually 
spreads inwards. The previous Cattaneo-Mindlin theory for partial slip does not have a 
microscopic length scale (Johnson 1985). Improved understanding of partial slip was a 
motivation of the proposed research, because it is a major source of damping in mechanical 
joints, including mounts for aircraft engines (Segalman 2006). 

Testing the scale dependence proposed by Hurtado and Kim poses significant challenges. 
They predicted that the friction would drop roughly as (a/)-1/2 over scales from a/ ~102 to 104. 
Since R must be bigger than 10a to be in the linear elastic limit, this means linear dimensions of 
103 to 105  are required. Gao (2010) extended Hurtado and Kim’s work and found transitions at 
length scales about an order of magnitude smaller, but still taxing for standard atomistic 
simulations. 

 
Figure 3. Fraction of area in contact Ac/A0 vs. 
mean normal strain L/A0E* for (a) commensurate, 
(b) incommensurate and (c) amorphous surfaces. 
Circles indicate instantaneous contact, triangles 
show contact after long times and lines are a 
simple analytic theory. L is the load and E* the 
contact modulus 

 
Figure 4. Relation between time averaged force fc and 
fraction of time in contact pc for flat commensurate (+), 
flat incommensurate (x), flat amorphous (), spherical 
commensurate (∆), spherical incommensurate (�) and 
amorphous spherical (o) surfaces. Here T/Tm~1/4. The 
solid line is from the analytic theory developed in Cheng 
and Robbins (2010b).The inset shows a linear plot for high 
pc. The ideal yield stress corresponds to ~5 , where  
and  are the binding energy and atomic diameter. 



Using the Green’s function method described above, Ligneres and Robbins (2012) examined 
the friction between spherical tips of radius R/ between 50 and 6000 (~2m). The results are 
very different than envisioned by any of the previous continuum theories and are currently being 
prepared for publication. The main findings are: 

1) The mechanism of sliding is never dislocation or partial slip as envisioned by the 
Cattaneo-Mindlin, Hurtado-Kim and Gao models. The Peierls barrier for advance of the 
dislocation is too small to pin dislocations that are formed in response to shear stress. 

2) The area and load dependence of friction forces depends on the precise geometry of the 
tips. 

3) For incommensurate tip/substrate pairs (different lattice constants), the friction is small, 
nonuniversal and rises less than linearly with area and load. 

4) The commensurate case of equal lattice constants is the only one that allows for the 
surface dislocations in Hurtado and Kim’s treatment. Once the static friction is exceeded 
the entire tip advances by a distance of order  because dislocations cannot be pinned. 

5) The friction coefficient is not only a function of a/, as in the results of Hurtado and Kim 
and of Gao. There is an explicit dependence on R that is completely absent in their 
models. 

6) Fig. 5 shows that the static friction coefficients for commensurate systems of all sizes 
collapse onto a universal curve as a function of a/(R)1/2. Detailed analysis shows that the 
local slope of the surface (a/R) plays a role in the force at which the tip can advance. 

 

 
  

               
 
Figure 5. Friction coefficient  as a function of (a2/R)1/2 for tips with radius R/ equal to 300 (), 600 (■), 1200 
(▲), 2400 (x) and 4800 (*). The coefficient of friction is just less than 0.7 for flat surfaces with the same spacing 
and interactions. 



MULTIASPERITY CONTACT 
Macroscopic surfaces are typically rough on a wide range of scales, often from less than a 
micrometer to more than a millimeter. The presence of roughness on a wide range of length 
scales has profound effects on contact and friction between experimental surfaces. Under a broad 
range of conditions, the area of intimate contact between nonadhesive rough surfaces Ac is orders 
of magnitude smaller than the apparent surface area A0 and rises linearly with applied load L. 
This proportionality between area and load, and an assumption of a constant yield stress in 
contacts, provides the most common explanation (Johnson, 1985) for Amontons' laws that 
friction is proportional to load and independent of A0. Because Ac is small, the interfacial region 
is very compliant. In applications from jet engine mounts to micro-electromechanical systems 
(MEMS), the interfacial compliance can significantly reduce the stiffness of joints formed by 
pressing two components together (Segalman et al. 2006). Electrical and thermal conductances 
are also strongly affected. 

Dimensional analysis implies that the linear relation between area and load has the form: 
   Ac = L /E* h’rms       (2) 

where  is a constant of order unity, the contact modulus E* characterizes the elastic response of 
the substrate, and the rms surface slope h’rms is a dimensionless quantity characterizing 
roughness. Numerical tests show  has a constant value of about 2 for most surfaces (Hyun et al. 
2004). One of the goals of the grant was to develop equations like Eq. (2) that describe the 
stiffness of contacts and test them with numerical calculations. A second was to include the 
effect of adhesion on contact area. 

The following sections describe the three major studies undertaken during the grant. The 
first calculated the spatial correlations between contacting regions in order to test analytic 
theories of contact area. The results show that conventional models give qualitatively wrong 
correlations because they neglect asperity interactions. The second develops and tests a very 
simple model that describes the stiffness of mechanical contacts between rough, nonadhesive 
surfaces. The final study has resulted in a very simple and robust picture for the contact area 
between rough, adhesive surfaces. The model explains why adhesion between most macroscopic 
surfaces is so weak, and provides a simple dimensionless number that predicts when adhesion 
will be strong. 

