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Abstract 

 

This project designed nanoscale solar voltaic cells by using carbon nanotubes.  The Field-

Effect Transistor of canbon nanotube was adopted and asymmetric Schottky barriers made 

of two different metal-semiconductor barriers at both ends of carbon nanotubes were 

employed to enhance the Einstein photoelectric electron-hole separation. Two architectures 

of the nanoscale solar cell were designed and analyzed.  This project also examined the use 

of finite element analysis to simulate the process of nanoindentation to gain insights into 

the behavior of elastoplastic and viscoelastic materials. The study examined the behavior of 

a calibrated elastoplastic material model during indentations using different indenter tip 

geometries. The study then compared simulations and experimental results for the 

elastoplastic material. Additionally, the study examined the calibration of a viscoelastic 

material model from reported data and its ability to predict indentation response. 



3 

 

I.  Summary of work in nano scale solar voltaic cells by using carbon nano tubes 

I.1  Introduction 

Shockley and Queisser have computed in 1961 the upper limit of 30% converting 

1000 Watts/m2 sun to 300 Watts/m2 of any Schottky semiconductor, e.g., silicon p-n 

junction device at the band gap at 1.1 eV as discovered by Bell Lab in 1954; and such a 

solar battery, installed by Hoffman electronics, on board of US Satellite Vanguard 1, 1958.  

The upper limit is due to photo-excitation mechanism which must be above the Fermi level 

of the silicon or the GaAs semiconductor band gap at 1.1 eV or 1.52 eV respectively, which 

excludes the long infrared, microwaves, radio, except visible photons to generate free 

conduction band electrons.  In this project, we explored Carbon NanoTubes (CNT) 

technology to break the Shockley-Queisser theoretical barriers of visible-only solar cells.  

We adopted the simple spherical camera lens which is made of Pb-Crown glass of F#=0.7 

af the Lensdiameter =2cm, which will provide a uniform focusing of sunlight, from the visible 

to near infrared (NIR), up to millions times stronger upon at the yellow-light focal plane, 

enjoying the maximum-number of photons. 

 

I.2  Design of voltaic solar cells using carbon nanotubes 

The diameter of lenslet array was chosen as 2 cm and the lenslet was made of Pb-lead-

Crown glass with the refractive index around 1.52 and F# is 0.7, focusing the maximum 

number of photons in the visible yellow 0.635 μm and red 0.73 μm, at the sharpest 

Rayleigh diffraction-limit spot size yellow-light focal plane.  Thus, judging from the Planck 
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radiation spectrum shape equivalent to the sun at 6000 oK (peak at Yellow) ~5000 oK (peak 

at Red), without the atmosphere in the space, the visible band was considered from 0.4μm 

to 0.73μm, and the infrared band from 0.73 μm to 1.12 μm being limited by the Pb-Crown 

glass flat transmission. Then, thermal re-remittance loss due to a hot solar panel had been 

considered to be negligibly small percentage by Landsberg and Baruch. Furthermore, we 

realized the band gap concept of semiconductor to be a lower threshold of minimum 

photon energy to excite conduction charge carriers, and thus we chose a relatively larger 

cross-section and lower band-gap threshold active element.  It turns out to be the near 

infrared at 1.12 μm and Carbon NanoTube (CNT) with the diameter of 0.66 nm.  The focal 

plane was chosen for Yellow-light at the Rayleigh diffraction limit spot size, which had the 

maximum number of photons concentrated at the focal plane.  

Mosaic solar panel at the size of 2m by 2m could be made manageable to a Space-

Robotic, e.g. Canadian arm.  It was packed with 100x100 unit volume cells, as shown in 

Figure 1. 

 

 F# = z/Dlens = 0.7 (1) 

 Alens = ·r2 =  (0.01m)2·= 0.000314m2=  cm2  (2) 

 Panel

honey comblenselet collector
active Fill Factor
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
   
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When N and M become very large, the solar-Active Factor panel is near a constant of 

/2•3½  90%. Thus, the total solar energy is at most reduced by 10% frame boundary 

used to hold the lenslet array in to the firm place.  

 

 

Figure 1.  Solar cells fill in a percentage of the panel Crown glass is type of optical 
glass used in lenses and other optical components. Crown glass is produced from 
alkali-lime (RCH) silicates containing refractive index (≈1.52) and low dispersion 

 

In order to estimate the relative output electric power based on our several design 

architectures, we could fix the common microscopic parameters, such as the photoelectric 

surface work potential function WEinstein and the difference effect of asymmetric potential 

barriers Schottky at both ends, as well as the Einstein photoelectric conversion efficiency, 

Einsteinof CNTs and the carrier transport collision extinction Excollision(to be optimized by 

our subsequent kinetic R/D).  In a unit cell system, the focus plane was generally chosen at 

the visible yellow light in favor of generating a higher velocity Vvis of the electrical charge 
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carrier which contribute to a larger photo-electric current using the justifiable classical and 

semi-classical formulae:   

 

Ivis ≅q Ne Vvis. (4) 

 (5) 

Vyellow = 8.2 105m/s,  VNIR = 6.2 105m/s (6) 

 

In our design we approximated the integrated majority yellow photon visible band at a 

typical yellow light and the Crown-glass-passable near infrared light NIR as follows: 

 

yellow 0.635μm, Eyellow = 1.26102 J/( s·m2), yellow = 2.97 1015rad/s (7) 

 

and for NIR light 

 

IR 1.12μm, EIR = 78 J/(s m2), ωIR = 1.68 1015 rad/s (8) 

 

A more photon collector in a larger CNT diameter associated with infrared (IR) photons 

according to Seito band gap relation: 

 

CNT

CC
BGSaito d

a
E


 02

 , EEinstein= hc/eV)m) (9) 



7 

 

where aC-C is 1.41Å, neighborhood hoping distance, γ0 =2.6 eV= energy of neighborhood 

hopping interaction.  

 

We chose  

dCNT(NIR)= 0.66 nm;  EBG(NIR)=1.107 eV (10) 

 

The band gap formula in Equation 9 was verifiable because of the transitional regime 

permitted a mixed treatment of classical physics and quantum mechanics. The propagating 

electron along CNT whose quantum mechanical de Broglie wavelength going around the 

circumference of CNT was computed as Sommerfeld-Bohr quantization condition as an 

integer of the circumference as follows: 

 

;    n=1,2, etc.  (11) 

 

de Broglie matter wave going around single layer of CNT lattice equals once to be in phase 

with itself for n=1 for NIR, and then for n=2 twice for the visible red.   

Because of a larger basket can catch both the smaller visible photons generating larger 

kinetic velocity of the charge carriers and the larger NIR photons generating smaller kinetic 

velocity of the charge carriers, according to the semiconductor Femi level at NIR band gap. 

However, whenever possible, we chose the focal length to be located at the Lord Rayleigh 
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diffraction limit smallest spot size at the shorter yellow wavelength where an abundance of 

solar photons existed, and produces larger velocity charge carriers than NIR.    

We suppose that all 16 NIR-CNTs may be spirally packaged in the Rayleigh yellow-light 

focusing origin, of which the central core thickness becomes increased linearly from 

0.66nm to 0.66x16=10.56nm, where the diffraction-limited spot size was de-focused from 

for NIR.  

 

Given the common material constants in MKS units adopted by solar energy community: 

 

me = 9.1110-31 Kg, ħ = 1.05410-34 J·s, q = −1.602  10−19 Coulomb (12) 

 

We computed the total number of photons involved in photoelectric conversion by the 

following conservation of energy formula 

 

_ ( & )Total Energy shorter including   

CNTs
Lens photon

SpotSize

A
E A N

A        (13) 

Nphoton_yellow=
) (

 ) (A yellow CNTs

yellowSpotSize
Lensyellow A

AE



 / yellow
 

= 5.44 1016 (14) 

Nphoton_NIR= 
) (

 ) (A

NIR

NIR CNTs




SpotSize
LensNIR A

AE  / NIR  1.891015 (15) 
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We have the larger IR-diffraction spot size and larger photon collector  

 
DSpotSize(NIR) =0.45μm, dCNT(NIR)= 0.66nm, (16) 

 
as opposed to the smaller yellow diffraction spot size and smaller photon collector at the 

visible yellow band gap CNT: 

DSpotSize(yellow) = 0.051μm, dCNT(yellow)=0.375nm   (17) 

I.3  Two architectures 

We compared the relative conversion efficiency of one-layer architecture with that multiple 

layers, bearing in mind but postponed until the final tradeoff consideration between 

manufactory difficulty and the cost.   

(i) One Basic Layer Architecture: 

The architecture contained 16 NIR CNT at 0.66 nm diameter is shown in Figure 2. 

 

Figure 2.  Based on the architecture picture, we computed the total cross section area that 
the visible yellow light was intercepted by the NIR CNT in a spiral stack of 16 on the 
visible yellow focal plane. 
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_ _( ) ( 1)CNT l P CNT SpotSize overlap l pA N d D a N       

 2

02
0

2
0.9 ( 1)
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
 
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      

  
, 

ACNTs(NIR=1.12m) = 0.00476μm2,  

ACNTs (yellow=0.635m)=0.0027μm2  (18) 

 

where the Rayleigh spot size was focused at yellow light focal plane, which was smaller 

than that of NIR as indicated on the first layer. 

 

ASpotSize (yellow)=0.051μm2;   ASpotSize(NIR) 0.318μm2  (19) 

 

We considered a detail kinetic theory of the charge migration suffering the collision 

extinction with the neighborhood carrier pairs.  

