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ABSTRACT 

 Recent work on reliably detecting and characterizing cracks in multi-layer airframe structures has 

used modeling and simulation to extract features from raw eddy current data, and to assist in the 

evaluation of probability of detection (POD).  This paper focuses on the statistical analysis of the data 

from these studies.  Hit/miss, linear, and physics-inspired methods are employed to evaluate POD.  The 

Box-Cox transformation is used as a remedy for violations of homoscedasticity.  In addition, a 

bootstrapping method is introduced for confidence bound calculation on a 2nd order linear model.  The 

objective of this work is to provide on insight how different models and assumptions impact POD 

evaluation. 

 

KEYWORDS 

 Probability of Detection, eddy current, fastener site inspection, bootstrap confidence intervals, Box-

Cox transformation 

 
INTRODUCTION 

Approved for public release; distribution unlimited. 



 

 2 

There are two conventional approaches to evaluating POD: hit/miss analysis or â vs a analysis [1].  

Hit/miss analysis is still the most widely used to method to determine reliability of Nondestructive 

inspections, but it is advantageous to use â vs a analysis because the information in the signal response 

can be used for the parameter estimates and confidence bounds.  This provides a more informative 

reliability assessment and may require less samples than hit/miss analysis.  Two major requirements for 

â vs a analysis are a linear relationship between flaw size and signal response, and constant variance.  In 

many cases, a logarithmic transformation can be applied if the linear requirement is not met, but if this 

fails, there are limited options other than hit/miss analysis.  It is also possible that a logarithmic 

transformation can address a violation of constant variance, but this isn’t always the case.  Given that 

these conditions of linearity and homoscedasticity are often not met with real NDI data, it is useful to 

explore remedial measures such as transformations so that the full signal response of NDI data can be 

used more frequently in practice.  In addition, if the linear assumption is not met after the data is 

transformed, there is an additional question of how to properly put confidence bounds on a POD result 

that is derived from a more complicated measurement model.  A case study problem is presented for 

exploring these issues in POD evaluation. Prior work on detecting subsurface cracks in multi-layer 

airframe structures used novel methods to extract features useful for POD analysis [2-4].  A preliminary 

model-assisted POD study was conducted based on those efforts [5-7].  In the previous work [5], 

hit/miss analysis was chosen because visual inspection of the data indicated that there was a violation of 

the constant variance assumption and possibly the linear assumption.  In this work, a Box-Cox 

transformation will be used to mitigate, at least in part, concerns about heteroscedasticity.  If constant 

variance can be achieved with this transformation and the linear assumption is met, then â vs a analysis 

can be performed according to the methods set forth in Berens’ classic work on the subject [1], and for 

the most part, still considered state-of-the-art today [8-10].  If constant variance is achieved, but the 
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linear assumption is not met, then methods need to be developed for more complicated models.  It was 

difficult to determine by visual inspection of the data whether a linear model was most appropriate for 

the data set, so additional modeling and simulation studies have been conducted to determine the model 

form of the response that can be expected with this type of inspection.  While the model itself is not used 

in this study, it inspired the use of a 2nd order linear model; thus it is referred to as a “physics-inspired” 

model rather than a physics-based model.  Lastly, it has been found that bootstrapping is a very easy and 

useful method for providing confidence bounds on POD curves, and its use will be illustrated with some 

examples. 

EXPERIMENTAL DATA  

 The experimental problem of interest is the detection of cracks under installed countersunk 

fasteners in airframe structures.  The description of the data and how it was processed is provided in 

detail in prior papers [4, 5].  The sample set contained over 300 fastener sites with cracks in the 1st layer 

and 2nd layer at the faying surface.  In this paper, only the 1st layer cracks are considered, and there are a 

total of 171 observations.  The dimensions for the thickness of the top and bottom layers measured 3.96 

mm and 2.54 mm respectively.  Conductivities of 1.87 E7 S/m for the aluminum layers and 1.79 E6 S/m 

for the titanium fasteners were considered.  The radius of the fastener hole was 4.04 mm.  The probe was 

operated at 600 Hz and had coil dimensions of 6.0 mm in height, 3.0 mm in inner radius and 6.0 mm in 

outer radius.  A corner crack model for the first layer was considered with the assumed aspect ratio 

length, a, to width, b, of 1:1.  Crack lengths in the experimental samples were available between 0.0 to 

4.3 mm.   