 
Statistics of Asperity Heights 
A wide variety of natural and man-made surfaces exhibit self-affine fractal roughness. Examples 
include common machined surfaces, fracture surfaces and surfaces formed by deposition or 
erosion (Mandelbrot 1982, Greenwood 1984, Meakin 1998). The hallmark of self-affine surfaces 
is that the change in height h over a lateral length l scales as a power law: h  lH, where H is 
called the Hurst exponent. For typical experimental surfaces, H ranges from 0.5 to 0.8. A random 
walk gives H=0.5. 

Calculations for the contact geometry have traditionally been based on the bearing area 
model (Johnson 1985). The problem of contact between two rough surfaces can be mapped to 
contact between a rough and flat surface (Johnson 1985). At a given separation h0 between 
surfaces, contact is assumed to occur wherever the rough surface would interpenetrate the flat 
surface. This corresponds to the set of points above h0 on the rough surface. The widely used 
Greenwood-Williamson (1966) model and generalizations, calculate the load required to bring 
this region into contact without including the affects of elastic interactions between asperity 
peaks. 



Persson (2001,2007) has recently developed a scaling theory for contact that includes 
asperity interactions in an approximate manner. These interactions can be important because the 
deformation produced by a force on an asperity decays only as the inverse separation. This 
means that nearby areas are unlikely to make the next contact. 

Despite the large difference between the Greenwood-Williamson and Persson models they 
give similar results for the total contact area. The respective values of  are about 2.5 and 1.6 
compared to the numerical result of 2 (Hyun et al. 2004). This similarity in total area makes it 
interesting to compare the spatial correlations in the contacting regions in order to distinguish 
between the two models. 

In recent papers (Hyun and Robbins 2007, Campana et al. 2008) we studied the square of 
the Fourier transform of the contacting region, which gives the Fourier transform of the contact-
contact correlation function S(q). Results from elastic calculations that include asperity 
interactions yield S(q)  q-(1+H) for a wide range of H. Persson later showed that his calculation 
gave the same scaling exponent (Persson 2008). 

During the grant we calculated the correlation function S(q) for the bearing area model using 
numerical results and an analytic theory (Ramisetti et al. 2011). Both gave S(q)  q-(2+H) rather 
than the correct result for interacting asperities S(q)  q-(1+H) . This failure of the bearing area 
model has important physical consequences. For example, almost all area in the bearing area 
model is in the largest connected regions, while most area is in the smallest connected regions of 
the full elastic calculation. This leads to very different results for measurable quantities such as 
contact conductance of heat and electricity, as well as very different predictions for adhesion. 
 
Mechanical Stiffness of Multiasperity Contacts 

The component of the stiffness coming from the interface between rough solids was 
calculated for surfaces with a wide range of Hurst exponents using fully atomistic calculations 
and the Green’s function method. A simple relation like Eq. (2) described all the results quite 
accurately (Akarapu et al. 2011) and can be used to predict the response of experimental 
surfaces. 

The interfacial stiffness k is found to scale linearly with the applied load L. Since k is the 
opposite of the derivative of load with separation u, one must have a relation like: 

   k = –dL/du =L/hrms       (3) 
where  is a constant of order unity and the rms height hrms is a natural length scale 
characterizing the surface. This type of relation had been suggested by Berthoud and 
Baumberger (1997) and Persson (2007). Our simulations provide the first detailed numerical test 
of Eq. (3). As shown in Fig. 6 this relation is quite general, with  near 0.5. Several other aspects 
of the results are more surprising: 

1) The simulations included both perfectly elastic systems treated with Green’s functions 
and atomistic systems that deformed plastically, yet the two cases gave similar values of 
 and . A detailed analysis indicates that plasticity is confined to regions near the 
surface. It is important in eliminating extremely large local pressures but does not affect 
the long-range scaling (Sharp et al. 2012). 

2) Atomic steps affect plasticity but have much less influence on the total area than in two 
dimensional studies (Luan 2009). 

3) The lateral stiffness kT associated with elastic deformation of the contacts can be larger 
than the normal stiffness kN. Continuum theory predicts the opposite, but does not 
include lattice anisotropy. 



4) The stiffness only depends on the lateral position of contacting regions and not on the 
height variations or other factors. This was used to derive a linear relation between area 
and a normalized stiffness k* (Fig. 7). 

5) There is an additional compliance associated with relative motion of contacting atoms at 
the interface. This atomistic compliance has almost no affect on the normal stiffness (Fig. 
7a), but can reduce the lateral stiffness and friction by orders of magnitude (Fig. 7b). The 
results are analogous to single asperity results of Luan and Robbins (2005,2006). A 
scaling study indicates that atomistic effects can be an important factor in macroscopic 
samples (Akarapu et al. 2011). 