 

carriercollisionEinsteinphone NExN  )1(  

yellowyellowcarrierNIRNIRcarrierTotal VqNVqNI  __  

Itotal_one_layer at Yellow FP/ ηEinstein·(1-Excollision)   = 9.22103Amp. in MKS   (20) 
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Figure 3.  The fan-out pattern of our volume cell is horizontally along the radial direction 
at every 22o each, the closed packaging of Np=16 NIR CNTs must be overlaid passing 
one another in the central core creating a stack of tubes like a fireman spiral staircase.  

 

(ii) Two Layers Architecture 

We assumed the kinetic velocity of a single charge carrier to be identical at either layers 

and its velocity depends sole on a single photon energy which has excited the carrier out 

of the Fermi level after overcome the Einstein surface work potential and transporting 

along the net field of two asymmetric Schottky barriers at both ends: Palladium (Pd) as P-

type and Aluminum Al as N-type. 

 

We focused the yellow light at the focal plane where 8 NIR CNTs were laid in the first 

layer, then, the rest near infrared (MIR) light was focused at the second layer focal plane 

where 8 NIR CNTs were laid. 
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VISSchottkyEinsteinVISVISe qqWm   2

2

1
 

 

 

Figure 4.  Design model of 3D lens cavity consisting of 8 2 =16 CNTs. 

As shown in Figure 5, the visible light was focused on the first yellow focal plane laid with 

8 NIR CNTs plane 

ACNTs = 0.00134μm2, ASpotSize= 0.051μm2 (21) 

 

Figure 5  Two Layer Architecture indicated 4 focal spot sizes covered by 8 NIR CNT 
photon collectors 
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NIR light was defocused on the first yellow focal plane laid with 8 NIR CNTs plane  

 

ACNT = 0.00334μm2, ASpotSize=0.316μm2 (22) 

 

Yellow light became defocused on the second NIR focal plane laid with 8 NIR CNTs plane 

 

ACNT =0.0019μm2, ASpotSize=0.102μm2    (23) 

 

NIR light was focused on the second NIR focal plane laid with 8 NIR CNTs plane 

 

ACNT =0.0024μm2, ASpotSize=0.158μm2 (24) 

 

Then the total energy had two band widths, yellow and NIR, spreading at the first yellow-

light-focal plane, produced different numbers of photons: 

 

  yellowyellowphoton
yellowSpotSize

yellowCNT
Lensvislayerstyellow

st
yellow

N
A

A
AE

LayeratEnergyTotal

  1__
_

_
_1_

_1__

 

(25) 

  NIRIRphoton
IRSpotSize

IRCNT
LensNIRlayerstNIR

st
NIR

N
A

A
AE

layeratEnergyTotal

  1__
_

_
_1_

_1__

 

(26) 
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The remaining non-intercepted spectrum energy is re-distributed in the second NIR-focal 

plane 

  yellowyellowphotn
yellowSpotSize

yellowCNT
Lensyellowlayerndyellow

nd
yellow

N
A

A
AE

layerEnergyTotal

  2__
_

_
_2_

_2__

  

(27)

 

  NIRNIRphoton
NIRSpotSize

NIRCNT
LensNIRlayerndIR

nd
NIR

N
A

A
AE

layerEnergyTotal

  2__
_

_
_2_

_2__

  

(28)

 

 

The total number of charge carriers may be estimated in terms of the common efficiency 

parameter and the transport collision extinction probability.   

 

Einsteincollisionyellowphotonyellowphotonyellowcarrier ExNNN )1()( 2__1___ 
 (29) 

 

 EinsteincollisionNIRphotonNIRphotonNIRcarrier ExNNN )1()( 2__1___   (30) 

 

)( ____ yellowyellowcarrierNIRNIRcarrierlayertwototal VNVNqI 
 

 

  Nphoton_yellow_1= 2.71016, Nphoton_NIR_1= 1.391016, 

  Nphoton_yellow_2= 1.861016, Nphoton_NIR_2= 1.961016 (31) 

 

Itotal_two_layer/ ηEinstein·(1-Excollision)  = 9.42103  AMP in MKS (32) 
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I.4  Discussions and conclusions 

The physics of Diffraction limit of focus spot size is estimated by Lord Rayleigh about 

the diameter length R(z) , Z0 is the focus length 

2

1
2

0

2

1

0 1)(


























 


Z

ZZ
zR




 (33) 

when Z=Z0 

2

1

0
0

2






 



 Z

R  (34) 

 

It could be expressed to: 

 

2

5.0
2#


 fNA

k
R  (35) 

 

where k is a constant of spot size, NA is numeric aperture (n·sinθ). F# is of F number 

=(Z0/D), D is lens diameter. We can reduce the spot size R by tailoring the refractive 

index n and increasing the lens diameter, implying a possibility of magnification of the 

visible solar light within a smaller spot size than that of IR. 
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Based on the Lord Rayleigh’s diffraction-limited focal length known as the Rayleigh range 

x (Spot size radius defocus becoming 2 factor distance indicated in Figure. 6). 

 


 SpotSizeD

x


  (36) 

 

 

 

Figure 6.  Lord Rayleigh Diffraction Limit Focal Spot 

 

Thus, we can find the wavelength at 0.73 m, the Rayleigh range x=361 nm, when the 

wavelength is 1.12m, the Rayleigh range x= 568 nm.  Therefore, the thickness of a stack 

of spiral NIR CNTs has the total thickness: 16 x 0.66nm=10.56 nm which is about 1% of 

Rayleigh range. Consequently, the spot size variation of each NIR CNT along the same 

layer may be neglected. 
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One layer system puts 16 larger photons collectors made of NIR CNTs onto the yellow 

light focal plane, compared better than that of two layers having 8 NIR CNTs on each 

layers.  

Itotal_two_layer /Itotal_one_layer=1.02 (37) 

To increase the efficiency, we exploited the transition regime matter of which the Carbon 

NanoTube (CNT) is a typical example: the charge carriers along the elongated axial 

direction follow the classical physics model, while the azimuth cross section of CNT is 

governed by the quantum physics lattice vibrations, phonons. A higher energy photon 

which can pass the CNT threshold of higher band gap and producing higher velocity 

electric current j, along the longitudinal direction which as we said before is valid in 

classical kinetic theory of current, j=qv, which is proportional to the charge q, the 

density , and the velocity v. However, the quantum physics is also valid around the CNT 

tube cross section, where the de Broglie wavelength of electron wave function is defined 

as p=h/We must demand the uniqueness of the wave-function when it is going around 

the circumference of a CNT tube, which is  

)( NIRCNT
electron

DeBoglie dn
P

h   ; n=1,2, etc. (38) 

as Sommerfeld quantization rule has done for Bohr Hydrogen atom, and we have chosen 

n=1 for the ground state introducing the diameter d of CNT. Thus, we have verified 

independently Saito band gap formula 

EBG1/d CNT. (39) 
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This argument demonstrated the nanotechnology of CNT to be valid in the transition 

regime of both classical and quantum mechanical physics. Thus, we can design from the 

microscopic semi-conductor Einstein photoelectrical effect to the macroscopically 

demonstrated Photovoltaic Solar Cell (PVSC) demonstrated in Carbon NanoTube (CNT) 

first by Li of GE with 2~5% efficiency. We took advantage four more considerations 

beyond GE experiment: the full spectral, the full polarization, the focusing lens, andthe 

asymmetric Schottky effect.  

The solar cells enjoy seven attributes: (1) the design of multiple spectral layered 

architecture under the unit optical axis of one simple focusing lens was based on (i) GE, 

Li APL 2004, demonstrated CNT as PVSE with 5 V dc-bias and 2 symmetric Schottky 

barriers read-outs, 2%~5% quantum efficiency (QE) for mono or full polarization; (ii) 

Saito computed the CNT band gap Eg~1/Diameter. (2) We adopted the Field-Effect 

Transistor of CNT, without the undesirable dc-bias supply battery in the Space; instead, 

we employed asymmetric Schottky barriers made of two different metal-semiconductor 

barriers at both ends of CNT to enhance the Einstein photo-electric e-・-h+ separation to 

achieve the CCD-like dual read-out. (3) We exploited the Rayleigh diffraction limit focus 

spot size as a function of the spectral wavelength in Np cross-polarization-bars. (4) over 

full spectral bands in Ns layers avoiding the shadowing effect to enhance the total QE 

without the wasteful fill factor. (5) 1-D CNT enjoys less thermal noise in wasted heat 

~1/2 KBT=1/40 eV. (6) ~O(N) PIN-OUT dual CCD-like Circuitry. (7) We minimize the 

kinetic recombination of neighborhood electrons and holes in the phase space of the full 
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2D surface with spiraling charge carriers. Our analysis of the optics throughput efficiency 

indicated the trade-off design of a circuit of 2 different metal-semi-conductor Schottky 

Barrier contact electrodes for 16 CNT = Ns(2)・Np(8) sources, rather than original 

proposal of 16 CNT=44 in the 3D cavity structure which tracks the bare sun 

automatically in the Space and absorbs the dominated solar spectrum energy and thus can 

increase the total quantum efficiency. 
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II.  Summary of work in nanoindentation of elstoplastic and viscoelastic materials   

II.1  Nanoindentation in an Elastoplastic Material 

 Nanoindentation is an experimental method used to characterize materials at the nano 

and micro scale. During a nanoindentation test a diamond indenter tip is pressed into a 

material up to a specified force or depth and then withdrawn. As the test is performed, the 

indentation force and depth are recorded and results are normally presented in the form of a 

load-displacement curve. This load-displacement curve may be used to determine different 

material properties and characteristics (Oliver, 2004; Mencik, 2007). An important factor in 

examining the results is the type of tip used in indentation. Berkovich indenters are one of 

the most common types of indenter tips used. A Berkovich tip is faceted in the form of a 

three sided pyramid. Information relating to stress-strain behavior in an elastoplastic 

material during loading and unloading may be provided by finite element analysis. The 

commonly used Berkovich indenter with its three sided pyramidal geometry must be 

modeled and analyzed as a 3D contact problem in finite element simulations. However, the 

common approach in finite element simulation is to use a 2D axisymmetric indentation 

model which uses a conical shaped indenter as an equivalent to a Berkovich indenter 

(Knapp, 1999; Panich, 2004; Pelletier, 2000). The main reason for this approximation is 

that the 3D contact problem may require a large amount of computational resources and 

usually takes a long time to complete, especially when using a fine 3D mesh for accurate 

results. To overcome these challenges, a 70.3° half-angle conical indenter is often used as a 

substitute for modeling the Berkovich tip, on the bases that it provides the same indentation 
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depth to projected area ratio of a Berkovich indenter. By using a conical indenter the finite 

element analysis can be simplified by using a 2D axisymmetric model which allows for 

quicker simulations using fewer computer resources. Since this is a common approach for 

the finite element analysis of indentation problems it is important to compare the finite 

element analysis results for both conical and Berkovich indentations to investigate any 

deviations in behavior between the two. While there have been several recent studies 

comparing finite element simulations for the two indenters, the results presented by 

different investigators are not in full agreement. 

