Technical Report ARMET-TR-12008

BEARING SURVIVABILITY AND FRICTION DETERMINATION FOR FUZE DECOUPLING APPLICATIONS

E. Marshall
M. Pica

September 2012

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Munitions Engineering Technology Center
Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.
14. ABSTRACT
The objective of this experiment is to find bearings that are suitable for de-spinning a fuze from a projectile body. Bearings must be able to survive both gun launch loads and high spin rates in this application. Three pairs of bearings are allowed to de-spin from approximately 250 Hz and then shot in a 155-mm air gun to simulate these loads. Overall bearing survivability and changes in friction (as measured by free spin time) are discussed in this report for three types of ball bearings. The revolutions per minute versus time plots acquired from spin-down trials provide a qualitative view of bearing performance and will allow bearing friction torque to be calculated in the future. All bearing pairs survived the loads applied. The quality of the selected bearings is evident in the spin-down profiles.

15. SUBJECT TERMS
Bearing Decouple De-spin Precision guidance Fuze
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Experimental Setup</td>
<td>1</td>
</tr>
<tr>
<td>Testing Conditions</td>
<td>2</td>
</tr>
<tr>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>Conclusions</td>
<td>6</td>
</tr>
<tr>
<td>Distribution List</td>
<td>7</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cross-section of test setup</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Outside of box, various components displayed</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Spin rate versus time for the initial spin-down trial directly from supplier</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Spin rate versus time for the last spin-down trial prior to air gun shot</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Spin rate versus time for the initial spin-down trial after air gun</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Spin rate versus time for the final spin-down trial after air gun</td>
<td>5</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The Dragon Bearing Team would like to thank Jason DeVenezia and Michael Hollis for their assistance in developing test fixtures and experimental procedures. Mark Mellini provided the data acquisition support required to perform the experiment and analyze results.
INTRODUCTION

The purpose of this experiment was to characterize the overall survivability and to quantify the increase in friction of three sets of bearings due to typical artillery cannon launch spin and acceleration loads. The variable sought was the change in spin-down time of the bearings, due to pure spin; air gun shots; and other factors. The spin-down times can be used in calculating the bearing friction torque, if required. For the Drag Optimized Navigation (DRAGON) program, the bearings would be used to decouple the fuze from the remainder of the body to mitigate drive actuation issues and spin-related effects on the sensor package. The three bearings tested included a generic ball bearing made by SPB USA LLC (6907), a SKF single row deep groove ball bearing (61907 C3), and a Kaydon thin section bearing with plastic cage (KAA17CL0).

BACKGROUND

A bearing is typically selected based on multiple calculated values that assumes the bearing will be spun for one million cycles (i.e., to failure). Axial and radial loads, both static and dynamic, should be considered. Bearings rated for both high bearing load and high spin conditions, and for a significantly lower number of cycles, do not widely exist. Testing bearings in high spin and high axial load applications would give a better idea of their survivability on a guided artillery round. Specifically for DRAGON, the bearings would decouple the fuze from the projectile, potentially decreasing the actuator power input. Canards would be implemented, with a slight cant angle in order to slow down the front end of the fuze. The bearing friction torque is an important factor - a high value of friction would not allow the fuze to spin-down as quickly and begin functional operation. For this experiment, a longer bearing spin-down time corresponds to decreased bearing friction.

EXPERIMENTAL SETUP

The experiment took place in an armored box located at the Environmental Test Facility, U.S. Army Armament Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, New Jersey. For each bearing type to be tested, two bearings were pressed and preloaded according to manufacturer specifications into a custom test cartridge. A direct current motor was mounted into a translating tube that allowed the motor shaft (with a torque feature) to spin-up the bearings in the test cartridge. Figure 1 shows a cross-section rendering of the test setup.

Figure 1
Cross-section of test setup
A pull cord was attached to the motor tube, allowing operators to disengage the motor from the test cartridge behind a concrete wall. An optical fiber encoder recorded the revolutions of the bearings. A powered limit switch allowed the data acquisition team to know the precise time when the motor was disengaged and the bearings were de-spinning due to their own friction. Encoder output, along with the high-low transition of the limit switch was collected in MATLAB and reduced to revolutions per minute (RPM) versus time plots. During the trials, an oscilloscope provided a live reading of the spin rate from the square wave output of the encoder. A handheld infrared thermometer was used to periodically check the temperature of the bearing cartridge and drive motor housing. Figure 2 shows the actual experimental setup from the exterior of the armored box.

![Figure 2](image)

Figure 2
Outside of box, various components displayed

TESTING CONDITIONS

Each bearing pair was initially spun to a target steady-state speed of 250 Hz (or to the maximum operational power input of the motor). After spinning the bearings at steady-state for approximately 30 sec, the bearings spun down inside the cartridge. This process was repeated for up to nine trials. Each bearing pair was then extracted from their spin cartridge and pressed into a custom rig to shoot them once in a 155-mm air gun (non-spinning round). Then, the bearings were pressed back into their original spin cartridges and spun for another set of up to 12 trials. All spin trials were conducted at ambient conditions (approximately 80°F). The experimental process is summarized next.

