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Summary 

As part of its mission, the U.S. Army Research Laboratory/Survivability Analysis Directorate 

(ARL/SLAD) evaluates government technologies and provides guidance to ensure maximum 

system security in the areas of tamper protection, reverse engineering protection, and 

vulnerability detection and protection among others. As part of these efforts, network 

survivability is a critical element. Field testing is extremely costly and time consuming. As a 

result, emulation has become an important analysis resource. In order for ARL/SLAD to provide 

accurate and efficient survivability analysis, state-of-the-art emulation tools must be adopted and 

expertise in their design and use is critical. More importantly, research and development of 

methods that improve efficiency, analysis capability, and use of the scientific method is 

paramount to the ARL/SLAD mission.  

In this report, the notion of attack survivability prediction is introduced. The report provides 

evidence showing that emulation runtime logs and a carefully designed network representation 

enable analysts to predict communication flows that are affected by network attacks such as 

spoofing and data forwarding.  

Current methods of survivability analysis do not generalize across scenarios, provide low-fidelity 

results, and lack scientific backing. The following contributions are made in this report. 

1. A network representation is presented that captures the data flows and routes of a wireless 

ad-hoc network throughout a simulation or emulation. The network representation is 

concise because it is based on the attacker’s view of the network and consists of only 22 

parameters.  

2. The network representation is evaluated using the common open research emulator 

(CORE) with several scenarios. Experiments using optimized link state routing (OLSR) 

and OSPFv3MDR were conducted and 10 fold-cross validation shows that link loss due to 

spoofing and data forwarding attacks can be accurately predicted, above 97 percent true 

positive rate and 10 percent false positive rate, across seven distinct scenarios.  
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1. Introduction 

Many wireless technologies rely on centralized infrastructures to provide services such as public 

Internet access. Infrastructure-less or ad-hoc networks are meant to serve different purposes. 

These networks enable wireless entities to communicate over long distances without the need for 

centralized management. Ad-hoc networks are designed to adapt to environmental changes and 

require low maintenance. Ad-hoc networks have numerous applications spanning many diverse 

fields; these applications include military field exercises, intelligent transportation, 

environmental monitoring, and others (1).  Figure 1 illustrates an example ad-hoc network.  

 

Figure 1.  A sample ad-hoc network. Nodes in the network are routers (blue cylinders are legitimate 

while the red cylinder is compromised) that are connected (green lines) to other nodes as 

decided by the routing protocol.  

Given the increase in the capabilities and the wide use of wireless networks, privacy and security 

has become a critical research focus. In particular, the benefits of ad-hoc networks introduce 

additional security vulnerabilities, resource constraints, and performance limitations.  
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Many have investigated the attacks that are associated with ad-hoc networks. Attacks are 

classified as passive or active. Passive attacks include eavesdropping, traffic analysis, and 

monitoring. Active attacks include jamming, spoofing, modification, replaying, and denial of 

service (2).  

As a result, countermeasures have been developed, such as distributed intrusion detection, trust 

management, secure routing protocols, and others. It is well known that ensuring complete 

security is not feasible. In the field of survivability, research focus lies on improving critical 

systems’ tolerance to incidents.  

In the past, several methods have been used to test wireless ad-hoc networks. It can be observed 

from figure 1 that visual inspection alone is not suitable for analyzing ad-hoc networks as they 

can become very complex. Field testing, where actual hardware and software are tested in real 

environments, is non-trivial and costly. Static analysis, such as model checking and proof-based 

techniques are rigorous, complex, and limited to small non-mobile systems. Current simulation 

and emulation techniques are useful because they allow analysts to design and test particular 

scenarios using a combination of software and hardware to draw conclusions from empirical 

evidence. The problem with current simulation and emulation methods is that results are specific 

for the scenarios under test. Traditionally, analysts run several instances consisting of different 

attack and topology parameters. These parameters are mostly chosen at random. This task can 

become very time consuming, especially when using emulation to provide more accurate results.  

Lacking are methods that learn from previous executions in order to predict survivability. In this 

report, I provide the following contributions. 

1. A network representation that captures the data flows and routes of a wireless ad-hoc 

network throughout a simulation or emulation. The network representation is concise 

because it is based on the attacker’s view of the network.  