 

 
 
Adhesive Contact Between Rough Surfaces 
Adhesive van der Waals interactions are present between almost all surfaces. The forces required 
to break these interactions are in the MPa range, and enable Geckos to climb walls (Autumn 
2006) and tape or putty to stick to surfaces. Similar forces are present between nearly all surfaces 
around us, and yet we rarely observe adhesive forces when we lift objects off of tables. Fuller 
and Tabor resolved this adhesion paradox by showing that surface roughness prevents adhesion 
by limiting the area that can come into contact (Fuller and Tabor 1975). However a detailed 
theory for this suppression and a criterion for the presence of adhesion for soft materials has 
remained lacking. 

We have used the Green’s function technique described above to explore a full range of 
parameter space with different rms roughness h0, rms slope h’0, Hurst exponent H, adhesion 
energy , adhesion range c and system size. The results guided the development of a simple 

 
 
Figure 7. The scaled (a) normal stiffness and (b) 
transverse stiffness as a function of Ac/A0. Results are 
for H=0.5 (open symbols) and H=0.8 (filled symbols) in 
systems with linear dimension of 189.2 (), 94.6 (�), 
or 47.3  (∆). Pluses show Green’s function results. The 
total tranverse stiffness, multiplied by 20 to make it 
visible, is shown for 189.2 systems with H=0.5 (x) or 
0.8 (hexagons) and a triangular lattice with H=0.8 (*). 
Dashed lines have slope 0.87. 

 
Figure 6. The scaled (a) normal stiffness and (b) 
transverse stiffness as a function of scaled load. Results 
are for H=0.5 (open symbols) and H=0.8 (filled symbols) 
in systems with linear dimension of 189.2 (), 94.6 (�), 
or 47.3  (∆). Dashed lines have slope 1/ with =0.48. 



scaling theory that captures all our simulations and provides a simple prediction for when 
adhesion will occur and how the contact area scales with load. The work is being prepared for 
publication (Pastewka and Robbins, 2012b) and a draft is provided in Appendix II. 

One important finding is that the portion of the surface that experiences repulsive forces, 
Arep, is always fractal and has a characteristic width w that is comparable to the smallest scale of 
surface roughness. As a result, the perimeter of the repulsive region P=Arep/w, where  is about 
2.8 for all surfaces studied. We also find that the ratio of the Arep to the repulsive load on the 
same region is given by the same  as for nonadhesive surfaces. 

Given the repulsive area, continuum theory for nonadhesive surfaces (Johnson 1985) can be 
used to estimate the range R away from the perimeter where attractive forces will be felt. The 
ratio of repulsive to attractive area Aatt=PR should then be given by: 
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Figure 8 shows that results for all surfaces fall very close to this prediction with =2.8. 
The total attractive contribution to the load is Natt=Aatt /c, since c is the average 

adhesive force over the range of interaction. One can define a renormalized ’ that relates the 
repulsive area to the total load N=Nrep-Natt	
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Then plugging in the relations above one finds	
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where  = /E* is a length characterizing the relative strength of adhesion and elasticity. Fig. 9 
shows a test of the predictions of this simple relation for a wide range of surfaces. 

Equation 5 allows the attractive area to be predicted in terms of a few simple quantities. 
Adhesion will have negligible effect when the term on the far right is much smaller than 1/~0.5. 
When the right hand side becomes negative, there will be substantial adhesion. Simulations in 
this limit show a finite repulsive area at zero load, and a negative load is needed to separate the 
surfaces.  

For most solids  and E* are determined by the same interactions and /E* < 0.01. The 
range of interactions is typically ~0.1or larger and the width w > As a result, the correction 
from adhesion is negligible unless the rms slope is extremely small. This type of situation may 
arise in wafer bonding of silica with sub nanometer roughness, but not for most of the surfaces 
around us. 

Tape, putty and elastomeric materials typically have anomalously small moduli because they 
contain chain molecules that are relatively fluid in between a dilute set of chemical crosslinks. 
The modulus reflects the entropic cost of stretching chains between crosslinks while  is 
determined by van der Waals interactions. As a result, /E* can be four orders of magnitude 
larger than for other materials and Eq. 4 becomes negative even for typical rough surfaces.  

 
 
 
 
 
 



 
 

  

 
Figure 8. Test of Equation 4 for a wide range of system parameters. 

 

Figure 9. Test of Equation 5 for the same set of systems. Note that as katt approaches -0.5, and k’ 
approaches zero there is a systematic deviation towards greater adhesion.  
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I. METHODOLOGY FOR CONTACT MECHANICS OF CRYSTAL LATTICES

Analysis of the response of an isotropic elastic half-space to spherical contact geometries

and point forces goes back to the work of Hertz [1], Boussineq and Cerruti in the 19th century.

Since then, continuum expressions have been derived for various contact geometries [2], and

have become indispensible tools in mechanical engineering. Continuum mechanical contact

theories, however, break down at the atomic scale [3]. Yet, an understanding of long-ranged

elastic deformations of the bulk down to the atomic scale is important, for example, for the

interpretation of scanning probe experiments or the contact stiffness of atomically rough

surfaces [4]. Also, chemi- and physisorption processes at crystal surfaces can be appreciably

influenced by the elastic response of the supporting solid.