Bearings from Supplier

Condition A

Spin-Up:

- Planned runs per bearing pair: 5
- Maximum speed to be driven: 15000 RPM (250 Hz)
- Time at maximum speed: 30 sec
Condition B

Air gun shots:

Shots per pair: 1
Setback acceleration: approximately 14,000 g’s

Condition C

Spin-Up, post-air gun:

Planned runs per bearing pair: 5
Maximum speed to be driven: 15000 RPM (250 Hz)
Time at maximum speed: 30 sec

Condition D

RESULTS

Bearing survivability under projectile spin rates and gun launch accelerations is critical for fuze decoupling. After the experiment was complete, all of the bearings were operational. Each bearing pair spun freely by hand, and there was no visible damage to the cages. It is critical that the bearings survive the loading cases applied during this experiment since they serve as a preliminary indicator of how the bearings would survive under projectile gun launch and flight. The quality of the selected bearings is clearly visible in figure 3. The generic ball bearings have the greatest friction out of the box (least spin-down time).

![Graph](image)

Figure 3
Spin rate versus time for the initial spin-down trial directly from supplier (condition A)
After running the bearings for six to nine trials, the bearings “break-in” and spin friction decreases. For example, the generic ball bearings experience a spin-down time increase of 330% after nine spin-down trials. The spin-down time increases after the first set of spin trials and is clearly shown in figure 4.

By subjecting the bearings to air gun loads, it was expected that there would be a decrease in spin-down time due to degradation of the races. Figure 5 shows the decrease in spin-down time due to effective increase in friction from air gun loading.
The generic ball bearings experienced the greatest decrease in spin-down time due to air gun loads. In contrast, the SKF and Kaydon bearings had only a minor decrease in spin-down time and thus will perform better when subjected to gun launch setback loads. The effects of the air gun were only present for the few spin-down trials immediately after shooting. Figure 6 depicts the spin-down profile for the bearing pairs after a single air gun shot and the second round of spin-down tests.

![Graph](image)

Figure 6
Spin rate versus time for the final spin-down trial after air gun (condition D)

One of the main objectives of this experiment was to determine representative spin-down times to eventually estimate bearing friction. Break-in has to be considered in this decision. In almost all spin-down trials, the bearings continually spun for a longer duration as compared to the previous trial. However, the law of diminishing returns applies, and the bearings spin-down times began to converge for sequential trials. Break-in is highly undesirable in a production setting where resources are not readily available to break-in off-the-shelf components prior to assembly. The final spin trial of each bearing pair provides the optimal spin-down time with respect to break-in. In addition, the representative times must be calculated from the post-air gun trial set since the bearings will be subjected to setback loads in operation. As a result, the final spin-down time post-air gun will be the representative for future friction torque calculations. The times are summarized in table 1.

Table 1
Spin-down times for friction determination (final trial, post-air gun)

<table>
<thead>
<tr>
<th>Bearing set</th>
<th>Spin-down time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKF</td>
<td>41.6</td>
</tr>
<tr>
<td>Generic</td>
<td>26.6</td>
</tr>
<tr>
<td>Kaydon</td>
<td>35.5</td>
</tr>
</tbody>
</table>

For the purpose of calculating the frictional torque of the bearings, the moment of inertia of the material pressed into the inside race of the SKF and generic bearings is 3.48×10^{-4} lbf-s2/in.-in.2. The moment of inertia for the Kaydon bearing load is 3.49×10^{-4} lbf-s2/in.-in.2.
CONCLUSIONS

The two main objectives of this experiment were to determine if the bearings would survive projectile spin loads and setback loads and to characterize the changes in spin-down profiles due to these loads. In terms of survivability, the results showed no degradation in performance due to spin. Air gun loads only had a temporary degradation effect on the bearing friction as compared to their state prior to air gunning. At the end of the second set of spin trials, all three bearing sets had spin-down times at or greater than their times immediately before air gunning. Visual observations of the bearings showed no damage after all trials were complete. In terms of optimal spin profile, the generic ball bearings have the least desirable performance characteristics. They have the greatest friction out of the box and at the end of the spin trials (pre and post-air gun). Also, unlike the SKF and Kaydon bearings, the generic ball bearings experienced a significant increase in friction after being subjected to air gun loads. The SKF and Kaydon bearings have similar desirable performance characteristics. If a thin-section bearing is required for the decoupling mechanism, then the Kaydon bearing should be considered. Otherwise, the SKF bearing is more likely to survive when exceeding specification spin rates (since it has a metal cage) and should be considered. Future work should entail subjecting the bearings to combined loading (i.e., applying axial, radial, and spin loads simultaneously) and testing multiple manufacturing lots of bearings. It may also be desirable to take thermal effects into account to represent changes in temperature of the mechanical assembly during flight.
DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
RDAR-GC
RDAR-MEF, M. Mellini
 T. Recchia
RDAR-MEF-I
RDAR-MEF-S, G. Miner
 D. Panhorst
 N. Gray
 J. DeVenezia
RDAR-MEF-E, E. Marshall (4)
RDAR-MEF-F, M. Pica
RDAR-MEM-M, J. Potucek
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