Model-based image processing methods were used to extract features in the scans that correlate 

to flaw size [3].  This model-based approach essentially fits models based on first-principles to image 

data in order to enhance crack indications in the presence of coherent noise from the fastener site, 
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adjacent fasteners and panel edges.  The final step is to extract a quantitative metric associated with the 

crack condition off-axis from each fastener site center.  This same analysis process was applied to all 

experimental and simulated data to facilitate proper comparison.   The raw data is displayed in Figure 1.  

A previous analysis of data from these samples used binary logistic regression because visual inspection 

of the data revealed that the homoscedastisticy assumption was violated.  It is clearly observed that the 

variance increases as a function of flaw size.  There is also another current study investigating a similar 

set of inspection data, with an alternative approach to the statistical analysis [11]. 

LINEAR MODEL ANALYSIS WITH BOX-COX TRANSFORMATION 

 

In this analysis, ‘â’ is the magnitude of the eddy current signal response, and ‘a’ refers to crack 

length. For cases where there is a relationship between the mean response and variance, the Box-Cox 

transformation is used to stabilize the variance.  This method assumes that the relationship between the 

error variance 𝜎𝑖2 and and mean response μi can be described with a power transformation on â in the 

form of equation 1.  The new regression model in equation 2 will include the additional λ parameter 

which will also need to be estimated. 

 

 â′ = â𝜆 (1) 
   

â𝑖𝜆 = 𝛽0 + 𝛽1𝑎𝑖 + 𝜀𝑖 (2) 
 

Following a method outlined in Kutner et al [12], a numerical search procedure is set up to 

estimate λ.  The â observations are first standardized so that the order of magnitude error sum of squares 

isn’t dependent on the value of λ.   

 The standardized observations are: 

 

 𝑔𝑖 = 1
𝜆𝑐𝜆−1

�â𝑖𝜆 − 1�, 𝜆 ≠ 0, (3) 
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 𝑔𝑖 = 𝑐(ln (â𝑖), 𝜆 = 0, (4) 
 

where c = (∏ â𝑖)1/𝑛 , and n is the total number of observations, which happens to be the geometric 

mean of the observations.  Once these standardized observations are obtained, they are then regressed on 

‘a’, which in this case is crack length, and then the sum of squares error (SSE) is obtained.  The 

optimization problem is formulated such that the objective is to minimize SSE with 𝜆 as a single 

parameter to be adjusted. Microsoft Excel’s Solver add-in was used to determine the value of λ which 

minimizes SSE. 

 Before this procedure is illustrated, a 0.02 offset is added to the raw data.  This facilitates the 

analysis using these transformations.  For this data, 𝜆 = 0.45 is the transformation that minimizes the 

SSE.  Note that if λ = 0.5, it is simply a square root transformation.  This procedure only provides a 

general estimate of a preferred transformation, and is not quantitative in a rigorous sense, so for the sake 

of using a familiar transformation, further analysis will use the square root transform.  Both values of λ 

will be used to provide an idea of the sensitivity of POD results to the choice of transformation.  The 

transformed data, â vs a analysis, and the POD curve is shown in Figure 2, 3, and 4 respectively for λ = 

0.45.  The left censor value is chosen to be 0.13, the right censor is not used, and the detection threshold 

is set to 0.23.  The following parameter estimates are obtained for the linear regression model: 𝛽̂0 = 

0.166, 𝛽̂1  = 0.045 and τ = 0.026, where τ is the regression standard deviation.  The a90 value is 2.176 

mm and the a90/95 value is 2.327 mm.   