2. The network representation is evaluated using common open research emulator (CORE) 

with several scenarios. Experiments using OLSR and OSPFv3MDR were conducted and 10 

fold-cross validation shows that link loss due to spoofing and data forwarding attacks can 

be accurately predicted across seven distinct scenarios.  

The report is organized as follows.  

1. A background of wireless ad-hoc networks is given.  

2. I provide a preliminary analysis that led to this work.  

3. The data collection method and the network representation parameters are described.  

4. The evaluation follows by presenting the experimental procedure and results.  

5. I conclude and offer prospective extensions to this work. 
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2. Background 

Wireless ad-hoc networks are used when communicating entities must be able to adapt in 

dynamic, long-range environments without the need of a static infrastructure for packet routing 

decisions. These systems are many times limited in resources, such as electrical and 

computational power. For these systems to work, the underlying communication relies on 

efficient, reliable, ad-hoc routing protocols. While there has been much work evaluating the 

performance of these protocols (3–5), security and survivability of these networks has recently 

become a strong research focus. 

Attacks that exist in infrastructure networks may be more difficult to detect in wireless ad-hoc 

networks. Ad-hoc networks are also susceptible to a broader range of attacks; (2) describes such 

attacks. Wireless ad-hoc networks rely heavily on routing for communication; therefore, there 

has been much focus on routing protocol security. 

Some techniques for analyzing the security of routing protocols are exhaustive (6). These 

techniques attempt to represent a system using mathematics, and then attempt to prove security 

goals. In these cases, invalid states indicate malicious activity. There are several limitations to 

techniques. They are unable to cover all conditions, especially in large and mobile systems. 

Evaluation often requires rigorous analysis of the specification and sometimes conversion to 

specialized formats. As with any security evaluation technique, exhaustive approaches are prone 

to false positives in real environments, which may be caused by legitimate system failures. 

Recently, there has been an interest in the development of secure protocols, which are designed 

with security in mind. These protocols contain logic to prevent malicious activity. Common 

techniques used for ensuring security include cryptographic primitives, (7–10), and obfuscation 

approaches, for example, multipath routing partitions data and sends packets through several 

(possibly non-optimal) paths (11, 12). Secure protocols are not without limitations; these 

techniques introduce overhead that may not be feasible in some systems due to electrical power 

and computational constraints. Changing the underlying routing protocol in large legacy systems 

may be costly.  

A non-exhaustive method for evaluating the security of routing protocols is simulation. Using 

this approach, the security of a network is measured by configuring multiple scenarios with 

varying conditions, such as topology and routing protocol. During the scenarios, a simulated 

attack is executed and performance attributes (delay, throughput, goodput, etc.) are measured 

(13–15, 6). Although not exhaustive, well-designed simulations may be a credible source for 

evaluating security (16). Drawbacks of this approach include inaccuracies due to the fact that the 

network stack and running processes are simulated. To account for this limitation, emulation, 

which is capable of executing real binaries in actual runtime environments (operating system, 
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network stack, etc.), is sometimes used for evaluation. In either case, in addition to being non-

exhaustive, results from the previous work do not generalize to untested scenarios. Regardless of 

the evaluation techniques used, due to factors such as field environment, protocol 

implementation, malicious insiders, user error, etc., unconditional security is not guaranteed.  

While security evaluation methods focus on attack prevention and reaction, survivability 

techniques also take into account tolerance (17). Survivability measures how well systems can 

operate during attacks, intrusions, failures or accidents (18). This is useful, for example, when 

considering networks with critical data. In this case, attacks on nodes in the critical data path 

would likely have higher impact on the system survivability. 

Much research has looked at improving survivability by introducing tolerant routing methods, 

which may either replace or execute alongside current protocols (17). Regarding survivability 

evaluation, usually either full enumeration is attempted or the monte carlo method is used (19–

21). These approaches are infeasible with large mobile systems and results do not generalize 

across to unseen scenarios. Recent methods use machine learning to predict system survivability 

(22). Survivability measurement parameters such as number of critical links and number of 

surviving paths are averaged over multiple executions. This low-fidelity approach limits further 

analysis of details that could improve generalization across scenarios and help fine-tune systems 

for improved survivability. 