 The objective of this thesis is to present a detailed finite element study of 

nanoindentation in order to gain additional insights into the effect of tip geometry on the 

force-displacement curves obtained in nanoindentation tests. The previous studies used 

different elastoplastic models including the use of different power-law hardening and the 

use of elastic-perfect plasticity. This study will investigate the behavior of conical and 

Berkovich indenters for materials obeying a combined isotropic and kinematic hardening. 

II.1.2 Literature Review 

 One of the earliest studies that numerically compared different indenter tips was 

performed by Li et al. (2004). In their study they compared several types of indenters, 

Berkovich, Vickers, and Knoop to several different conical indenters with half angles that 

were determined by different equivalency rules. The study provides simulations with 

indentation depth of approximately 1000nm in an elastoplastic material with isotropic 

hardening. The load-displacement curves by Li et al. (2004) show close agreement between 



23 

 

the Berkovich result and the conical result with the Berkovich load being slightly higher in 

the mid range of indentation depth. The authors conclude that stress fields between 

Berkovich and conical indenters are different and if stress field is of interest a 3D 

simulation is called for. However, if only load-displacement curve is needed then the 

Berkovich indenter can be sufficiently simulated by a conical indenter (Li, 2004). 

 Swaddiwudhipong et al. (2006) also attempt to address equivalency of Berkovich and 

conical indenters by performing 2D and 3D finite element analysis to simulate the load-

displacement response in elastoplastic materials. Indentation simulations were performed 

for both conical and Berkovich indenters using different materials, including 6061 

aluminum, that are set to obey power-law strain hardening. Indentations were simulated to 

a relatively deep 5μm. The paper provides a load-displacement curve comparing conical 

and Berkovich indentations in 6061 aluminum. In this curve the Berkovich indentation 

curve is noticeably lower than that of the conical indentation. The authors conclude that the 

equivalency between the two types of indenters in terms of the curvature of the load-

displacement curve is not valid across the range of material properties considered 

(Swaddiwudhipong, 2006). 

 Finite element simulations of nanoindentation in elastoplastic materials with no 

hardening were performed by Xu and Li (2008) to study the effects of indenter geometry 

and mechanical properties of the indented material. The indenter geometries considered 

were conical and Berkovich. The study was specifically looking at correction factor but 

there are also plots that directly compare load-displacement behavior of both indenter 
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types. In the provided plots the Berkovich indentation curves are noticeably higher than 

those for the conical indenter across the range of material properties shown in the paper. 

The difference is explained as a geometry effect with the difference being more noticeable 

for harder materials (Xu, 2008). 

 Another investigation into the effect of indenter geometry on indentation test results 

was performed by Sakharova et al. (2009). Conical and Berkovich were among the indenter 

geometries examined. Elastoplastic indentations using Swift hardening law (Wang, 2005) 

were simulated using an in-house finite element code. The load-displacement plots 

provided in the paper show that the responses from the different indenters were very 

similar. Small differences in the curves were observed when the ratio of the residual 

indentation depth after reloading and the indentation depth at maximum load (hf/hmax) 

was below 0.65. In these cases the Berkovich indenter curves were slightly higher 

(Sakharova, 2009). 

 Comparisons between the load-displacement responses of materials indented by conical 

and Berkovich indenters using finite element analysis have been presented in these earlier 

studies. However, the results do not seem to show a consistent trend and therefore 

investigation into the equivalence between these two types of indenters is still incomplete.    
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II.1.3 Material Modeling 

 II.1.3.1 Description of the Constitutive Model 

 The combined isotropic/kinematic hardening model is a pressure-independent J2 

plasticity model that can be used for modeling materials. The behavior of the material is 

dependent on an elastic component and a plastic component. To show this the strain rate 

can be written in terms of a plastic and elastic component 

  el pl ε ε ε    (1.1) 

 The elastic component is isotropic and linear. It is dependent of two material 

parameters bulk modulus, K, and shear modulus, G. The parameters are calculated based 

on the Young’s modulus, E, and Poisson’s ratio,ν 
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 Using these parameters elasticity can be decomposed into volumetric and deviatoric 

components 

  pp K   (1.4) 

  3 qq G  (1.5) 

 For plastic behavior the isotropic/kinematic model is used with the Mises yield surface 

in ABAQUS (Simulia, 2010). The yield surface is given by the function 

     23

2
f k   S α S α  (1.6) 
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Figure II.1-1: Yield surface of combined isotropic/kinematic hardening model. 

 

 In the yield surface equation S is the deviatoric stress tensor which is defined as 

p S σ I , α is the deviatoric component of the backstress tensor, and k is the size of the 

yield surface. The backstress creates a translation of the yield surface in the stress space. 

This shift can be seen in the preceding figure of the yield surface. A Mises yield surface 

without kinematic hardening would remain centered along the hydrostatic axis. With the 

kinematic hardening the backstress translates the yield surface so that the center is no 

longer coincident with the hydrostatic axis. 

 Associated plastic flow is assumed for the model which gives 
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Where pl  is the equivalent plastic strain rate and plε  is the rate of plastic flow. 

 Hardening consists of a kinematic component and an isotropic component. The 

components of the kinematic hardening are the backstresses, of which there can be several. 

The hardening law for each backstress is given as 

  
1

( ) pl pl
k k k kC

k
    α σ α α   (1.9) 
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 The total number of backstresses is N, and Ck and γk are material parameters that are 

calibrated in ABAQUS based on test data. The values Ck are the initial kinematic hardening 

moduli, and γk determine the rate of decrease of the kinematic hardening moduli 

corresponding to an increase in plastic deformation (Simulia, 2010). 

 The evolution of the size of the yield surface, k, is defined by the isotropic hardening 

behavior of the model. The yield surface size evolution is a function of the equivalent 

plastic strain , pl , and can be written as 

  0| (1 )
plbk Q e  

    (1.11) 

Where 0|  is the size of the yield surface when plastic strain is zero. The maximum 

change in the size of the yield surface is given by Q∞, and b affects the rate of change of the 

yield surface size while plastic strain develops. The parameters Q∞ and b are obtained 

through calibration with test data (Simulia, 2010). In the kinematic hardening model, the 

kinematic hardening component causes a shift of the center of the yield surface in stress 
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space. The isotropic component can expand or contract the yield surface range. These 

components allow for the modeling of elastoplastic behavior of materials. 

 II.1.3.2 Calibration of Material Model 

 The experimental results and numerical simulations presented in this paper were 

performed on 6061 aluminum as a typical elastic–strain hardening plastic material. To 

evaluate the mechanical properties of this material, a macro scale uniaxial test was 

conducted and the observed stress–strain curve was used to calibrate the constitutive model 

used in the finite element analysis. All analyses were conducted using ABAQUS (Simulia, 

2010). In ABAQUS a metal plasticity constitutive model with combined 

isotropic/kinematic hardening was used to model the aluminum. Calibration of the 

combined isotropic/kinematic hardening model in ABAQUS requires half-cycle stress–

strain test data. To acquire the required data a uniaxial tension test was performed on a 

“dog bone” specimen of 6061 aluminum. During the test the sample was loaded in uniaxial 

tension, once it reached initial yield stress the sample was unloaded and reloaded to yield 

again. The unloading and reloading process was repeated for two additional cycles. Stress 

and strain data were recorded throughout the test. 

 

Table II.1-1: Evolution of yield stress with plastic strain. 

Plastic strain   0.0  0.002  0.01605 0.04667  0.07511

Yield stress (kPa)  300,000  307,500  317,181 325,620  330,831
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 From the initial elastic loading data the Young’s modulus (E) was calculated as 

approximately 65GPa. A Poisson’s ratio (ν) of 0.33 was assumed. Given the value of 

Young’s modulus, the strain hardening data relating the yield stress to plastic strain were 

obtained from the test results. Table II.1-1 shows the tabulated values of yield stress versus 

plastic strain. This data was used to calibrate the elastoplastic constitutive model. 

 The calibration process was performed by conducting a plane stress simulation of a 

single finite element subjected to displacements that approximate those applied in the 

uniaxial tension test. After conducting a series of simulations and adjusting the number of 

back stresses to five for smoothing the elastoplastic transition, the finite element model 

provided a good simulation of the 6061 aluminum stress–strain behavior, as shown in 

Figure II.1-2. 
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Figure II.1-2: Comparison of experimentally obtained stress–strain curves with the 
simulation of a combined isotropic/kinematic hardening plasticity model for 6061 
aluminum. 
 