 The same analysis is conducted for the λ = 0.5 transformation, since that will be used from now 

on.  The detection threshold for this transformation is 0.195, and the left censor value is 0.14.  The 

transformed data, â vs a analysis, and the POD curve is shown in Figure’s 5, 6, and 7 respectively.  The 

following parameter estimates are obtained for the linear regression model: 𝛽̂0 = 0.135, 𝛽̂1  = 0.043 and τ 

= 0.024.  The a90 value is 2.102 mm and the a90/95 value is 2.257 mm.   
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ANALYSIS WITH PHYSICS-INSPIRED MODEL 

 There is some precedent for using a physical model of an inspection to improve the evaluation of 

POD in ultrasonic inspections [13].  In the work of Thompson and Meeker, a “kinked” regression model 

was developed to describe the impact of hard-alpha inclusions on POD.  In particular, the physics model 

provided a better understanding of the small flaw regime.  If the flaw is significantly smaller than the 

ultrasonic wavelength, it is in the Raleigh scattering regime which has a cube relationship with the flaw 

dimensions.  Thus, 2 different linear models were needed depending on the flaw size range, and this 

enabled a more accurate POD analysis.   

Figure 8 shows the expected signal response based on simulations in VIC-3D® [2].  The same 

image processing methods were applied to the simulated data.  This type of response is not quite linear, 

so the next analysis will be with a 2nd order regression model of the form: 

 

 𝑎� = 𝛽̂0 +  𝛽̂1𝑎 + 𝛽̂2𝑎2 + 𝜀. (5) 
 

The statistical significance of a2 in the standard regression model is 0.001, and the adjusted R-square 

value for the model including a2 is 0.7754 which is slightly above 0.7619 which is for the model that 

includes only ‘a’, so there is good reason to include it in the model.  Given the square root transform or 

λ = 0.5, the estimates for 𝛽̂0, 𝛽̂1, and 𝛽̂2 are 0.137, 0.027, and 0.005 respectively.  τ is 0.0229.  The 

censored regression has the same left censor and threshold as the 1st order model.  The a90 value for this 

2nd order model is 2.277 mm. There are no published procedures to find the a90/95 value for this type of 

model.  This paper introduces a very useful bootstrapping method to address this issue.  

BOOTSTRAP METHODS  FOR CONFIDENCE BOUND CALCLUATION 
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 The algorithm to generate confidence bounds on more complicated models is quite simple.  The 

main idea is to use “sampling with replacement”, which interestingly wasn’t used much in the statistics 

community until relatively recently [14], and has been used with good success in engineering [15, 16].   

To illustrate how bootstrap confidence bounds are calculated, and to verify against standard 

methods, we need to go back to a previous â vs a analysis where confidence bound calculation method 

are well established.  To verify, the case of the transformation parameter λ = 0.5 with the threshold set to 

0.195 and 0.14 is used.  This time a new data set generated by the sampling with replacement of the 

original data, and this new set is used to calculate a90, and this process is repeated 1,000 times.  The a90 

results are then sorted in ascending order. For the case of 1,000 samples, the 950th a90 value is 

considered the value for a90/95.  Table 1 summarizes the results of this process. 

 

 a90 a90/95 

Wald Method 2.102 mm 2.257 mm 

Bootstrap 1,000 2.096 mm 2.281 mm 

Bootstrap 10,000 2.099 mm 2.299 mm 

Bootstrap 100,000 2.099 mm 2.297 mm 

 

Table 1: Comparison of Wald and Bootstrapping with 1,000, 10,000, and 100,000 samples. 

No significant difference in a90 exists, and although there is a slight difference in a90/95, the bootstrap 

results are on the conservative side.  Based on these results, it doesn’t seem necessary to sample more 

than 1,000 times. 
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This bootstrap approach was applied to the 2nd order model.  Figure 9 shows the fitted 2nd order 

model with the transformed λ = 0.5 data.  The a90/95 using the bootstrap method with 1,000 samples is 

2.472 mm. 

 One of the advantages of adding a2 to the model is that there is less dependence on subjective 

decisions regarding censoring values and threshold values.  The small flaw region is better represented 

with this model.  Future work will involve a sensitivity study of the left censor value and threshold and 

the impact they have on the a90 and a90/95 results. 