The method presented in this report uses an attacker-focused representation of ad-hoc networks 

(network states) that enables accurate prediction of link loss between nodes given real-world 

attacks. This allows analysts to determine vulnerable network states that are critical during a 

scenario, and identify alleviations that may result by re-positioning, modifying critical data 

paths, changing protocols, etc. Network states consist of parameters collected from route dumps 

and observed traffic flows and were defined based on emulation experimentation. 
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3. Preliminary Analysis 

3.1 Emulation Environment 

It was apparent after reviewing the literature that there was a need for a method that could 

provide survivability prediction for ad-hoc networks. The first step towards developing such a 

method was to determine how systems, real-world software and hardware, behave when 

subjected to different attacks. CORE (23) was used as the emulation platform for the following 

reasons: 

• Open source: Besides being free, it is also possible to modify and conduct deep analysis of 

the emulator internals.  

• Extensible: Through its plugin architecture, in-house and third party developed components 

such as EMANE (24) for layer 1 and layer 2 emulation and CommEffect (25) for emulating 

real-work communication effects are loadable modules. A developer can also implement 

custom radio models. 

• Maintained: Releases and bug fixes are ongoing. A user’s and developer’s mailing list 

allows the community to ask questions.  

• Accurate: Network layers 3 and above run in a virtualized Linux environment. Each node 

runs real binaries and has a real network stack. 

• Flexible: Features such as hardware-in-the-loop allow connectivity with real devices. 

Multiple instances of CORE allow scalability, which is essential for large networks. 

3.2 Attack Development 

After choosing the emulation platform, the next step was to observe the impact of network 

attacks on nodes. Out of the box, CORE provides several routing protocols including Quagga’s 

OSPFv3MDR for wireless ad-hoc networks. To broaden the scope of the analysis, NRLOLSR 

was additionally installed. Two attacks were implemented, namely spoofing and data forwarding, 

which are well-known in the security community (2). These were chosen because they require 

only basic networking knowledge; they do not require an understanding of underlying 

algorithms.  

The pseudo code for the spoofing attack is provided in figure 2. The spoofing attack takes as 

input an Internet Protocol (IP) address that will be spoofed. If the OSPFv3MDR protocol is in 

place, the attack creates a virtual interface and assigns it the IP address of the victim. If OLSR is 

used, in addition to starting the virtual interface, since multiple interfaces are not supported with 

NRLOLSR, the attacker broadcasts itself as a host network announcement (HNA) gateway with 

the IP address of the victim. In the latter case, the routing daemon requires a restart.  
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Figure 2.  Spoofing attack pseudo code. 

The data forwarding attack simply drops all data packets that are meant for outside nodes. 

Control packets are still forwarded. To implement the data forwarding attack the kernel IP 

forwarding variables (net.ipv4.conf.all.fowarding and net.ipv6.conf.all.fowarding) are set to 0. 

This process is the same regardless of the protocol used and does not require restarting any 

processes. 

3.3 Observations 

Informal testing with several scenarios using transmission control protocol (TCP) and user 

datagram protocol (UDP) traffic provided limited evidence that during attacks, the 

communication near the attacker are impacted more often. More specifically, it seemed as 

though impact was related to distance and flow, based on the attacker’s relative location. To 

investigate this further, I generated an experimentation platform which consists of automated 

data collection and a network representation focused on the attacker’s perspective of the 

network. 

4. Data Collection 

Two main components are necessary for the collection of data. Scenario generation is associated 

with configuration parameters for CORE executions. Log generation is associated with the data 

collected by individual nodes during each execution. 

4.1 Scenario Generation 

CORE allows analysts to design and run network scenarios using a graphical interface. 

Generating topologies is a trivial task that works by dragging and dropping icons into a 

workspace. Scenario parameters such as node positions, protocols used, and custom processing 

(such as logging and attacker) scripts are stored in a configuration file. A dataset was generated 

if olsr daemon is running 

stop olsr daemon 

start virtual interface with $ipToSpoof 

restart olsr daemon with HNA  

sleep $duration 

stop olsr daemon 

stop virtual interface 

restart olsr daemon without HNA 

else 

start virtual interface with $ipToSpoof 

sleep $duration 

stop virtual interface 
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by running several scenarios. Each scenario used different parameter values. This was 

accomplished by implementing a configuration generator, configGen. Pseudo code for configGen 

is provided in figure 3. 