II.1.4 Finite Element Modeling 

 In this study three different finite element nanoindentation models were investigated 

using the commercial finite element analysis program ABAQUS. The first model was a 2D 

axisymmetric model using a conical indenter. This type of model is commonly used in 

research and allows for relatively quick computation. The second model was a 3D finite 

element model with a conical indenter tip. This model, which is the full 3D equivalent to 

the 2D model, was used to confirm the suitability of the 3D finite element mesh. The third 

model was a 3D finite element mesh that included complete geometric representation of 

Berkovich tip. This model allows for a thorough comparison of Berkovich tip to the 
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assumed equivalent conic tip advocated in literature. Tip geometries for all the above 

models include a 200nm tip radius to simulate a used indenter tip. 

 II.1.4.1 Verification of the 2D Finite Element Model 

 The first step was to create and verify a 2D axisymmetric nanoindentation model in 

ABAQUS. The performance of the developed model was verified against the available 

results in literature. As part of his Ph.D. thesis, Poon (2009) performed a series of finite 

element simulations of elastic indentations while adjusting the radius and height of the 

specimen. These simulations suggest the proper specimen size to approximate a body of 

semi-infinite extent for a given indentation depth. Reproducing the key results of Poon’s 

simulation helped verify the quality of the finite element mesh and the sizing of the 

material dimensions used in the present study. 

 Poon (2009) initially provided a simulation for an axisymmetric indentation onto the 

top surface of a cylindrical specimen with a radius, rs, of 18μm and a height, hs, of 30μm. 

The specimen was modeled as an elastic isotropic deformable solid with E=70GPa and 

ν=0.3. The 70.3° half-angle “Berkovich equivalent” conical indenter was modeled as an 

analytical rigid surface with a tip radius of ρ=200nm. The maximum indentation depth was 

hmax=600nm. The finite element mesh was described as using 5006 three-node linear 

axisymmetric triangular elements (CAX3) with a higher mesh density at the indentation 

site. For later simulations the number of nodes was scaled depending on the specimen 

dimensions. Contact between the indenter and specimen was modeled as frictionless. 
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Figure II.1-3: Face partitioning of 2D axisymmetric specimen. 

 

 A 2D axisymmetric model was created for the present study using the same parameters 

detailed in Poon (2009). While CAX3 element type was used, a different finite element 

mesh was constructed to see the potential effects of mesh configuration. The specimen was 

modeled with editable dimension constraints for the radius and height. The face of the 

specimen was then partitioned into quarters. In order to easily provide a higher density 

mesh at the indentation site the quadrant containing the indentation site (upper left) was 

quartered. This last step was repeated until the face in the corner of the indentation site was 

sufficiently small. The resulting face partition of the specimen is shown in Figure II.1-3. 
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Edges were then seeded to provide a high mesh density at the indentation site and less 

density further away as shown in Figure II.1-4. 

 

Figure II.1-4: 2D axisymmetric finite element mesh of the specimen. 

 

 A linear elastic analysis was performed using the same material size and specifications 

used in the initial Poon simulation. Figure II.1-5 shows the load-displacement result 

obtained from this simulation and compares it to the simulation result presented in Poon 

(2009). The curves were in good agreement with only slight differences which may be 

caused by errors in reading the values from the curves in Poon (2009). 
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Figure II.1-5: Load-displacement comparison for elastic indentation simulation into a 

specimen with rs=18μm and hs= 30μm. 

 

 More verification simulations were conducted by varying the tip radius of the indenter. 

The specimen in these simulations was described as having converged geometry. 

Converged geometry is determined by using the following relations: 
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The result is shown for the range of indentation of approximately 260nm, though the actual 

indentation depth is not given. To reproduce the results for this study an indentation depth 

of 300nm was used on a material with rs= 30μm and hs= 30μm. Load-displacement results 

are shown in Figure II.1-6. The results show good agreement in values and trends when 

compared with those obtained by Poon (2009). 

 

 

Figure II.1-6: Load–displacement comparison for elastic indentation simulation into a specimen 
with varying indenter tip radii, ρ (30, 75, 120, 150 and 200 nm). 
 

 Simulations were also performed keeping the same specimen radius of rs=18μm, while 

varying the specimen height, hs, through the values 18, 30, 40, 60, 92, and 120μm. The 

load-displacement results for the simulations are shown in Figure II.1-7. The results exhibit 

the expected trend where load increases with decreased specimen height. 
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For further simulations in the study the material dimensions are chosen to be rs= 60μm and 

hs= 60μm to accommodate indentations of up to 600nm according the convergence 

relations provided. 

 

 

Figure II.1-7: Load–displacement curves for elastic indentation simulation into a specimen with 
rs = 18 μm and varying hs (18, 30, 42, 60, 92 and 120 μm). 
 

 II.1.4.2 Two and Three Dimensional Elastoplastic Simulations 

 The 2D axisymmetric finite element mesh was verified for elastic indentation. To 

perform elastoplastic indentations the calibrated elastoplastic constitutive model was used. 

The material specimen was sized to accommodate indentations up to a 600nm. The element 

type in the mesh was changed to a four-node bilinear axisymmetric quadrilateral element 
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(CAX4R), which for linear elastic analysis would produce the same results as those 

obtained by the CAX3 element used in verification studies discussed earlier. 

 Initial elastoplastic simulations resulted in load-displacement curves that exhibited a 

slight oscillation or “stepping type” behavior in the load-displacement curve. This behavior 

was corrected by providing a more uniform grid for the fine mesh around the indentation 

site. The mesh was verified through a convergence study of the 2D elastoplastic indentation 

as shown in Figure II.1-8. The final mesh chosen included 8,582 elements. The 2D analysis 

results were later used as a baseline for comparison against the 3D indentation models. 

Figure II.1-4 shows the 2D axisymmetric mesh with a detail of the local mesh near the 

indenter tip. 

 
Figure II.1-8: Comparison of the simulations using different 2D axisymmetric finite 

element meshes in elastoplastic indentation for 6061 aluminum. 
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 To provide confirmation of the suitability of 3D meshes and for direct comparison to 

the 2D model, a 3D conical tip nanoindentation model was first created. Similar to the 2D 

model the 3D indentation model was created using a 70.3° half-angle Berkovich equivalent 

cone. The conical indenter was created as a revolved shell analytical rigid surface as shown 

in Figure II.1-9. 

 

Figure II.1-9: 3D model of 70.3° half-angle conical indenter. 

 

 The specimen was created in a cylindrical shape with the same depth and radius as the 

2D axisymmetric model and elastoplastic material parameters were also identical to those 

used in the 2D axisymmetric model. The finite element mesh of the specimen was created 

so that it was fine on the surface around the site of indentation as well as the initial depth of 

the cylinder. The mesh was then increasingly coarsened in the areas that were further away 

from the indentation site. Each quadrant of the specimen’s top surface was meshed by 

using a method similar to that used in the 2D axisymmetric model, i.e., creating 

increasingly smaller square partitions and then seeding the edges for desired mesh density. 

The element type was chosen to be an 8-node linear brick using reduced integration and 
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hourglass control (C3D8R). Figure II.1-10 shows the 3D finite element mesh and a local 

mesh detail near the tip is shown in Figure II.1-11. 

 

Figure II.1-10: 3D finite element mesh of the specimen. 

 

Figure II.1-11: Local details of 3D finite element mesh near the indenter. 
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 A 3D Berkovich tip nanoindentation model was the third and final finite element mesh 

created for analysis and comparison. The material model and the finite element mesh of the 

specimen were carried over from the conical simulation. The main difference between the 

two 3D models was the tip geometry. The Berkovich tip was modeled as a three sided 

pyramid with a semi-angle between vertical and each face of 65.27°. An area of difficulty 

in modeling the Berkovich tip was in the process of rounding the tip. A pyramidal shape 

cannot be tangentially rounded by a sphere along all sides and edges. Instead the tip was 

rounded using the intersection between a sharp Berkovich geometry and a conical 

geometry with a 200nm tip radius and a half angle of 77.05° which is equivalent to the 

semi-angle to the sharp edges of a Berkovich pyramid. Due to the complexity in the 

Berkovich tip geometry it cannot be treated as an analytical rigid surface, instead it was 

modeled as a discrete rigid surface. A 3D model of the Berkovich indenter tip is shown in 

Figure II.1-12. 

 

 

Figure II.1-12: 3D model of Berkovich indenter. 

 

 After some preliminary simulations, slight adjustments were made to the specimen 

mesh for the Berkovich indentation to accommodate interaction with the more complicated 
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Berkovich tip geometry. Distortions in the mesh would arise depending on the orientation 

of elements that were contacted by the pyramid edge. The mesh was modified in the region 

of tip contact to align element edges with the pyramid edges. This correction reduced mesh 

distortion and provided an improvement in the load-displacement response. A local detail 

of the improved mesh configuration is shown in Figure II.1-13. 

 

Figure II.1-13: Local top surface details of the modified 3D finite element mesh 

configured to improve interaction with Berkovich indenter. 

 

 All three finite element models shared several common characteristics. The 

elastoplastic material properties used were those obtained from the uniaxial tension test of 
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6061 aluminum. Contact was modeled as frictionless between the indenter and material. 

Displacement of the indenter was applied through a displacement boundary condition 

applied to a reference node of the rigid indenter surface. Indentation force was obtained by 

requesting output of the reaction force at the reference node during the analysis. 

