Comprehensive Program Protection Planning

Paul R. Popick
Aerospace Corporation
Paul.Popick.ctr@osd.mil/ 703 681-6563
Phoenix Challenge Conference
April 26, 2012
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE	APR 2012		
2. REPORT TYPE			
3. DATES COVERED	00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE	Comprehensive Program Protection Planning		
5a. CONTRACT NUMBER			
5b. GRANT NUMBER			
5c. PROGRAM ELEMENT NUMBER			
5d. PROJECT NUMBER			
5e. TASK NUMBER			
5f. WORK UNIT NUMBER			
6. AUTHOR(S)			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	Aerospace Corporation, 2310 E. El Segundo Blvd, Los Angeles, CA, 90245		
8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			
10. SPONSOR/MONITOR’S ACRONYM(S)			
11. SPONSOR/MONITOR’S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAILABILITY STATEMENT	Approved for public release; distribution unlimited		
13. SUPPLEMENTARY NOTES	Presented at Phoenix Challenge Conference, at Lawrence Livermore National Laboratory, Livermore, CA. April 24-26, 2012, Government or Federal Purpose Rights License		
14. ABSTRACT			
15. SUBJECT TERMS			
16. SECURITY CLASSIFICATION OF:	a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified
17. LIMITATION OF ABSTRACT	Same as Report (SAR)		
18. NUMBER OF PAGES	12		
19a. NAME OF RESPONSIBLE PERSON			

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Drivers/Enablers

- National Cybersecurity Strategies
- Congressional Interest
- DoD Policy and Directives
- Globalization Challenges
- Increasing System Complexity

Delivering Trusted Systems

Prioritize by Mission Dependence

Comprehensive Program Protection Planning

Partner with Industry

Enhance R&D, and vulnerability detection and response

Report on Trusted Defense Systems

USD(AT&L)
ASD(NII)/DoD CIO
Trusted Defense Systems Strategy

Basic Tenets

- **Prioritization:**
 - Focus security requirements on mission critical systems
 - Within systems, identify and protect critical components, technology, information

- **Comprehensive Program Protection Planning**
 - Early lifecycle identification of critical components
 - Provide PMs with analysis of supply chain risk
 - Protect critical components through trusted suppliers, or secure systems design
 - Assure systems through advanced vulnerability detection, test and evaluation
 - Manage counterfeit risk through sustainment

- **Partner with Industry**
 - Develop commercial standards for secure products

- **Enhance capability through R&D**
 - Leverage and enhance vulnerability detection tools and capabilities
 - Technology investment to advance secure software, hardware, and system design methods
Ensuring Confidence in Defense Systems

- **Threat**: Nation-state, terrorist, criminal, or rogue developer who:
 - Gain control of systems through supply chain opportunities
 - Exploit vulnerabilities remotely
- **Vulnerabilities**
 - All systems, networks, and applications
 - Intentionally implanted logic
 - Unintentional vulnerabilities maliciously exploited (e.g., poor quality or fragile code)
- **Traditional Consequences**: Loss of critical data and technology
- **Emerging Consequences**: Exploitation of manufacturing and supply chain
- Either can result in corruption; loss of confidence in critical warfighting capability

Today’s acquisition environment drives the increased emphasis:

<table>
<thead>
<tr>
<th>Then</th>
<th>Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-alone systems</td>
<td>Networked systems</td>
</tr>
<tr>
<td>Some software functions</td>
<td>Software-intensive</td>
</tr>
<tr>
<td>Known supply base</td>
<td>Prime Integrator, hundreds of suppliers</td>
</tr>
<tr>
<td>CPI (technologies)</td>
<td>CPI and critical components</td>
</tr>
</tbody>
</table>

Distribution Statement A – Cleared for public release by OSR on 03/14/2012, SR Case # 12-S-1352 applies.
Program Protection Overview

March 2012 Page

DoDI 5000.02 Enclosure 14: Program Protection

- PPP for every program at every milestone
- Identify CPI and critical functions/components
- Use Intelligence/Counterintelligence support to identify threats
- Use cost-effective countermeasures to mitigate risk
- Include IA Strategy with PPP
- Incorporate in T&E to ensure implementation

DoDI 5200.39
Protection of CPI

Focus: Protect leading-edge research and technology from battlefield loss and unauthorized transfer
Countermeasures: Anti-Tamper, Classification, Export Control, Security, Foreign Disclosure, and CI activities

DoDI 5200.mm
Trusted Systems and Networks

Focus: Protect mission-critical functionality from compromise through system design or supply chain exploit
Countermeasures: Supply Chain Risk Management (SCRM), Software Assurance (SwA), System Security Engineering (SSE)

DoDD 8500.01
Information Assurance

Focus: Assure confidentiality, integrity, and availability of information and information systems
Countermeasures: IA Controls (technical, process, management, awareness & training, etc.)