Here, we develop a transfer matrix formulation of the Green’s function that can be used to

renormalize the elastic interaction of any crystalline solid for which the dynamical matrix is

known. Such transfer matrix formulations have been traditionally used in the analysis of the

electronic [5] and phononic [6] structure of surfaces, but have to the best of our knowledge

not been discussed in the context of interactions that reach farther than nearest neighbors.

Such long-ranged interactions are necessary for a realistic description of materials. Hence,

the treatment of long-ranged interactions allows to employ the renormalized half space as

an ideally matched elastic boundary in atomistic calculations.

A. Elastic surface Green’s functions

1. Green’s function of the full dynamical system

Let us expand vibrations of the crystalline solid around the ground-state configuration

~r0
iα of each atom iα. To obtain the usual harmonic approximation, we write all dynamical

equations in terms of the the displacement ~uiα of atom iα from its ground-state position.

Here and in the following, atoms are indexed by iα where α is a layer index (as counted

from the surface of the crystal where α = 0) and i denotes inequivalent atoms within each

layer. The full dynamical Green’s function can then be obtained from the Fourier transform

of the dynamical equation

m
∂2~uiα

∂t2
+

∑
jβ

Diαjβ~ujβ = fiα. (1)

2

APPENDICES



Here, m is the mass of each atom and we limit ourselves to the treatment of a single

atomic species. A generalization of the following procedure to multi-species unit cells is

straightforward.

We now treat the dynamical equation in reciprocal space parallel to the surface and in

real space perpendicular. With

~uiα(t) =

∫
d3q

(2π)3

dω

2π
~u(~q)ei~q·~riα+iωt, (2)

where ~q lies in the plance of the surface and ~riα = ~r0
iα + ~uiα is the position of atom iα, we

find

~Fiα =
∑

β

∫
d3q

(2π)3

dω

2π
eiωt~uβ(~q, ω)

∑
jβ

Diαjβei~q·~rjβ (3)

=
∑

β

∫
d3q

(2π)3

dω

2π
ei~q·~riα+iωt~uβ(~q, ω)

∑
jβ

Diαjβei~q·~rjβiα (4)

with ~Fiα =
∑
jβ

Diαjβ~ujβ and ~rjβiα = ~rjβ − ~riα. From Eq. (4) we identify

Dαβ(~q) =
∑

nβ∈neighb.

Diαnβei~q·~rnβiα (5)

where n run over those neighbors in layer β where Diαnβ 6= 0 and ~riαnβ is the distance vector

to those neighbors. In combination with the dynamical Eq. (1) this yields the eigenvalue

equation (
−mω2 + D(~q)

)
~u(~q, ω) = ~f(~q, ω) (6)

for the permissible modes, and the equation

1 + mω2G(~q.ω) = D(~q)G(~q, ω) (7)

for the dynamical Green’s function G(~q, ω).

In the remainder of this paper we concern ourselves with the static response only. The

static response is given by the limit ω = 0, such that the governing equation becomes

D(~q)G(~q) = 1, (8)

where we dropped the frequency variable ω for brevity. In order to understand the displace-

ments ~u0(~q) of the surface layer due to an external force ~f0(~q) we only need the Green’s
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function G00(~q) element that couples the surface layer to itself. It is usually beneficial to

treat the surface stiffness Φ(~q) = G−1
00 (~q), such that

~f0(~q) = Φ(~q)~u0(~q), (9)

instead. Eq. (9) resembles Hooke’s law, and the coefficients Φ can be regarded as renor-

malized spring constants that govern the response of the elastic half space. Note that even

though the atomistic interaction within the bulk may be short ranged, real space Φ coeffi-

cients typically couple the surface over all length scales.

In the following we assume that the total crystal consists of N + 1 identical crystal

layers. Then U(~q) = Diαnα(~q), the dynamical matrix that couples within each layer, V(~q) =

Diαn(α+1), the matrix coupling to the nearest layers beneath, and V†(~q), the matrix coupling

to the nearest layer above, do not depend on the index α for α > 0. For α = 0 we introduce

U0(~q) = Di0n0 and note that V0 = V. Here † denotes the Hermitian conjugate.

The dynamical matrix then assumes the form

D =



U0 V 0 · · · 0 0

V† U V · · · 0 0

0 V† U · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · U V

0 0 0 · · · V† UN


, (10)

where we dropped the explicit ~q dependence for brevity. For simplicity, we assume no

coupling between next-nearest layers, and later show that next-nearest layer interactions

can be straightforwadly mapped on a theory that only treats nearest layers. We now give

two equivalent formulations that lead to the renormalized surface Green’s function.

4
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2. Displacement transfer matrix formulation

The displacement transfer formulation starts from Eq. (6) with ω = 0. We can write this

equation explicitly as

U0~u0 + V~u1 = ~f (11)

V†~u0 + U~u1 + V~u2 = 0

V†~u1 + U~u2 + V~u3 = 0

...