 Results in the study were all obtained from ABAQUS implicit analysis. However, 

explicit analysis was also considered. Simulation results revealed that explicit analysis 

would work well for analysis of a 3D cone since it provided a response very similar to that 

of the implicit analysis. However, the explicit analysis provided poor results for the 

Berkovich indentation. The poor performance was attributed to large elemental distortion 

of the material in regions of the mesh that had contact interaction with the edges of the 

Berkovich pyramid. This led to a decrease in simulation accuracy with increased mesh 

refinement due to larger relative distortions for the finer elements. These large distortions 

not only led to inaccuracy but the unexpected behavior where the material would pull back 

on the indenter resulting in a negative reaction force during unloading. Figure II.1-14 

shows an example of the mesh distortion experienced in an explicit analysis. Implicit 

analysis was confirmed to be the preferable method for nanoindentation simulation. 
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Figure II.1-14: Mesh distortion observed in explicit simulation of Berkovich indentation. 

 

 Using these three finite element models, a comparison of how geometry affects the 

indentation results can be made. The main point of interest was how similar the load-

displacement behavior was between a Berkovich indenter and the equivalent conical 

indenter. 



 

II.1.5 Results and Discussion 

 II.1.5.1 Finite Element Simulations of Nanoindentation 

 The results were first examined by considering the load-displacement curves of the 

elastoplastic indentation process. The load-displacement curve represents the overall 

material reaction to the nanoindentation process and it also represents what would be 

recorded during a nanoindentation experiment. An indentation depth of 400nm was chosen 

in this comparison study. 

 Figure II.1-15 compares the load-displacement results obtained from a 2D 

axisymmetric conical indentation simulation and a 3D conical indentation simulation. It 

would be expected that both simulations would provide the same curve. In line with 

expectations the two curves are in good agreement with each other. At maximum 

indentation depth the difference between the two curves is less than 2%. The differences 

may be attributed to the fact that the mesh of the 2D axisymmetric model is much finer 

than the 3D conical model in the area around the tip. Increasing the mesh refinement in the 

3D model would lead to significant increases in simulation time while producing little 

improvement in the simulation results. Hence, the 3D finite element mesh was considered 

to be sufficiently refined.   

 Figure II.1-16 shows a comparison of the load-displacement curves for the Berkovich 

and conical indenters. It can be seen that there is a difference between the results. The 

Berkovich indentation curve is noticeably lower than that of the conical indenter. 

According to common practice the curves should match if the projected area to indentation 
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depth is equal. The contact area during indentation was then checked for both indenter 

geometries to determine if there are differences in contact area that are leading to load 

differences. Figure II.1-17 shows the contact area for both Berkovich and conical indenters 

as it relates to indentation depth in the simulations. The contact area curves for the two 

indenters have slight differences but in general they are very similar to each other. 

 

 

Figure II.1-15: Comparison of load–displacement curves for 2D and 3D conical 
indentation simulations in 6061 aluminum. 
 



46 

 

 
Figure II.1-16: Comparison of load–displacement curves for conical and Berkovich 
indentation simulations in 6061 aluminum. 
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Figure II.1-17: Comparison of contact areas computed in conical and Berkovich 
indentation simulations in 6061 aluminum. 
 

 The contact areas for Berkovich and conical indenters are essentially the same but there 

load-displacement curves have noticeable differences; this provides good motivation to 

examine the normalized contact stresses for the two indenters. The normalized contact 

stresses during indentation for the two indenters is shown in Figure II.1-18. Both curves 

share the same initial elastic loading during contact initiation; however after the transition 

into the plastic regime the curve for the normalized stress for the Berkovich indenter is 

consistently lower than the curve for the conical indenter. There seems to be a geometry 

effect that is resulting in different indentation responses for the two indenters. It is also 
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observed that the contact stress is approximately 2.5 times the yield stress. This is possible 

because the constitutive model is shear sensitive and not pressure sensitive. 

 

Figure II.1-18: Comparison of normalized contact stresses computed for conical and 

Berkovich indentation simulations in 6061 aluminum. 

 

 To further examine the potential effect of geometry during the elastoplastic indentation, 

finite element visualizations were utilized to examine the material behavior around the 

indentation site. Figure II.1-19(a) shows the Mises stress field for the 70.3° conical indenter 

at maximum indentation depth. The axisymmetric geometry of the conical indenter 

provides an axisymmetric stress field. Figure II.1-19(b) shows the Mises stress field for the 

Berkovich indenter with a view cut in the plane perpendicular to a sharp edge of the 
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pyramid which provides an angle similar to that of the equivalent cone. On this cross-

section the stress fields between the two indenters are quite similar. Figure II.1-19(c) shows 

the Mises stress field for the Berkovich indenter with a view cut made in the plane of a 

sharp edge of the pyramid which provides the cross section with the most dissimilar angle. 

On this cross-section the stress field extends noticeably further laterally on the side of the 

flat edge of the pyramid and does not extends as far near the sharper edge. 

 The distribution of equivalent plastic strain which depends on the material model was 

also examined. Figure II.1-20(a) shows the equivalent plastic strain distribution on the 

material surface after conical indentation. The maximum equivalent plastic strain for the 

conical indentation was 170%. The distribution of equivalent plastic strain for the 

Berkovich indentation is shown in Figure II.1-20(b). For the Berkovich indentation the 

maximum equivalent plastic strain was 204% for the same indentation depth as that in 

conical indentation. It can be seen from the strain distribution that the edges of the pyramid 

contribute to creating higher equivalent plastic strains in the Berkovich indenter than those 

experienced by the conical indenter. 
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(a) 

 
(b) 

 
(c) 

Figure II.1-19: Mises stress in 6061 aluminum for (a) 70.3° conical indenter, (b) Berkovich 
indenter, viewed in plane perpendicular to indenter edge, and (c) Berkovich indenter, 
viewed in plane of indenter edge. 
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(a) 

 
(b) 

Figure II.1-20: Contours of equivalent plastic strain in 6061 aluminum for (a) 70.3° conical 
indenter and (b) Berkovich indenter. 
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 Despite the contact area being the same throughout the indentation process for both 

indenters, the material is responding differently due to geometry effects. The edges of the 

Berkovich pyramidal geometry induce higher plastic strains. This means that for the 

Berkovich indenter there is more localized yielding in the material. With more localized 

yielding the material is less resistant to penetration which results in lower required 

indentation loads for the Berkovich indenter compared to the 70.3° conical indenter. 

 II.1.5.2 Comparison of Nanoindentation Simulations and Experiments 

 To assess the validity of numerical simulations, it is always desirable to compare them 

with the observed responses of the material in nanoindentation experiments. This will also 

provide additional confidence regarding the ability of the finite element analysis to 

accurately predict a real nanoindentation test result. Hence, a cylindrical specimen was 

prepared for the nanoindentation test using the same type of aluminum used in calibration 

of the finite element model. A series of nanoindentation test were performed using an 

Asylum Research MFP-3D™ Stand Alone Atomic Force Microscope fitted with a 

NanoIndenter module (Asylum Research, Santa Barbara, CA). A series of 64 indentations 

were performed in a grid pattern on the material surface and a sampling of curves showing 

the variation in load-displacement response among the indentations is shown in Figure II.1-

21. The indentations were performed using force control to a maximum indentation force 

of 1.4mN. The variation in indentation depth is thought to be from variations in the 

material properties due to the effects of machining the sample. An AFM produced contour 
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plot of the material surface is shown in Figure II.1-22. The surface roughness for this 

100μm2 plot was given as approximately 3.5nm. 

 

Figure II.1-21: Upper and lower bounds of experimental load–displacement curves in 6061 
aluminum. 
 

 

Figure II.1-22: AFM-produced contour plot of 6061 aluminum specimen surface. 
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 Finite element simulations were performed to a maximum depth similar to the 

experimental indentations. Comparing the unloading slopes of the experimental and 

simulated curves revealed a Young’s modulus from the nanoindentation experiments of 

approximately 59GPa, which was approximately 9% lower in magnitude than the 65GPa 

modulus determined in the macro scale test. The simulation results for both the conical and 

Berkovich indenters provided load-displacement curves with significantly lower loads 

compared to experimental values. Warren et al. (2006) discuss that machining induced 

residual stress can significantly affect load-displacement curves. The residual stresses may 

be estimated through finite element simulation. In their sample of 52100 steel, residual 

stresses were estimated to be 18% of yield stress in the horizontal direction and 12% of 

yield stress in the vertical direction. These values were used as a starting point in estimating 

the residual stresses in the aluminum specimen in the present study.   

 Using the 2D axisymmetric finite element model (due to its lower computational effort) 

a series of simulations were performed while adjusting residual stress parameters. The 

residual stresses were estimated to be approximately 8% of yield stress in the horizontal 

direction and 5% of yield in the vertical direction. Incorporating these residual stresses as 

the initial stresses was shown to bring up the computed load-displacement curves well 

within the experimental bounds. Figure II.1-23 compares the conical and Berkovich 

indentations without residual stresses, the conical indentation with residual stresses, and the 

experimental bounds. 
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Figure II.1-23: Comparison of numerically obtained force–displacement curves with 

experimental bounds for 6061 aluminum. 

 

II.1.6 Conclusions 

 Finite element simulations of elastoplastic nanoindentations were performed for conical 

(70.3°) and Berkovich indenters to study the effect of indenter geometry on the response of 

an elastoplastic material. It is shown that there are clear differences in the load-

displacement responses between the two indenters. Loads in the Berkovich indentation are 

noticeably lower. It is confirmed that contact areas during indentation are very similar, 

resulting in lower normalized contact stress for the Berkovich indenter. Examination of 
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stress fields near the indenter tip shows that the symmetrical cross-sections of the 

Berkovich indenter are similar to the axisymmetric stress field of the conical indenter and 

differences arise when compared to asymmetric cross-sections of the Berkovich indenter. 