 

Figure 3.  configGen script pseudo code 

The parameters that were varied with each emulation instance are discussed below 

Routing protocol. This is the underlying layer 3 protocol that will be used to communicate data 

necessary for route maintenance. The dataset contains OLSR and OSPFv3MDR protocols. Both 

of these protocols are proactive meaning that they continually publish route information, as 

opposed to reactive protocols, which publish route information when requested. The OLSR 

implementation is provided by NRL and uses IPv4 addressing. OSPFv3MDR is part of the 

Quagga suite of protocols. OSPFv3MDR is a modification of OSPF that is optimized for mobile 

ad-hoc networks. OSPFv3MDR uses IPv6 addressing. 

Topology. In attempts to achieve a suitable data distribution, rather than using randomly 

generated topologies, which are sometimes either too sparse or compressed, 10 nodes were used 

to populate 7 different static topologies. The topologies were generated by first manually 

positioning nodes to fulfill the desired connectivity. Next, the position values were hardcoded 

into the configGen script. Figures 4−10 are graphical portrayals of the topologies. The topologies 

are labeled chain, connected grid, cycle, star, tree, two-centroid, and wheel. 

  

for attackNode in 1…10 

for topology in “chain” “connected_grid” “cycle” “star” “tree” “two-centroid” “wheel” 

  for protocol in “OLSR” “OSPFv3MDR” 

   for attack in “forwarding” “spoofing” 

    runScenario($attackNode,$topology,$protocol,$attack) 
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Figure 4.  Chain topology.    Figure 5.  Connected grid topology. 

         

Figure 6.  Cycle topology.    Figure 7.  Star topology. 
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Figure 8.  Tree topology.  Figure 9.  Two-centroid Topology. 

 

Figure 10.  Wheel topology. 

Eventually, this work will investigate whether survivability predictions extend to mobile 

scenarios. At first glance, it seems likely; when nodes move, the topologies change. It may be the 

case that survivability predictions can be made for each topology formed during the movement.  

Attack. The types of attacks are spoofing and forwarding, as described in the previous section. 

For the automated process, the attack scripts take additional inputs, start time and duration.  

Attack node number. This indicates which of the 10 nodes in the scenario will issue an attack. 

Parameters that were controlled across all emulation instances are discussed below. 

Attack time. This parameter indicates how long a node must wait before executing the attack. 

This is set to 60 seconds. 
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Scenario duration. Each scenario is broken into three phases―before, during, and after an 

attack was issued. Each scenario is 3 min long, divided into 60 s phases. 

Data flow. During each scenario, nodes communicate using TCP and UDP data packets. Packets 

are 1280 bytes in size and are sent 50 times per second. The traffic is generated using mgen (26). 

Each node opens six sockets, three outgoing and three incoming. Table 1 contains the data flows 

that are used during each instance. 

Table 1.  Traffic Data flows between nodes.  

Column 1 indicates the source node  

while columns 2 and 3 indicate the nodes  

being sent TCP and UDP packets respectively. 

 

Node 

TCP 

Outgoing 

UDP 

Outgoing 

1 10 2,3 

2 1 3,4 

3 2 4,5 

4 3 5,6 

5 4 6,7 

6 5 7,8 

7 6 8,9 

8 7 9,10 

9 8 10,1 

10 9 1,2 

 

Attack Duration. The duration of attack is a constant 60 seconds. 

4.2 Log Data Collection 

During each scenario all nodes log incoming data. Depending on the type of node (legitimate or 

attacker), different attributes are logged.  

Attacker Node Logs 

Attacker nodes run the tshark process using the following flags shown in figure 11: 

 

Figure 11.  Attacker log tshark flags. 

The output from tshark is piped into a python script. Each second, the collected data are averaged 

and written to memory. The attributes collected by the attacker are listed below. 

Time. The time stamp indicating when the data are captured. 

tshark   -i <ifx> -T fields -E separator=, -e frame.time_epoch -e frame.len -e 

frame.protocols  -e ip.src -e ip.dst –e ipv6.src -e ipv6.dst -e tcp.srcport -e tcp.dstport 

-e udp.srcport   -e udp.dstport -l 
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Flows. This attribute contains information about promiscuous traffic that is seen passing through 

the attacker node. This does not include packets where the attacker is either the source or 

destination IP address. The flows contain either TCP or UDP as the traffic type. The hop count 

from the attacker to the source address and the hop count from the attacker to the destination 

address are also captured.  