HIT/MISS ANALYSIS 

 Since, the data have been examined with â vs a analysis and also with a 2nd order linear model, it 

is interesting to compare it with hit/miss bernoulli analysis since that is still overwhelming used to this 

day.    The analysis will be conducted 2 different ways.  At most 1 false call was recorded in the 

previous analysis, so one analysis shown in Figure 10 forces the false call rate to 1 by setting the 

threshold to 0.187.  At this threshold, a90 = 1.72 mm and a90/95 = 2.04 mm which are considerably 

smaller than the corresponding POD parameters for the other types of analysis.  Secondly, the threshold 

is lowered substantially to 0.167 so that 2 additional flaws are detected, and this results in 11 false calls.  

Even smaller POD parameters are determined with a90 = 1.498 mm and a90/95 = 1.907 mm.  Note that this 

was performed with the transformed data with λ = 0.5, but it was also performed with the original data, 

and the exact same POD parameters were obtained corresponding with the false call rates of 1 and 11. 

 

CONCLUSIONS AND RECOMMENDATIONS 

 
analysis 
method 

λ left 
censor 

detection 
threshold 

false 
calls 

a90 (mm) a90/95 (mm) a90 - a90/95 % 

difference 
1st order linear 0.45 0.13 0.23 0 2.176 2.327 6.9% 
1st order linear 0.5 0.14 0.195 1 2.102 2.257 7.3% 
1st order linear 0.5 0.195 0.195 1 2.269 2.53 11.5% 
2nd order linear 0.5 .14 0.195 1 2.277 2.472 8.5% 
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2nd order linear 0.5 0.195 0.195 1 2.197 2.428 10.5% 
hit/miss 1  0.187 1 1.72 2.04 18.6% 
hit/miss 1  0.162 11 1.498 1.907 27.3% 
 
Table 2: Summary of results for different models, thresholds, and left censoring values. 

Multiple statistical analysis methods were used to examine data from an eddy current inspection of 

fastener sites in multi-layer structures.  There were notable differences in a90 and a90/95 estimates for the 

different models.  The bernoulli model contains the least information, but produces the most attractive 

POD. No hard conclusions can be made about this trend, but it does at least show that in at least one real 

case, the hit/miss results may be optimistic when compared to analysis that contains more information. 

It is also interesting to note that the physics-inspired model produced similar results for the POD 

parameters of interest regardless of the chosen value of the left censor.  Further investigations will 

systematically study the effect of censoring on linear and higher order models.  Preliminary evidence 

suggests that the a90/95 value may be invariant to the choice of the left censor value.   

As more sophisticated models begin to be used in analysis of inspection data, bootstrapping is an 

easy and accurate way to produce confidence bounds on POD results.  This was demonstrated for the the 

usual â vs a analysis which provided confidence (no pun intended) in the bootstrap approach.  It was 

practical to use this method for putting confidence bounds on the 2nd order model. 

Future work will include Bayesian analysis using model calibration methods proposed by Kennedy 

and O’Hagan [17].  This will allow the physics-based model to be used directly as opposed to using 

physics-inspired models.   
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Figure 1.  Original data from model-based processing of fastener site inspection data. 
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Figure 2.  Box Cox transformation of original data with λ = 0.45. 
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Figure 3.  Linear model for transformed data with λ = 0.45. 
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Figure 4.  Probability of detection curve for transformed data with λ = 0.45 
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Figure 5.  Square root transform of data. 
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Figure 6.  Linear model fit for data with square-root transformation. 
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Figure 7.  Probability of detection curve for data with square-root transform 
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Figure 8: Comparison of experimental and simulated data for varying length of first layer corner crack 

with aspect ratio, a/b = 1. 
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Figure 9.  Experimental data with quadratic model fit. 
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Figure 10: Hit/miss plot with 1 false call. 
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Figure 11.  Hit/miss analysis with 11 false calls 
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