Maximum equivalent plastic strain induced by indenter is demonstrated to be 20% higher 

for the Berkovich indenter. It is concluded that higher localized plastic strains would result 

in less resistance to indentation by the material and explain the load-displacement behavior. 

The results reveal that the use of a 70.3° conical indenter to approximate the response from 

a Berkovich indenter is not valid for all materials. 

 The ability of finite element analysis to predict experimental nanoindentation results 

was also examined. Comparisons with experimental results suggest that machining-induced 

residual stresses have likely affected the experimental results. It is also demonstrated that 

these residual stresses may be estimated by matching simulated load-displacement curves 

within the range of experimental curves. 



 

II.2: Nanoindentation in a Viscoelastic Material 

II.2.1 Introduction 

 Nanoindentation in viscoelastic materials presents new challenges due to the time 

dependent behavior of the material. Thus, the response of the material is sensitive to the 

speed of penetration by the indenter. With elastic and elastoplastic materials it is common 

for material parameters such as the elastic modulus to be determined by examining the 

unloading curve obtained during a nanoindentation test (Oliver, 2004). The techniques are 

well established and work well for elastic and elastoplastic materials. However, the 

procedures developed for these materials are either inaccurate or have many uncertainties 

for viscoelastic materials (VanLandingham, 2001). The time dependence adds complexities 

to the material behavior that the previous techniques cannot capture. For instance, the 

Young’s modulus of a material is no longer constant like it is with elastic and majority of 

elastoplastic materials. 

 There is still much research needed in the investigation of viscoelastic nanoindentation. 

The use of finite element analysis provides the option to quickly examine the behavior of 

this type of material by varying key parameters and observing the differences in behavior. 

The numerical simulations also provide the ability to look more closely at the behavior of a 

material in nanoindentation. However, for finite element simulations to be useful they must 

also be proven to accurately predict the behavior observed in experimental nanoindentation 

curves. 

 In this study the goal is to examine how well a viscoelastic nanoindentation simulation 

can capture the behavior of the time dependent material. First it will be confirmed that a 
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viscoelastic material model can be calibrated given experimental relaxation data. This 

material response can be defined using Prony series parameters. Then, the study will 

investigate the nanoindentation response of the viscoelastic material and its comparison to 

experimental nanoindentation results for the same type of material. 

II.2.2 Literature Review 

 An examination of depth-sensing indentation, as used to measure the elastic modulus of 

polymeric materials, was performed by VanLandingham et al. (2001). In their paper the 

authors reviewed the traditional analysis of load-displacement data for nanoindentation and 

discuss the limitations and uncertainties that are found for various measurements in 

nanoscale indentation. The authors also discuss that the application of these established 

methods toward use in polymers often lead to the inaccurate measurements of the elastic 

modulus. The paper shows that in comparison to bulk measurements obtained in 

macroscopic experiments the elastic modulus values measured in quasi-static indentations 

are relatively high. The differences are attributed to the effect of the viscoelastic behavior 

in the material and its effect on the shape of the load-displacement unloading curve. As a 

method to potentially alleviate many of the problems associated with the quasi-static 

indentation testing VanLandingham et al. (2001) discuss the use of dynamic indentation 

testing. The authors discuss that, previously, rigorous analysis of dynamic indentation 

behavior of polymers with regard to viscoelasticity has not been reported. The study 

concludes that for advancements in quantitative characterization of polymer properties 

there will need to be material-independent calibration procedures, reference materials, 
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advances in instrumentation, and new analysis and testing procedures to account for 

polymer viscoelastic behavior (VanLandingham, 2001). 

 A study by Cheng and Cheng (2005) looks at conical indentation in linear viscoelastic 

materials and the relationship between contact depth, initial unloading slope, and the 

viscoelastic properties of the material. In particular they examine the Oliver-Pharr method 

for determining the contact depth and whether this method is applicable to indentations in 

viscoelastic materials. In their study the authors use finite element analysis to examine the 

viscoelastic behavior. The study determines a relationship between initial unloading slope, 

contact depth, and the instantaneous modulus for a sufficiently high rate of unloading. A 

relationship between contact depth and indenter displacement is also discussed. From their 

results the authors conclude that the Oliver-Pharr method of estimating contact depth is not 

applicable for nanoindentation of viscoelastic materials. These conclusions are based on 

constant displacement rate loading and are said to hold for other loading conditions (Cheng 

and Cheng, 2005). 

 Other studies have also looked into the accuracy of the Oliver-Pharr method to 

determine material properties of viscoelastic materials. Tranchida et al. (2006) looked into 

the Oliver-Pharr method’s ability to accurately evaluate Young’s modulus of polymers by 

nanoindentation. When comparing Young’s modulus determined in macroscopic tests to 

the modulus determined through the Oliver-Pharr method for a viscoelastic material the 

study shows that there is clear disagreement between the values. Young’s modulus is 

shown to be overestimated up to 3.3 times by the Oliver-Pharr method. The study proposes 
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the use of a correction factor relating the modulus obtained through nanoindentation and 

the expected value. The authors conclude that a satisfactory evaluation of the Young’s 

modulus for polymers can be obtained by coupling their correction factor with the 

calibrations of the Oliver-Pharr method (Tranchida, 2006). 

 In another study looking further into the issue of using the Oliver-Pharr method for 

determining Young’s modulus, Tranchida et al. (2007) examines the effect of pile-up and 

viscoelasticity on the overestimation of Young’s modulus. The study shows that the effect 

of pile-up can be minimized by using shallow indentations at a true nanoscale. However, 

evaluating the Young’s modulus with the Oliver-Pharr method still gives rise to significant 

deviations with respect to the value measured macroscopically. One issue with viscoelastic 

indentations is the emergence of a “nose” in the unloading force curve. This can be 

minimized by performing indentation at large loading rates. Again the Young’s modulus 

determined through the Oliver-Pharr method is still concluded to be consistently higher 

than the bulk elastic modulus. It appears that viscoelasticity has a significant effect on the 

contact mechanics compared to the elastic one. The conclusion is that the Oliver-Pharr 

procedure and other methods derived from elastic contact cannot be applied to the load-

displacement curve of viscoelastic nanoindentations (Tranchida, 2007). 

 Nanoindentation is often used in the determining of the material properties in thin 

films. Zhou and Komvopoulos (2006) examine the viscoelastic behavior of thin films, 

showing that, with thin films, stiffness increases with the indentation depth due to increased 

contact area and the effect of the rigid substrate. Thickness and loading rate are discussed 
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as having a strong effect on the films stiffness. Similar to other studies the Oliver-Pharr 

method of determining Young’s modulus overestimates its value though with the thin films 

the substrate plays a role in the overestimation. The study shows that experimental results 

for reduced elastic modulus which were modified by subtracting the viscous component 

show fair agreement with analytical results (Zhou and Komvopoulos, 2006). 

 Spherical indentation of linear viscoelastic materials are examined in a paper by 

Ramesh Kumar and Narasimhan (2004). In this study the relaxation response of 

polymethyl methacrylate (PMMA) determined from a conventional mechanical test. This 

data from the relaxation response can be used to determine the Prony series which is an 

exponential series that defines the relaxation function of the material. The study assesses 

the validity of viscoelastic indentation theories by comparing experimental and finite 

element indentation results. For spherical indentations the two are shown to be quite 

similar. The authors show that depth-sensing indentation may be used to extract 

viscoelastic response function but that the conventional method of using the unloading 

curve may results in large errors in the determination of Young’s modulus (Ramesh 

Kumar, 2004). 

 Another study that includes examination of the indentation response of polymethyl 

methacrylate (PMMA) was performed by Oyen (2006). In the study indentations were 

performed on PMMA using a Berkovich indenter. It is shown that additional displacements 

occurred beyond that due to the viscoelastic response. These additional displacements are 

likely due to plastic deformations and are mainly caused by the sharp edges of the 
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Berkovich indenter and complicate the viscoelastic analysis. The author states that a 

spherical indenter may be a better choice to keep the material response within the linear 

viscoelastic regime. If pyramidal indenter geometry is used then plastic deformations must 

be considered (Oyen, 2006). 

 Sane and Knauss (2001) performed a study to determine various material functions of 

PMMA. The paper presents data for the relaxation response of PMMA which are of 

particular interest to this thesis. This provides an opportunity to model a second PMMA 

material, in addition to that reported by Ramesh Kumar and Narasimhan (2004), and 

provide an opportunity to make a comparison between the indentation responses of two 

different reported samples of PMMA. 

 There have been many studies on the response of viscoelastic materials and their 

response during indentation. There is a clear consensus that conventional method used to 

determine properties of elastic and elastoplastic materials are not accurate for viscoelastic 

materials. Further investigation and insights are needed in regards to the response of these 

materials during nanoindentation. 

II.2.3 Material Modeling 

 II.2.3.1 Description of the Constitutive Model 

 The viscoelasticity model describes rate-dependent material behavior. These materials 

experience dissipative losses that are caused by internal damping effects. Considering small 
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strains, let us assume that that material is subjected to a time varying shear strain, γ(t). The 

shear stress response, τ(t),  is defined as 

  
0

( ) ( ) ( )R

t
t G t s s ds     (2.1) 

Where the time dependent shear relaxation modulus, given as GR(t), characterizes the 

material response. The constitutive behavior is clearly demonstrated by a relaxation test in 

which a sudden strain γ is applied to the material specimen and is then held constant. At 

zero time, taken as when the strain is suddenly applied, the shear stress is given as 

  ( ) ( )Rt G t   (2.2) 

Since γ is held constant as a fixed strain, =0 for all t>0, after a long period of time the 

material will converge to a constant stress (Simulia, 2010). 