Routes. A dump of the routing tables using the Linux route command. 

Attack running. The name of the attack that is currently running; if no attack is running, this 

attribute is empty.  

Legitimate Node Logs 

Traffic flows are generated using mgen. Features of mgen allow trivial collection of statistics 

such as delays (using timestamps within messages), and number of received, missed and out of 

order packets (using sequence numbers). mgen is executed with the following flags shown in 

figure 12. 

 

Figure 12. Non-Attacker log mgen flags. 

Legitimate nodes log routes, timestamps, and the attack running in the same way as the attacker. 

The attack running attribute in the legitimate node logs is used solely for synchronization 

purposes. Flows are collected in a similar fashion as the attacker, except that IP addresses are 

used instead of hops. All of these attributes are logged to a file and used later to form a network 

state from the attacker’s viewpoint, as described in the next section.  

5. Network Representation 

As the number of nodes in a network increases, so does the complexity of analyzing the impact 

of an attack on the network. Part of the reason for this lies in the fact that representing a network 

and the traffic flows is difficult and easily fall victim to state-space explosion.  

To avoid this, instead of representing the network as a collection of source and destination IP 

addresses, the distance (hops) from the attacker’s location are used. Figure 13 shows an example 

of this. In the sample, node n1 is sending packets to n3 and n3 is sending packets to n4 (denoted 

by dotted lines). From the attacker’s view, the n1 to n3 communication is seen as hop (1) to hop 

(1) with passthrough. The n3 to n4 communication is seen as hop (1) to hop (2) with no 

passthrough.  

mgen flush input <pathToFlow> output /dev/null 
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Figure 13.  Representation by hops. Hop counts  

are labeled in parentheses and dotted 

 lines indicate traffic. 

The network representation is defined as the collection of flow descriptions over an entire 

emulation instance. Flow descriptions are composed of the parameters in table 2. These flow 

descriptions were captured by fusing the legitimate and attacker log files. Log files are 

synchronized using the attack name.  

Table 2.  Network representation parameters. 

# Attribute Description Capture Source 

1 fromHop Hops from the attacker node to the source. LegFlw+AttRte 

2 toHop Hops from the attacker node to the destination. LegFlw+AttRte 

3 dataType Data, not control, packet type. Leg Flw 

4 distanceTraveled Hops from source to destination. Leg Flw 

5 passThrough Whether this flow pass through the attacker. LegFlw,Rte+AttRte 

6 beforeStats Mgen data before an attack. Leg Flw 

7 duringStats Mgen data during an attack. Leg Flw 

8 afterStats Mgen data after an attack. Leg Flw 

9 attackName Spoofing or forwarding indicator. Leg+Att 

10 duringLinkLost Whether a link is lost during an attack. LegFlw 

11 srcIsSpoofed Whether the source address is spoofed. LegFlw+AttRte 

12 destIsSpoofed Whether the destination address is spoofed. LegFlw+AttRte 

13 hopsSpoofedToDest Hops from the spoofed to the destination. LegFlw+AttRte 

14 spoofedBetweenAttacker Whether the spoofed is between the attacker and the 

destination. 

LegFlw,Rte+AttRte 

15 spoofedBetween AttackerGW Whether the spoofed is a gateway (directly 

connected) node on the path to the destination.  

LegFlw,Rte+AttRte 

16 destBetween 

SpoofedAndAttacker 

Whether the destination is between the spoofed and 

the attacker. 

LegFlw,Rte+AttRte 

17 destBetween 

SpoofedAndAttackerGW 

Whether the destination is a gateway node on the 

path to the attacker. 

LegFlw,Rte+AttRte 

18 attackerBetween 

SpoofedAndDest 

Whether the destination is between the spoofed and 

the attacker. 

LegFlw,Rte+AttRte 

19 attackerBetween 

SpoofedAndDestGW 

Whether the destination is a gateway node on the 

path to the attacker. 

LegFlw,Rte+AttRte 

20 srcBetween SpoofedAndDest Whether the destination is between the spoofed and 

the attacker. 

LegFlw,Rte+AttRte 

21 srcBetween 

SpoofedAndDestGW 

Whether the destination is a gateway node on the 

path to the attacker. 

LegFlw,Rte+AttRte 

22 altPathWithoutAttacker Whether an alternate path between source and 

destination exists without the attacker. 