V†~un−1 + U~un + V~un+1 = 0 (12)

...

V†~uN−1 + UN~uN = 0 (13)

It is straightforward to see that this set of equations can be expressed as ~un

~un−1

 =

 0 1

−(V†)−1V −(V†)−1U

  ~un+1

~un


= T

 ~un+1

~un

 ,

(14)

giving  ~u1

~u0

 = TN−1

 ~uN

~uN−1

 =

 T11 T12

T21 T22

  ~uN

~uN−1

 . (15)

where T is called the transfer matrix. We impose the boundary condition ~uN = 0, yielding

~u1 = T12~uN−1 and ~u0 = T22~uN−1. (16)

Inserting into Eq. (11) allows to eliminate ~uN−1 giving

Φ~=(U0T22 + VT12)T
−1
22 (17)

the effective response of the surface layer to an external force ~f under conditions of a fixed

bottom boundary.
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3. Green’s function transfer matrix formulation

The Green’s function formulation starts from Eq. (8). Unlike the dynamical matrix, the

Green’s function is not sparse. We denote the individual elements as

G =



G00 G01 G02 · · · G0N

G10 G11 G12 · · · G1N

G20 G21 G22 · · · G2N

...
...

...
. . .

...

GN0 GN1 GN2 · · · GNN ,


(18)

and are now interested in extracting the surface Green’s function, G00. Note that GNN and

G0N can be determined equivalently.

From Eq. (8) we obtain generally (N + 1)2 equations for our finite system with N + 1

layers. We will only pick the N + 1 equations involving the surface layer. Those are

U0G00 + VG10 = 1 (19)

V†G00 + UG10 + VG20 = 0

V†G10 + UG20 + VG30 = 0

...

V†Gn−1,0 + UGn,0 + VGn+1,0 = 0 (20)

...

V†GN−1,0 + UNGN,0 = 0 (21)

We now define the transfer matrix Tn as

Gn+1,0 = TnGn,0. (22)

The surface Green’s function G00 and stiffness Φ is then obtained from Eq. (19) as

Φ = G−1
00 = U0 + VT0. (23)

Combining Eqs. (20) and (22) yields

VTnTn−1 + UTn−1 + V† = 0 (24)

from which we obtain

VTn−1 = −V(U + VTn)−1V†. (25)
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This continued fraction can be terminated by Eq. (21) which gives

VTN−1 = −VU−1
N V†. (26)

Hence we can iterate Eq. (25) starting from Eq. (26) to obtain Φ from Eq. (23).

4. Renormalized dynamical matrices for long-ranged interactions

If the interatomic interaction acts over a distance of two layers, the dynamical matrix

becomes

D =



U0 V W 0 0 0 0 · · ·

V† U1 V W 0 0 0 · · ·

W† V† U V W 0 0 · · ·

0 W† V† U V W 0 · · ·

0 0 W† V† U V W · · ·

0 0 0 W† V† U V · · ·

0 0 0 0 W† V† U · · ·
...

...
...

...
...

...
...

. . .



. (27)

Hence we can renormalize the dynamical matrices U and V according to

Ũ0 =

U0 V

V† U1

 , Ũ =

 U V

V† U

 and Ṽ =

W 0

V W

 (28)

to yield an effective nearest layer model with more that three degrees of freedom per unit

cell.

For interactions that extend over three neighboring layers we get

D =



U0 V W X 0 0 0 · · ·

V† U1 V W X 0 0 · · ·

W† V† U2 V W X 0 · · ·

X† W† V† U V W X · · ·

0 X† W† V† U V W · · ·

0 0 X† W† V† U V · · ·

0 0 0 X† W† V† U · · ·
...

...
...

...
...

...
...

. . .



, (29)
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which leads to the renormalization

Ũ0 =


U0 V W

V† U1 V

W† V† U2

 , Ũ =


U V W

V† U V

W† V† U

 and Ṽ =


X 0 0

W X 0

V W X

 . (30)

For interactions extending over even farther distances the procedure can be carried out

accordingly.

5. Remarks

The displacement and Green’s function transfer matrix formalisms of sections I A 2 and

IA 3, respectively, give identical results. However, at the Brillouin zone boundary the motion

of individual atoms decouples as the Einstein oscillator limit is reached. Hence we have

V = 0 and the transfer matrix T as defined in Eq. (14) becomes singular. For practical

purposes the Green’s function formulation of section IA 3 is hence better suited and will be

used in what follows.

Both algorithm are iterated exactly N times. Hence, the perpendicular dimension of the

elastic half-space, i.e. the number of layers N , is explicitly included in the formulation.

However, the quantity Φ is well defined in the limit of an infinite elastic half-space N →∞.

Slowest convergence is obtained for the Γ point which converges to Φ(Γ) → 0 as N → ∞.

In this case, the half-space becomes infinitely compliant with respect to a uniform force.

B. Stiffness of the SC (100) and FCC (100) surfaces

We now use the Green’s function transfer matrix formulation to compute the stiffness

matrix for the simple cubic (SC) (100) and the face-centered cubc (FCC) (100) surfaces.