 In ABAQUS the material relaxation is defined using the dimensionless form given 

below: 

  0( ) ( ) /R Rg t G t G  (2.3) 

The instantaneous shear modulus is 0 (0)RG G . Given the dimensionless form the 

equation for shear stress becomes: 

  0 0
( ) ( ) ( )R

t
t G g t s s ds     (2.4) 

The dimensionless relaxation function ( )Rg t  then has an initial value of (0) 1Rg   and a 

value at infinity of 0( ) ( ) /Rg G G    (Simulia, 2010). 

 In ABAQUS, the viscoelastic material is assumed to be defined by a Prony series 

expansion of the dimensionless relaxation function as follows 
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Where N, P
ig , and G

i  are material constants with i=1, 2, …, N. Using Eq. (2.5), the 

expression for shear stress becomes 
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The variables i  are state variables that control the stress relaxation. The preceding 

equations are used by ABAQUS to define the time-dependent shear behavior in the 

viscoelastic model. To obtain the Prony series coefficients ABAQUS can perform a curve 

fitting viscoelastic material evaluation based on user provided relaxation data, as described 

in section 2.3.2. A similar method is used for the volumetric response of the system 

(Simulia, 2010). 

 II.2.3.2 Calibration of Material Model 

 The numerical results in this chapter were calibrated by using experimental results 

found in literature for polymethyl methacrylate (PMMA). All analyses were conducted 

using ABAQUS (Simulia, 2010). In ABAQUS a viscoelastic material model was used to 

model the PMMA. Calibration of the material model in ABAQUS requires either the input 

of relaxation data or a set of Prony series parameters to define the material behavior. For 



65 

 

the viscoelastic simulations presented in this Chapter the material models were calibrated 

using test data found in literature. 

 One set of relaxation data was presented by Ramesh Kumar and Narasimhan (2004). 

The relaxation response in this paper was reported graphically. Hence a number of data 

points were picked from the reported graphs in order to create a data series representation 

of the relaxation data. The data was then converted to a dimensionless form for the use in 

ABAQUS. Table II.2-1 shows the dimensionless data as extrapolated from literature 

(Ramesh Kumar and Narasimhan, 2004). In addition to the viscoelastic data, an 

instantaneous Young’s modulus of 2600 MPa and a Poisson’s ratio of 0.38 are selected 

based on the information given in the paper. 

 

Table II.2-1: Dimensionless relaxation response. 

gR  1  0.823  0.800 0.785 0.773 0.769 0.767  0.763 0.760

Time  0.01  50  100 150 200 250 300  400 1000

 

 Viscoelastic material response can be defined through a Prony series representation. 

ABAQUS allows for evaluation of viscoelastic material behavior using the dimensionless 

relaxation test data. During the material evaluation, ABAQUS performs a curve fitting to 

the test data and upon completion displays the Prony series parameters and material 

response for standard relaxation and creep tests. The Prony series parameters calculated by 
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ABAQUS for the Ramesh Kumar and Narasimhan relaxation data are shown in Table II.2-

2. 

Table II.2-2: Two-term Prony series from material analysis. 

i  g(i) Prony  k(i) Prony  τ(i) 

1  0.14366  0  11.346 

2  9.83E‐02  0  115.69 

 

 The material model calibration was performed through a simulation using a single finite 

element subjected to a uniaxial displacement to create a 1% strain with the viscoelastic 

material model defined using the aforementioned Prony series parameters. Using the stress 

data and the relation σ(t)=G(t)ε0 the relaxation response for the ABAQUS model was 

determined. A comparison between the viscoelastic model simulation and the experimental 

data presented by Ramesh Kumar and Narasimhan is shown in Figure II.2-1. 
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Figure II.2-1: Comparison of experimental relaxation response to viscoelastic finite 
element simulation for PMMA. 
 

 The ABAQUS simulation exhibited good agreement with the experimental values, with 

only slight differences noticeable throughout the response. With the simulation agreeing 

with the values reported in literature the model was determined to be well calibrated. 

II.2.4 Finite Element Modeling 

 The finite element nanoindentation models in this chapter were investigated using 

ABAQUS. The models used are 2D axisymmetric models using either spherical or conical 

indenters. 2D axisymmetric models have the advantage of allowing quicker simulations 

than equivalent 3D models. 

 II.2.4.1 Verification of the Finite Element Model 

 A viscoelastic material model of polymethyl methacrylate (PMMA) was calibrated 

from relaxation data reported by Ramesh Kumar and Narasimhan (2004) as described 
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earlier in the thesis. Ramesh Kumar and Narasimhan also present results for spherical 

indentation. To verify the 2D axisymmetric indentation model using ABAQUS, a spherical 

indentation simulation was used to recreate the results presented by Ramesh Kumar and 

Narasimhan. 

 The spherical indentation model was created by using the axisymmetric model from the 

previous chapter and adapting it to include a spherical indenter. The indenter was sized to a 

radius of 3.5mm to match that of the experiment presented in Ramesh Kumar and 

Narasimhan (2004) and the specimen was sized to 17.5mm on each side. The specimen 

was modeled as a viscoelastic isotropic deformable solid with elastic parameters set to an 

instantaneous E=2600MPa, ν=0.38, and viscoelastic behavior defined by the Prony series 

parameters as shown in Table II.2-2. The indenter was modeled as an elastic isotropic 

deformable solid with an elastic modulus large enough to prevent deformation of the 

indenter during indentation. The indentation simulation used load control with a triangular 

load history with a rise time of 10s and a maximum load of 100N. Contact between the 

indenter and specimen was modeled as frictionless. The finite element mesh with indenter 

is shown in Figure II.2-2. 
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Figure II.2-2: Finite element mesh with indenter used for spherical indentation. 

 

 A viscoelastic finite element analysis was performed on the above described model. 

From the simulation the load and displacement values were recorded for a direct 

comparison with the results presented in Ramesh Kumar and Narasimhan (2004). Two 

different figures were used for comparison. 

 The first figure used in the comparison is a displacement-time history plot. The 

experimental results extrapolated from Ramesh Kumar and Narasimhan (2004) are 

compared with finite element results from ABAQUS and are shown in Figure II.2-3. The 
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two plots were in excellent agreement for a large range of the indentation process. There 

was some slight deviation during the unloading portion of the plot where the finite element 

simulation experiences displacements were slightly lower than the experimental data. 

 

Figure II.2-3: Comparison of simulated and experimental spherical indentation 
displacement-time responses for PMMA. 
 

 A comparison of the load-displacement response was also performed. The curves for 

the experimental and finite element load-displacement results are show in Figure II.2-4. In 

this figure the differences between the curves become more noticeable. There were some 

differences in both the loading and unloading portions of the curves. The differences during 

loading were mostly during the initial stage of the loading of load under 20N, with the 
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loads from the experiment being slightly higher. During unloading the behavior was still 

similar but there were some more pronounced differences. Particularly the recovery of the 

material in the experiment seems to lag behind the response of the finite element 

simulation. The latter difference is probably due to a slight elastoplastic behavior in the 

material. 

 

Figure II.2-4: Comparison of simulated and experimental spherical indentation load-

displacement responses for PMMA. 

 

 In the paper by Ramesh Kumar and Narasimhan (2004) the experimental results were 

similarly compared to numerical and analytical results for the indentation. The comparisons 
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performed in this thesis compare well to those presented before and similar differences 

were observed between experimental and numerical results. The simulations presented here 

then show good verification of the finite element model. 



 

II.2.5 Results and Discussion 

 It has been shown by Ramesh Kumar and Narasimhan (2004) and Tranchida et al. 

(2007) that obtaining viscoelastic material parameters from nanoindentation plots with the 

conventional methods used for elastic and elastoplastic materials has many inaccuracies. 

Using the Prony series parameters shown in Table II.2-2 as a starting point, an investigation 

was performed to see whether experimental nanoindentation results on a sample of 

polymethyl methacrylate (PMMA) as presented in a different study could be matched 

through adjustment of the Prony series parameters. 

 A study that provided load-displacement results from nanoindentation on PMMA was 

presented by Oyen (2006). The nanoindentations reported by Oyen were performed by 

using a Berkovich indenter and a triangular load history to a maximum indentation load of 

10mN. The experiments used for comparison had a rise time of 500s. To perform the finite 

element simulation of the nanoindentation a 2D axisymmetric model using an equivalent 

70.3° conical indenter was used. A 2D model was chosen due to its lower computational 

requirements allowing for more iterations of the simulation in a shorter time frame. 

 After running an initial finite element analysis of the nanoindentation using the same 

loading history as presented by Oyen (2006) the simulation and documented experimental 

results were compared. This comparison is shown in Figure II.2-5. The two response 

curves were in good agreement through the loading portion of the indentation, with only 

slight differences being noticeable. However, during the unloading phase of the indentation 

the responses differed significantly. The experiment shows a significant amount of residual 
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depth after the completion of the test, whereas in the simulation the residual depth was 

fairly minimal. 

 

Figure II.2-5: Comparison of load-displacement responses of PMMA obtained from finite 

element simulation against the experimental data by Oyen (2006).  Material model 

parameters are calibrated from Ramesh Kumar and Narasimhan (2004) data. 

 

 The simulation seemed to do a good job of predicting the loading response during the 

indentation; however the unloading response did not provide a good prediction of the 

experimental behavior. These differences could have been due to the differences in 

morphology between the PMMA specimens used in the two studies and/or due to the 
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effects of the sharp Berkovich indenter used in obtaining the experimental response. Using 

the calibrated response as a starting point, an investigation into the effect of adjusting the 

Prony series parameters was performed. 