LegFlw,Rte+AttRte 
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In table 2, parameters with a capture source value Leg Flw are taken from the flows in the 

legitimate log file. More specifically, parameters 6−8 encapsulate information about missed, out 

of order, and total packets received along with delays. The Leg Flw+Att Rte value indicates that 

the parameters are captured by using the IP addresses in the legitimate log file flows. Next these 

are cross-referenced with the routes in the attacker log file. The LegFlw,Rte+AttRte capture 

sources are obtained by first identifying a flow from the legitimate log file. Paths are traced by 

iteratively following the gateway nodes, provided by the routes in the log files. As a special case, 

parameter 22 is derived by using the python networkx package (27). Using networkx, a graph 

data structure is built from node connections as given by route tables. The existence of an 

alternate path is determined after deletion of the attacker node in the data structure. In the case of 

forwarding attacks, parameters 11–22 are always false. 

The selection of parameters was an iterative process. Initially only parameters 1–10 were used; 

the others were chosen after a deeper analysis. This deeper analysis consisted of the several 

steps. First, the data were captured and represented using the initial parameters. A python script, 

conflictDetect.py, generated a hash table or dictionary using all parameters, except 

duringLinkLost, as keys in the key/value pair. The Boolean parameter (taking on either true or 

false) duringLinkLost was the value in the key/value pair. The python script went through each 

network representation. If a collision was found and duringLinkLost differed, these were 

considered conflicting flows.  

For each conflicting flow, the number of times that the duringLinkLost parameter resulted as true 

and false was stored. In the case where there was an equal amount of true and false counts, the 

emulation instances associated with the flows were run again. In the case where the counts were 

not equal, the emulation instances associated with the minority were run again. Sometimes the 

emulation instance encountered an unknown error and all links randomly disconnected.  

More often, the reason for the conflicts resulted due to a lack of representation of some network 

characteristic. Analysis of these cases led to the additional parameters 11−20. The network 

representation was used to train a classifier to predict network survivability, specifically the 

duringLinkLost parameter. 

6. Evaluation 

An experiment was conducted to validate the hypothesis that survivability of links in a network 

under spoofing and forwarding attacks can be predicted. The experiment used the dataset 

described in the Data Collection Section (section 4). The dataset was formatted into the network 

representation described in the Network Representation (section 5).  
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To determine the quality of the network representation, the numbers of conflicts (as described in 

the Network Representation (section 5) were counted. Next, a predictor was built using REPTree 

as implemented in the WEKA (28) data-mining toolset. The test method used was 10 fold cross-

validation, with this method 90% of the data are set as training to predict the remaining 10%. 

This process is repeated 10 times using different portions of data.  

A subset of the parameters was used as training attributes to predict duringLinkLost. Initially, 

parameters 1−5 and 9 were used (called the partial set) and then parameters 11−22 were added 

(called the all set) to determine improvements. Attributes 7 and 8 were not predicted because the 

purpose of this experiment was to determine if link loss can be predicted, not to determine 

numeric degradation. This would require more varied flow characteristics (in the current dataset 

all flows are equal in rate and size).  

In general, the dataset used for evaluation consists of all combinations of the following 

configurations:  

• Routing Protocols: OSPFv3MDR, OLSR 

• Topologies: chain, connected_grid, cycle, star, tree, two-centroid, and wheel 

• Attacks: forwarding, spoofing 

Additionally, there are 10 nodes with 3 outgoing connections (2 UDP and 1 TCP). Each 

emulation instance contains one attacking node selected using a round-robin approach. In total 

there are 32626 flows, 17251 with OLSR and 15375 with OSPFv3MDR. There were a total of 

3115 unique flows with OLSR and 2526 with OSPFv3MDR. In very few cases, a malfunction in 

CORE caused some nodes to stop capturing data; as a result, the dataset contains a small amount 

of noise. 

7. Results 

Table 3 shows only a small percentage of the flows in the dataset conflicted. This is strong 

evidence that a classifier can be derived that will predict, given the network representation, 

whether certain connections will be lost when a forwarding attack or a spoofing attack occur. 

Reasons for the conflicts at the time of this writing may be due to malfunctions in the emulator 

or it may be the case that further venturing into the specifics of the routing protocol is required 

(route ordering, source code investigation, etc.). 
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Table 3.  Percentage of flows that conflicted per protocol. 