Commander
Soldier and Biological/Chemical Command
ATTN: AMSSB-CII, Library
Aberdeen Proving Ground, MD 21010-5423

Director
U.S. Army Research Laboratory
ATTN: AMSRL-CI-LP, Technical Library
 AMSRD-WM-BA, D. Lyon
 B. Davis
 D. Hepner
 J. Condon
 T. Brown
 I. Celmins
Bldg 4600
Aberdeen Proving Ground, MD 21005-5066

Chief
Benet Weapons Laboratory, WSEC
U.S. Army Research, Development and Engineering Command
Armament Research, Development and Engineering Center
ATTN: RDAR-WSB
Watervliet, NY 12189-5000

Director
U.S. Army TRADOC Analysis Center-WSMR
ATTN: ATRC-WSS-R
White Sands Missile Range, NM 88002
REVIEW AND APPROVAL OF ARDEC TECHNICAL REPORTS

BEARING SURVIVABILITY AND
FRICION DETERMINATION FOR
Title: FUZE DECOUPLING APPLICATIONS

Date received by LCSD: 11/6/2012

Author/Project Engineer: E. Marshell

Report number (to be assigned by LCSD): ARMET-TR-12008

Extension: 1564 Line
Building: 94
Author’s/Project Engineers Office (Division, Laboratory, Symbol): RDE - MEF - E

PART 1. Must be signed before the report can be edited.

a. The draft copy of this report has been reviewed for technical accuracy and is approved for editing.

b. Use Distribution Statement A, X, B, C, D, E, F, or X for the reason checked on the continuation of this form.
 1. If Statement A is selected, the report will be released to the National Technical Information Service (NTIS) for sale to the general public. Only unclassified reports whose distribution is not limited or controlled in any way are released to NTIS.
 2. If Statement B, C, D, E, F, or X is selected, the report will be released to the Defense Technical Information Center (DTIC) which will limit distribution according to the conditions indicated in the statement.

c. The distribution list for this report has been reviewed for accuracy and completeness.

 Division Chief: [Signature]
 (Date: 6 Jan 12)

PART 2. To be signed either when draft report is submitted or after review of reproduction copy.

This report is approved for publication.

 Division Chief: [Signature]
 (Date: 25 Sep 2012)

SMCAR Form 49, 20 Dec 06 supersedes SMCAR Form 49, 1 Nov 94.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>BEARING SURVIVABILITY AND FRICTION DETERMINATION FOR PLATE DECOUPLING APPLICATION</th>
</tr>
</thead>
</table>
| AUTHOR/PRODUCER(S) | ERIC MARSHALL
MICHAEL PICA |
| OFFICE SYMBOL | ADAR-ME_FE |
| PHONE/BLDG | 973-724-1584 |
| NUMBER | - |
| NAME OF PICATINNY SPONSOR | - |
| SPONSOR OFFICE SYMBOL | - |
| SPONSOR PHONE/BLDG | - |
| PURPOSE OF RELEASE | Publication |
| MEETING TITLE | - |
| PLACE | - |
| DATE | - |
| PUBLICATION | DTIC |
| CERTIFICATION | I certify that this material has not been copied substantially without written permission from the author/producer and does not contain any sensitive, potentially controversial, FOOU or classified information. |
| REQUIRED APPROVALS | Signatures below certify that this material was reviewed for technical agency, classified information and policy compliance; security implications, propriety information, competition-sensitive information and policy compliance; and previously submitted for patent review, and that the subject matter does not fall under the Army Critical Technology List. |
| SIGNATURE (Division level) | - |
| TYPE/NAME | - |
| APPROVE | Yes |
| REMARKS | - |
| SIGNATURE (Centr/Dir/PA level) | - |
| TYPE/NAME | - |
| APPROVE | Yes |
| REMARKS | - |
| SIGNATURE (OPSEC) | - |
| TYPE/NAME | - |
| APPROVE | No |
| REMARKS | - |
| SIGNATURE (Patent/Ethical) | - |
| TYPE/NAME | - |
| APPROVE | Yes |
| REMARKS | - |
| APPROVED DISTRIBUTION | A (Unlimited) |
| DISPOSITION | BASED ON RECOMMENDATIONS PROVIDED AND AGREEMENTS BETWEEN THE SPONSOR AND THE AUTHOR/PRODUCER, THIS MATERIAL IS GRANTED FOR PUBLIC RELEASE BASED ON THE APPROVED DISTRIBUTION CIRCULARS BELOW. |
| PICATINNY ARSENAL PUBLIC AFFAIRS | - |

Page 1 of 2