 In order to get an understanding of how different Prony series parameters adjustments 

would affect the load-displacement response in a nanoindentation test a sensitivity study 

was performed. For the sensitivity study a single parameter was adjusted at a time and the 

change in the shape of the response curve was noted. Adjustments were made using a two-

term Prony series so that adjustments could be compared to the calibrated response. 

 

 

Figure II.2-6: Change in simulation response after an increase in the g(2) term. 

 



76 

 

 The first adjustment was made to the g(2) term. The value was adjusted from 0.0983 to 

0.8. The simulation result from this single adjustment is shown in Figure II.2-6. The figure 

shows that this adjustment produces a very significant increase in both the maximum 

indentation depth from the 10mN force as well as the residual displacement after 

unloading. 

 An adjustment was then made to the τ(2) term in the Prony series. The term was 

adjusted from the original value of 115.69 to 500. The difference in the simulation is shown 

in Figure II.2-7. This figure shows that this adjustment has the effect of decreasing the 

maximum indentation depth. The two parameters have opposing effects in how they affect 

the simulation response. It was thought then that adjustments to both parameters could 

provide a material response where the maximum indentation depth remains the same but 

the residual displacement after indentation has increased. A series of simulations were then 

performed making adjustments to both parameters to test this. 
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Figure II.2-7: Change in simulation response after an increase in the τ(2) term. 

 

 Through the series of simulations a new finite element response was obtained that was 

closer to the experimental curve. Since making adjustments to increase the residual 

displacement also had the effect of increasing the maximum displacement at peak load, it 

was difficult to maintain the same initial loading behavior which matched well from the 

initial calibrated simulation. Adjustments were ultimately made to both terms of the Prony 

series and the final term values were; g(1)=0.11, τ(1)=100, g(2)=0.3, τ(2)=200. The 

response using these parameter adjustments is shown in Figure II.2-8. As the figure shows 

the loading response maintained good agreement with the original calibrated simulation 

and the experimental results, however, the maximum displacement had increased slightly. 
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The residual displacement had increased in the new simulation to account for 50% of that 

in the experimental data. 

 

Figure II.2-8: Comparison of simulation before and after Prony adjustments to 

experimental Berkovich nanoindentation load-displacement response by Oyen (2006) for 

PMMA. 

 

 It was shown that adjusting Prony series parameters to affect the shape of the simulated 

load-displacement curve to more closely match an experimental curve was possible. 

However, the adjustments seemed to have a limit to how much they could be adjusted 

while maintaining the behavior that was already in good agreement. 
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 After the parametric study, a different relaxation response of PMMA as reported in a 

paper by Sane and Knauss (2001) was examined for its response in nanoindentation. 

Similar to before, data points were taken from a relaxation response figure and the data 

series was used to define a viscoelastic material. A material analysis in ABAQUS revealed 

that this material was defined by a six-term Prony series. Figure II.2-9 shows the 

indentation response of the material in comparison to the simulation response from the 

Prony series parameter study and the experimental indentation curve from Oyen (2006). 

The loading response of all considered simulations and the experimental data were in good 

agreement. Interestingly, the simulated response of the PMMA presented by Sane and 

Knauss (2001) was very similar to the response obtained in the Prony series parametric 

study, except for some slight deviation during the latter half of the unloading phase. 



80 

 

 
Figure II.2-9: Comparison of simulations from Prony series adjustments and that calibrated 
from Sane and Knauss (2001) data to experimental Berkovich nanoindentation load-
displacement response for PMMA. 
 

 The similarities in response from the Prony series parametric study simulation and the 

simulation calibrated from the data in Sane and Knauss (2001) provided motivation to look 

into the relaxation responses of the finite element models used in this study. The relaxation 

response was attained through finite element simulation as described earlier in this thesis. A 

comparison of the finite element analysis results for the relaxation responses of the 

calibrated Ramesh Kumar and Narasimhan (2004) and Sane and Knauss (2001) models as 

well as the model developed through the Prony parameter study are shown in Figure II.2-

10. The comparison shows that the relaxation response for the Sane and Knauss data is well 

predicted by the model developed through the Prony series parametric study. This showed 
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that it is possible to predict different morphology responses for the same type of polymer 

through Prony series parameter adjustment. 

 

Figure II.2-10: Comparison of relaxation responses of PMMA for simulations using Prony 

adjustments, calibrated from Sane and Knauss (2001) data, and calibrated from Ramesh 

Kumar and Narasimhan (2004) data. 

 

 After adjusting Prony series parameters in an attempt to simulate an experimental 

nanoindentation response through numerical analysis it seemed that there was a limit to the 

extent of the manipulation. The adjusted model had a response closer to the experimental 

curve but there was still a significant difference during unloading. However, the adjusted 

model did match well with the simulation of another model calibrated from an 



82 

 

experimental relaxation response found in literature. It is possible that for the prediction of 

the experimental nanoindentation curves a more complex Prony series defined by more 

terms would be needed. However, it seems more likely that the additional residual 

deformation during unloading is due to the onset of plastic deformation due to effects from 

the sharp pyramidal indenter. 

II.2.6 Conclusions 

 A finite element model was calibrated for polymethyl methacrylate (PMMA) using 

relaxation data reported in literature. The model displayed good agreement with the 

reported relaxation and spherical indentation responses. The nanoindentation response of 

the finite element model using a Berkovich equivalent conical indenter was then compared 

to experimental results reported in literature using a Berkovich indenter. The comparison 

showed good agreement in the loading response. However, the unloading response for the 

experimental curve displayed a greater amount of residual displacement than shown in the 

numerical result. 

 Prony series parameters for the calibrated model were calculated by evaluating the 

material in ABAQUS. A series of Prony parameters adjustments were performed in an 

effort to more closely match the numerical solution to the experimental nanoindentation 

result. The resulting adjusted model had a response more similar to the experimental result 

but still had a smaller residual displacement during unloading. It was found however that 

this adjusted model provided a similar response to a finite element model calibrated with 

other PMMA relaxation data reported in literature. 
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 The results show that it is possible to provide predictions for different samples of 

PMMA through Prony series parametric studies. However, there are still issues in regard to 

providing predictions of Berkovich indenter nanoindentation. The residual displacements 

experienced in the experimental indentation are thought to be from plastic deformations 

caused by the sharp pyramidal geometry of the Berkovich indenter. 
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II.3: Conclusions and Future Challenges 

 Elastoplastic nanoindentations using conical (70.3°) and Berkovich indenters were 

investigated using finite element simulations to study the effect of indenter geometry on the 

response of the material. The simulations show clear differences in the load-displacement 

responses of two indenters. Loads in the Berkovich indentation are noticeably lower even 

though the contact areas during indentation are very similar. The result was lower 

normalized contact stress for the Berkovich indenter. Examination of stress fields near the 

indenter tip showed that maximum equivalent plastic strain induced by indenter is 20% 

higher for the Berkovich indenter. The higher localized plastic strains would result in less 

resistance to indentation by the material and explain the load-displacement behavior. The 

results reveal that the use of a 70.3° conical indenter to approximate the response from a 

Berkovich indenter is not valid for all materials. 

 The ability of finite element analysis to predict experimental nanoindentation results 

was also examined. Comparisons suggest that machining-induced residual stresses have 

likely affected the experimental results. Residual stresses may be estimated by matching 

simulated load-displacement curves within the range of experimental curves. 

 Finite element analysis of viscoelastic material was also examined. Using relaxation 

data reported in literature a finite element model was calibrated for polymethyl 

methacrylate (PMMA). Simulations of a relaxation and spherical indentation tests 

displayed good agreement with the reported curves. Nanoindentation analysis using a 
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Berkovich equivalent conical indenter showed good agreement in the loading response 

compared to reported experimental curves using a Berkovich indenter. However, the 

unloading response displayed a greater amount of residual displacement in the 

experimental results. 

 A Prony parameter adjustment study was performed in an effort to more closely match 

the numerical solution to the experimental nanoindentation result. The adjusted model had 

a response more similar to the experimental result but still had a smaller residual 

displacement during unloading. However, the adjusted model provided a similar response 

to a finite element model calibrated with different PMMA relaxation data reported in 

literature. 

 It was shown to be possible to provide predictions for different samples of PMMA 

through Prony series parametric studies. Conversely, there are challenges in providing 

predictions of Berkovich indenter nanoindentation. The residual displacements in the 

experimental indentation are considered to be from plastic deformations caused by the 

sharp pyramidal geometry of the Berkovich indenter. 

 Insights have been gained into the behavior of elastoplastic and viscoelastic materials 

during nanoindentation. Nevertheless, there are many questions that remain in the areas of 

numerical and experimental nanoindentation. This thesis has explored the comparison of 

conical and Berkovich indenters through simulation. The examination of additional 

materials following various hardening laws is still needed. In addition, investigations into 

the comparison of the two “equivalent” tip geometries through experimental 
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nanoindentations in different materials would provide valuable information into the 

equivalence assumption. 

 In the viscoelastic comparisons, plastic deformation effects were observed in the 

experimental indentations. Further work examining the effect of plastic deformation in 

polymer indentations is needed. Methods for developing a finite element viscoplasticity 

model based on experimental nanoindentation curves would be particularly valuable. 

 The methods used for the examination of material behavior in nanoindentation have 

been extensively developed since the inception of the technique. The methods work well 

for many types of materials and for different indenter types. Modern nanoindenters and 

finite element software are making examination of these problems more accessible. 

However, there are still many challenges that remain for the examination of more complex 

material types and how they will respond to different indenter geometries. 
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