The SC lattice is stabilized by nearest and next-nearest neighbor interactions, both with

spring constants k = 1. This lattice is isotropic, and an analytical expression that agrees

with our numerical results has been derived in Ref. 7. The FCC lattice interacts via nearest

neighbors with spring constant k = 1 only.

For completeness, we compare the stiffness coefficients to the behavior of Φ(~q) as expected

for a continuum theory. The solution is obtained by a Fourier-transform of the Boussinesq

8
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FIG. 1: Stiffness matrix coefficients for the FCC (100) (blue), the SC (100) (green) surface and an

isotropic elastic solid (red).

solution for a concentrated point force on an isotropic elastic half-space [2], and reads

µG(~q) =


1
q
− νq2

x

q3 − qxqy

q3 − (1+2ν)qx

2q2

− qxqy

q3
1
q
− νq2

y

q3 − (1+2ν)qy

2q2

(1+2ν)qx

2q2

(1+2ν)qy

2q2
1−ν

q

 , (31)

where µ is the shear modulus and ν Poisson’s ratio. Figure 1 shows the value of the diagonal

and off-diagonal components of the Φ matrix for the three models.

C. Elastic boundary conditions for atomistic calculations

While the linear elastic response of an atomic half-space is important to study contact

mechanical problems in the linear response regime, such an approach can easily be used

as an elastostatic boundary condition in molecular statics or dynamics simulations of for

examples, indentation, crack propagation or nonlinear contact mechanics. The advantage

of the scheme presented here over the fluctuation formulation of Campaña and Müser [8] is

that the Green’s function is obtained exactly for the interatomic potential under consider-

ation hence minimizing mismatch of the elastic response at the interface. Furthermore, the

response close to the Γ point is only poorly sampled by an evaluation using the fluctuation

theorem, but becomes important in particular if the interation in the atomistic part of the

system reaches out beyond nearest neighbors and we need to compute the Green’s function

for multi-atom unit cells as discussed in section I A 4.

In order to properly couple an atomistic system with interactions that reach farther than

nearest neighbors to the elastic half-space we need one final consideration. The surface
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}
}

}

explicit

renormalized

bulk

FIG. 2: For balance for renormalized surface with second-nearest neighbor interactions and explicit

atoms on top.

stiffness Φ is based on the harmonic approximation in that the total energy of the system

is expanded up to second order. In the bulk, first order terms cancel since the system in

equilibrium (see also Fig. 2). This does not hold for the surface, where terms linear in the

displacements give rise to surface relaxation phenomena. Note that such relaxation cannot

occur for crystals that interact via nearest-neighbors only, since in this case the neareast

neighbor distance of the crystal equilibrium coincides with the minimum of the interaction

potential and hence forces are zero. In particular when adding a layer of explicit atoms on

top, the force due to these atoms needs to be cancelled on each renormalized atom.

The situation is depicted in Fig. 2. The green arrow shows the force that the explicit

atom excerts on one of the renormalized atoms. In the bulk, this force would be cancelled by

the red arrows, which are however missing in the elastic manifold. We hence need to enforce

cancellation by adding a constant force of the same magnitude and opposite direction to the

renormalized atom.

II. CONTACT MECHANICS OF ADHESIVE, RANDOMLY ROUGH SURFACES

The weak van-der-Waals interaction allows the Gecko to overcome gravity and stick to

walls and ceilings [9–12]. The same force acts between everyday objects, and yet we are

able to lift pens, plates, and almost anything else with ease. Fuller and Tabor resolved this

adhesion paradox when finding that the apparent lack of macroscopic adhesion (or stickiness)

is due to most surfaces’ intrinsic roughness [13]. Yet, a detailed microscopic understanding of

how the non-adhesive limit is controlled by the surface’s geometry is lacking. In particular,

it is unknown when a cross-over to sticky behavior happens, and how this cross-over depends

on the statistical properties of the surface and the microscopic interaction. Here, we derive a
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simple scaling relation that describes the crossover from macroscopic non-adhesive to sticky

behavior. This crossover is controlled by the characteristics of the rough surface on the

smallest scale only. Such insights are important for the design of adhesives [9], but also

to understand and prevent failure at interfaces, such as debonding of thin films and of

composite materials [14], or fretting and pitting in tribological systems.

The microscopic origins of adhesion are manifold and range from simple intermolecular

interactions [15] over capillary bridges [16] and adhesive films [17] to the influence of bubbles

of air at the contact [18]. Microscale adhesion is characterized by the energy per surface area

γ that is gained when two nominally flat surfaces are brought into contact. Such interactions

give rise to macroscale adhesion, or stickiness, that manifests itself in nonzero pulloff forces

for the contacting surfaces.

Cohesive or Dugdale zone models are used to capture the effect of the adhesive energy γ

in continuum theories [19]. An important example is the Maugis-Dugdale (MD) model of the

adhesion of a sphere on an elastic substrate [20] that has been extensively used to interpret

scanning probe adhesion experiments [21]. Many real surfaces are not flat as assumed in

continuum theories. Roughness at the atomic length scale can have appreciable influence on

contact and adhesion of objects as simple as spherical tips with atomic scale diameters [3, 22].