Complementary framework enables comprehensive Program Protection
Program Protection Embedded in Technical Reviews

Strategic Guidance (OSD/JCS) (COCOMs) → Joint Concepts (CBA, ICD) → Materiel Solution Analysis (MDD) → Technology Development (CDD) → Engineering & Manufacturing Development (CPD) → Production and Deployment (O&S) → O&S

- Protect Capability from Supply Chain/System Design Exploit
 - Supply Chain Risk Management
 - Software Assurance
 - Information Assurance

- Protect Advanced Technology Capability from Foreign Collection/Design Vulnerability
 - Export Control
 - Security

Focus Scope of Protection

Program Protection Analysis at SE Technical Reviews (SETRs)

Integrated Process to Manage Security Risks
- Foreign Collection
- Design Vulnerability
- Supply Chain Exploit/Insertion

Emphasizing Use of Affordable, Risk-based Countermeasures

Distribution Statement A – Cleared for public release by OSR on 03/14/2012, SR Case # 12-S-1352 applies.
Risk Assessment Methodology

Input Analysis Results:

Criticality Analysis Results

<table>
<thead>
<tr>
<th>Mission</th>
<th>Critical Function</th>
<th>Logic-Bearing Components (HW, SW, Firmware)</th>
<th>System Impact (I, II, III, IV)</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission 1</td>
<td>CF 1</td>
<td>Processor X</td>
<td>II</td>
<td>Redundancy</td>
</tr>
<tr>
<td>Mission 2</td>
<td>CF 2</td>
<td>SW Module Y</td>
<td>I</td>
<td>Performance</td>
</tr>
<tr>
<td>Mission 2</td>
<td>CF 3</td>
<td>SW Algorithm A</td>
<td>II</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Mission 2</td>
<td>CF 4</td>
<td>FPGA 123</td>
<td>I</td>
<td>Performance</td>
</tr>
</tbody>
</table>

Vulnerability Assessment Results

<table>
<thead>
<tr>
<th>Critical Components (HW, SW, Firmware)</th>
<th>Identified Vulnerabilities</th>
<th>Exploitability</th>
<th>System Impact (I, II, III, IV)</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor X</td>
<td>Vulnerability 1</td>
<td>Low</td>
<td>II</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Vulnerability 4</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Module Y</td>
<td>Vulnerability 1</td>
<td>Medium</td>
<td>I</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Vulnerability 2</td>
<td>High</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Vulnerability 3</td>
<td>Medium</td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Vulnerability 6</td>
<td>High</td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>SW Algorithm A</td>
<td>None</td>
<td>Very Low</td>
<td>II</td>
<td>Very Low</td>
</tr>
<tr>
<td>FPGA 123</td>
<td>Vulnerability 1</td>
<td>Low</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Vulnerability 23</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplier Risk Analysis Results

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Critical Components (HW, SW, Firmware)</th>
<th>Analysis Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier 1</td>
<td>Processor X</td>
<td>Supplier Risk</td>
</tr>
<tr>
<td></td>
<td>FPGA 123</td>
<td>Supplier Risk</td>
</tr>
<tr>
<td>Supplier 2</td>
<td>SW Algorithm A</td>
<td>Cleared Personnel</td>
</tr>
<tr>
<td></td>
<td>SW Module Y</td>
<td>Cleared Personnel</td>
</tr>
</tbody>
</table>

Initial Risk Posture

- **Consequence of Losing Mission Capability**
 - Very High
 - High
 - Moderate
 - Low
 - Very Low

- **Likelihood of Losing Mission Capability**
 - Near Certainty (VH)
 - Highly Likely (H)
 - Likely (M)
 - Low Likelihood (L)
 - Not Likely (VL)

- **Risk Mitigation Decisions**

Distribution Statement A – Cleared for public release by OSR on 03/14/2012, SR Case # 12-S-1352 applies.
• **ISO/IEC 15026 – System and Software Engineering – Systems and Software Assurance**
 – Establishes common assurance concepts, vocabulary, integrity levels and lifecycle

• **ISO/IEC 27036—IT Security Techniques—Supplier Relationships**
 – Establishes techniques between acquirer and supplier for supply chain risk management

• **International Council on Systems Engineering (INCOSE)**
 – Systems Security Engineering (SSE) working group established to develop SSE updates to INCOSE SE Handbook

• **The Open Group (TOG)**
 – The Open Trusted Technology Provider Framework (O-TTPF) - open standard that codifies best practices across the entire lifecycle covering:
 – Product Development
 – Secure Engineering
 – Supply Chain Integrity
System Security Engineering (SSE) Research Activities

DoD is leveraging the Systems Engineering Research Center (SERC) — a DoD University Affiliated Research Center led by Stevens Institute with over 20 collaborating university partners—to advance SSE

- **Published the SSE Research Roadmap in August 2010**
 - Outlines approach for advancing SSE definitions, metrics, frameworks, and human capital through coordinated research modules
 - Captures input from 50+ industry, academia, and government experts

- **Conduct follow-on research into “System Aware” Security**
 - Prototype secure design patterns and study system performance impacts
 - Physical and virtual configuration hopping
 - Diverse redundancy of components
 - Voting mechanisms
 - Develop scoring model for evaluating efficacy of security solutions
 - Identify contribution of individual security services
 - Determine effectiveness of security services within a security architecture
 - Evaluate cost and collateral impacts
In Summary

• **Holistic approach to security is critical**
 – To focus attention on the threat
 – To avoid risk exposure from gaps and seams

• **Program Protection Policy provides overarching framework for trusted systems**
 – Common implementation processes are beneficial

• **Stakeholder integration is key to success**
 – Acquisition, Intelligence, Engineering, Industry, Research Communities are all stakeholders

• **Systems engineering brings these stakeholders, risk trades, policy, and design decisions together**
 – Informing leadership early; providing programs with risk-based options
Questions?