Protocol Attack 
% 

Conflict 

OLSR 
Forwarding 0.06 

Spoofing 2.00 

OSPFv3MDR 
Forwarding 0.00 

Spoofing 0.03 

 

Four REPTree classifiers were trained (OLSR forwarding, OLSR spoofing, OSPF forwarding, 

OSPF spoofing) using 10 fold cross-validation. Tables 4 and 5 contain the results for OLSR and 

OSPF configuration respectively. 

Table 4.  Weighted averages for classification of duringLinkLost with OLSR. 

Attack Parameters Used True Positive False Positive F-Measure 

Forwarding 
Partial  0.998 0.018 0.998 

All 0.998 0.018 0.998 

Spoofing 
Partial 0.975 0.161 0.975 

All 0.983 0.103 0.983 

 

Table 5.  Weighted averages for classification of duringLinkLost with OSPFv3MDR. 

Attack Parameters Used True Positive False Positive F-Measure 

Forwarding 
Partial 1 0 1 

All 1 0 1 

Spoofing 
Partial 0.997 0.248 0.991 

All 0.998 0.031 0.998 

 

The results using cross-validations are a good indication that the classifier will do well with 

unseen scenarios. In the case of OLSR, although there were a higher number of conflicts, the 

REPTree still performed reasonably well. Using the full set of parameters generally improved the 

prediction, reducing the false positives, of spoofing impacts. 

An interesting note is that when attempting to augment the training set with parameter 6 (before-

attack statistics) the classifier did not improve.  

The generated predictor models using all parameters are provided in figures 14–20. The 

predicting link survivability during forwarding attacks is trivial; however, this is not the case 

with spoofing attacks. 
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Figure 14.  OLSR Forwarding survivability model. 
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Figure 15.  OLSR Spoofing survivability model part 1. 
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Figure 16.  OLSR Spoofing survivability model part 2. 
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Figure 17.  OLSR Spoofing survivability model part 3. 
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Figure 18.  OSPFv3MDR Forwarding survivability model. 

 

Figure 19.  OSPFv3MDR Spoofing survivability model part 1. 
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Figure 20.  OSPFv3MDR Spoofing survivability model part 2. 
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8. Conclusions and Future Work 

The work provided in this report has benefits in fundamental processes of survivability analysis. 

Specifically, this report shows that it is possible to predict the survivability of network flows, 

unlike work in the past that focuses only on throughput totals. Experiment results show that by 

representing a network from an attacker’s perspective, link loss due to spoofing and data 

forwarding attacks can be accurately predicted.  

The following are areas for future work. One important endeavor is determining whether the 

methods used here will apply to mobile nodes. This seems likely since during a mobile scenario, 

nodes form topologies that can be formatted into the network representation described in the 

Network Representation (section 5). Next, testing will be conducted with other ad-hoc protocols 

such as ad hoc on-demand distance vector (AODV), routing information protocol (RIP), and 

better approach to mobile ad hoc network (BATMAN) along with defense mechanisms. Whether 

it is possible to predict numeric impacts such as delay, missed packets, time until impact, 

recovery after attack, and others will be determined.  

This work used TCP and UDP packets, but in the future the effects of different traffic will be 

investigated. Measuring the survivability given a wider range of attacks, such as route fabrication 

and multi-attacker scenarios, is planned. Future work will determine whether the impact of these 

attacks can be accurately predicted. To improve the accuracy of the methods, layer-1 and layer-2 

emulation will be tested using such tools as EMANE and the available plugins for 

communication loss and radio models.  

As many systems currently use OPNet for network simulation, a future engineering effort will 

convert OPNet scenarios into a format that can be read by CORE, hence allowing the use of the 

survivability analysis described in this report.  

While this work focuses on malicious nodes, it does not take into account probabilities of nodes 

becoming targets. Future work will augment attack graph and attack grammar data to provide 

this feature. 
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AODV ad hoc on-demand distance vector 

BATMAN better approach to mobile ad hoc network 

CORE common open research emulator 

EMANE extendable mobile ad hoc network emulator 

HNA host network announcement 

IP Internet Protocol 

NRLOLSR Naval Research Laboratory optimized link state routing 

OLSR optimized link state routing 

RIP routing information protocol 

TCP transmission control protocol 

UDP user datagram protocol 
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