The roughness on macroscopic surfaces typically extends over many length scales and is

suitably approximated by Gaussian self-affine fractals where the root mean square height

fluctuation δh between two points at distance λ on the surface scales as δh ∼ λH for λ

between λs and λL [23]. We here investigate the adhesion of such surfaces that are held rigid

on a square flat deformable ideally elastic substrate for wide variations in Hurst exponent

H, root mean square slope h′
0, small wavelength cutoffs λs , and large wavelength cutoff λL.

For the interaction between rigid surface and elastic substrate we choose a Lennard-Jones

type potential as an approximation for the van-der-Waals interaction (see methods). The

sites on the elastic substrate are arranged on a square grid with lattice constant a0 and will

be regarded as atoms.

The elastic interaction is solved using a Fourier-transform technique [8] with a linearized

surface Green’s function. We only treat displacements in z-direction normal to the surface

such that the total elastic energy is given by Eel = A0

4

∑
q qE∗u2

z(~q) where A0 is the total

area of the elastic half space and ~q is a reciprocal space vector in the plane of the half space.

This corresponds to the isotropic elastic stiffness matrix Eq. (31) with only a single degree
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of freedom. Each discrete point on the elastic manifold will be regarded as an “atom”.

Each atom occupies unit area, and interacts with the rigid surface through the potential

V (x, y, z) = v(z − h(x, y)) where h(x, y) is the rough surface. For the interaction of two

flat surfaces, the adhesive energy w per unit area is given by the minimum of the atomic

interaction v(z). Rigid Gaussian random surfaces with Hurst exponents H and rms slopes

h′
0 =

√
〈|∇h|2〉 were generated using a Fourier-filtering algorithm. All wavevectors with

q > 2π/λs have zero power.

After finding the equilibrium contact geometries for different external loads, we partition

the sites on the elastic surface into regions of atoms that feel a repulsive and regions that feel

an attractive force, as well as regions that do not interact. Fig. 3a shows these individual

regions at a fractional repulsive area of 5%. Let us first characterize the geometry of the

repulsive patches by determining the length P of their perimeter. First, we note that

Prep ∼ Arep in stark contrast to the slit island analysis which yields P ∼ A−H [23]. The

latter is a consequence of the fact that the area of the island has dimension 2 while the

perimeter (or “coastline”) has dimension 2 − H. This implies that for the elastic contact

problem the total repulsive patch is a fractal object. To find the length scale that controls

A/P consider the distribution p(w) of the lengths w of segments that are obtained from one-

dimensional slices through the repulsive contact geometry (see Fig. 3b). The total repulsive

area is then given by Arep = a0

∫
dwwp(w) = a0w̄, and each segment contributes 2a0 to

the perimeter, hence Prep/Arep = α/w̄ with α = 2. Numerically, we find a slightly different

value of α ≈ 2.8 which is attributable to segments of the perimeter that area parallel to the

w-segments missing from the total estimate. This is an effect of the discrete character of

the contact patches.

Remarkably, we find that the length w̄ only weakly depends on the contact area and ad-

hesion strength (see Fig. 3c). This observation holds for all surfaces studied here. Although

the contacting surface has roughness on all lengths, only a single length scale w̄ that is of

the order of the short cutoff λs appears to be important for a description of the contact

problem.

Besides giving the ratio between area and circumference, the length w̄ plays the role of

a contact diameter. From continuum considerations, it is straightforward to show that the

air gap ∆ between the two separating surfaces raises asymptotically as ∆ = g(R) ∼ R
3
2

for small distances R from the contact edge. Numerically, we find exactly this power-law
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FIG. 3: (a) Map of the contacting atoms that feel a repulsive (orange) and attractive (black) force

when a rough surface is pushed against a flat elastic manifold (the surface shown has H = 0.8,

h′
0 = 0.1, λs = 4 and λL = 2048). Atoms that feel a repulsive force cover an area of roughly 5%.

(b) Zoom into a 64× 64 region of that surface. The blue vertical lines show individual segments of

length w (see text). (c) Dependence of the average segment length w̄ on contact area. (d) Shape of

the gap between rigid and elastic surfaces g as we move away from the edge of the contact patch in

the non-adhesive hard-wall limit. The inset shows the behavior for R < 0.05w̄ close to the contact

edge. The dashed line is the gap obtained for a 2D wedge indenter, and the dashed-dotted line

shows a 3/2 power law.

behavior for the rough contact for small distances from the contact edge with a crossover

to linear behavior at larger distances. Indeed, the gap data collapses as we normalize all

distances by the contact radius w̄/2 and all heights by h′
0w̄/2 as shown in Fig. 3d.

The partitioning into repulsive and attractive regions of the area A = Arep + Aatt entails

an indentical partitioning of the total load N = Nrep−Natt. We find that the repulsive load

Nrep shows a linear Amontons-like dependence on the repulsive area Arep which follows the

same law κNrep = h′
0E

∗Arep that was found for nonadhesive contact [4, 24] with a similar

value of κ ≈ 2. Additionally, the attractive load is given by the average force γ/∆c times the

attractive area, where ∆c is the range at which the potential energy drops to zero. Hence
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we have

N =
h′

0E
∗

κ
Arep −

γ

∆c

Aatt (32)

for the total load N .

We now relate the attractive area Aatt to the repulsive area Arep. In what follows, we

assume that the adhesive interaction only weakly perturbes the shape of the gap such that

we can use the 3/2 power-law separation to estimate the attractive area. Independent of

the exact functional form of the separation of the contact lips g(R), roughly all sites within

R = g−1(∆c) around the repulsive clusters constitute the area Aatt. For small w̄, large ∆c

and small h′
0 this will lead to mutually overlaping regions. If on the other hand w̄ � R then

the attractive region will be small compared to the cluster size and we expect Aatt ≈ PR.

We hence estimate the attractive area to be

Aatt

Arep

∼
(

2∆c

h′
0w̄

) 2
3

, (33)

with a constantof proportionality β that is of order 1.6. Fig. 4 shows the value of β as

obtained from the numerical calculations. As λs increases the value of β converges towards

roughly unity. For small λs we expect deviations from the ideal behavior since w̄ becomes

of order of the ∆c/h
′
0.

The value of β is remarkably indepedendent of the interaction strength γ. Fig. 5a shows

the dependence of this factor for value of γ ranging from zero to 0.1. For λs = 16 and

λs = 32 this value is remains constant at roughly 1.6. The ratio of Natt/Aatt, however, starts

to deviate from the average force γ/∆c over the range of adhesive energies shown. This is

most likely attributable to a deviation from the 3/2 power law behavior of the air gap due

to the influence of the adhesive interaction.

We now have an approximate expression for the total load load N as a function of the

the repulsive (contact) area Arep. Hence, we can define a renomalized κ′ by

1

κ′ =
N

h′
0E

∗Arep

=
1

κ
− βγ

h′
0E

∗∆c

(
2∆c

h′
0w̄

) 2
3

(34)

that depends explicitly on the adhesive energy γ, the interaction range ∆c of the interatomic

potential, the root mean square slope h′
0 as well as the internal length scale w̄. Hence, the

influence of adhesion is controlled by the short wavelength of the rough surface only.

The renormalized κ′ can be again formally split into a repulsive and an attractive con-

tribution. Fig. 6 shows the dependence of these individual contributions on w̄. Here, the
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FIG. 4: (a) Relationship of perimeter P , w̄ and repulsive area Arep (b) Behavior of the width R̄ is

the attractive area as a function of w̄. Here R̄ is the average R over the whole contact geometry.

(c) Relationship of the attractive area Aatt to perimeter P and the average width R̄. (d) Scaling

of Aatt/Arep. This plot is the product of (a), (b) and (c). In all plots, symbols denote surfaces

with different Hurst exponents H and root mean square slopes h′
0, while color denotes the short

wavelength cutoff λs. Symbol size is a measure of λL/λs where only data with λL/λs ≥ 128 is

shown.

15

APPENDICES



0.0

0.5

1.0

1.5

2.0

A
at

t

A
re

p

/( 2
∆
c

h
0
w̄

) 2 3

(a)

λs =4

λs =8

λs =16

λs =32

0.00 0.02 0.04 0.06 0.08 0.10
γ

0.0

0.5

1.0

1.5

2.0
N

at
t

A
a
tt

/
γ ∆
c

(b)

FIG. 5: (a) Dependence of the ratio of attractive to repulsive area as a function of the strength of

the adhesive interaction γ. (b) Dependence of the ratio of attractive load to attractive area on γ.

For larger γ, this ratio starts to deviate from the average force γ/∆c.

attractive κ in Fig. 6a nicely follows the relationship Eq. (34). The repulsive κ (Fig. 6b) is

close to a κ obtained from a fully nonadhesive calculation (Fig. 6c).

Equation (34) now allows to determine the onset of the macroscopic adhesive behavior,

i.e. non-zero pulloff forces for the two surfaces. Such a condition is obtained when N < 0

and hence 1/κ′ < 0. From this condition we get

w̄ < 2∆c
(κβ)

3
2

(h′
0)

5
2

(
δ

∆c

) 3
2

, (35)

as the upper bound on the admissible values of w̄. Since w̄ ≈ λs macroscopic adhesive

behavior can only be obtained if the roughness extends down the length scale given by

Eq. (35). Equation (35) clarifies the result of Fuller and Tabor [13] that roughness can

destroy adhesive interaction.

From this scaling relation we can also obtain a criterion for when macroscopic adhesive

behavior can be ruled out. The value w̄ = 1 is a natural lower bound since roughness cannot

extend below the atomic scale. Then we find

δ >
a0

2
2
3

(h′
0)

5
3

κβ

(
∆c

a0

) 1
3

(36)
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for surfaces to become adhesive. All dimensionless quantities in Eq. (36) are on the order of

unity, giving roughly δ/a0 > (h′
0)

5
3 .
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