4. TITLE AND SUBTITLE

Exploring Electrical and Magnetic Resonances from Coherently Correlated Long-Lived Radical Pairs towards Development of Negative Refractive-Index Materials

6. AUTHOR(S)

Bin Hu

8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996

10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Office of Scientific Research
875 North Randolph Street
Suite 325, Room 3112
Arlington, VA 22203

12. DISTRIBUTION / AVAILABILITY STATEMENT

distribution A

14. ABSTRACT

During the project period from August 15, 2009 to February 14, 2011, the major achievements include (1) generation of radical pairs by using photoexcitation, (2) determination of magnetic and electric signatures of radical pairs, (3) modification on permittivity and permeability by using radical pairs, (4) mutual coupling between permittivity and permeability, and (5) high Seebeck effect from hybrid metal/polymer/metal thin-film device. In summary, this project has established two new experimental approaches: (i) using radical pairs for the development of molecular metamaterials and (ii) using hybrid metal/polymer/metal thin-film design for the development of highly efficient thermoelectric devices.
Project title: Exploring Electric and Magnetic Resonances from Radical Pairs towards Development of Negative Refractive Index Molecular Materials

Grant number: FA9550-01-0624

Project period: August 15, 2009 – February 14, 2011

Principle investigator: Bin Hu – University of Tennessee

Research collaborator: Augustine Urbas – Air Force Laboratory – WPAFB
I. Abstract:

This project has developed two new approaches: (i) using radical pairs to modify permittivity and permeability towards the development of molecular metamaterials and (ii) using hybrid metal/polymer/metal thin-film design to separately control electrical and thermal conductions for the development of highly efficient thermoelectric devices. The major achievements are reflected by the following successful experimental discoveries.

1. Radical pairs have been generated with tunable electric and magnetic dipole moments in donor-acceptor molecular systems under photoexcitation.
2. Magnetic and electric signatures of radical pairs has been determined by photoinduced EPR (electron paramagnetic resonance) and photoinduced dielectric measurement.
3. Both permittivity and permeability have been modified by using radical pairs in molecular systems. The permittivity can be changed dramatically after the radical pairs are generated under photoexcitation. The resonant frequency of photoinduced EPR can be shifted after the radical pairs are generated under photoexcitation.
4. The magnetocapacitance measurements have discovered that permittivity and permeability can be coupled by photogenerated radical pairs. This coupling provides a foundation for realizing electromagnetic resonance towards the development of molecular metamaterials.
5. High Seebeck effects have been achieved by using hybrid metal/polymer/metal thin-film design.
II. Selected major discoveries:

1. Magneto-optical response has been observed from radical pairs by magnetic field effects of photoluminescence in donor-acceptor (TPD+BBOT) system (Fig. 1)[1].

![Fig. 1 Photoluminescence spectrum from radical pairs (a) and photoluminescence intensity as a function of magnetic field for radical pairs (b). Note: photoluminescence from non radical pairs are insensitive to magnetic field.](image1)

This experimental study has found that the photoluminescence from radical pairs is sensitive to magnetic field. This experimental phenomenon forms a foundation to use radical pairs for modification of permittivity and permeability.

2. Magnetic signature of radical pairs has been determined by photoinduced EPR in donor-acceptor Ir65+TCNB system (Fig. 2)[2].

![Fig. 2 Photoinduced EPR observed from donor-acceptor (Ir65+TCNB) with low (a), middle (b), and high (c) solution concentrations under photoexcitation of 10 mW/cm².](image2)

The photoinduced EPR results show the following remarks.

1. Low-concentration liquid shows only one peak, suggesting the existence of radicals.
2. Middle-concentration liquid shows two well-resolved peaks, suggesting the existence of both radicals and radical pairs.
3. High-concentration liquid shows two un-resolved peaks, suggesting the existence of high-density radicals and radical pairs.
3. We have successfully measured dynamic processes of radical pairs by using transient photoinduced absorption at WPAFB (Dr. Urbas group) by using light-emitting radical pairs formed in donor-acceptor (Pyrene+DMA) system[3]. We can see in time-dependent measurement that the density of radical pairs (435 nm) increases as the excitons decrease in density in Pyrene (415 nm) and DMA (490 nm). This successful measurement provides important information to determine the electromagnetic response time of radical pairs for the development of permittivity and permeability resonances.

4. We discovered that photogenerated radical pairs can generate a coupling between permittivity and permeability (Fig. 4)[4]. We can see in time-dependent measurement that the density of radical pairs (435 nm) increases as the excitons decrease in density in Pyrene (415 nm) and DMA (490 nm). This successful measurement provides important information to determine the electromagnetic response time of radical pairs for the development of permittivity and permeability resonances.

4. We discovered that photogenerated radical pairs can generate a coupling between permittivity and permeability (Fig. 4)[4]. We can see in time-dependent measurement that the density of radical pairs (435 nm) increases as the excitons decrease in density in Pyrene (415 nm) and DMA (490 nm). This successful measurement provides important information to determine the electromagnetic response time of radical pairs for the development of permittivity and permeability resonances.

5. We discovered a new approach to develop high Seebeck effects by using common metal and conducting polymer materials based on hybrid metal/polymer/metal thin-film design through interface control (Fig. 5)[5]. The obtained Seebeck effects are comparable to highly efficient inorganic semiconductors.
In summary, this project has established two new approaches: (i) using radical pairs to modify permittivity and permeability for the development of molecular metamaterials and (ii) using hybrid metal/polymer/metal thin-film design to separately control electrical and thermal conductions for the development of highly efficient thermoelectric devices.

Fig. 5 Hybrid metal/polymer/metal thin-film thermoelectric device and Seebeck effect.
III. Archival publications

Bin Hu*, Liang Yan, and Ming Shao,

Liang Yan, Ming Shao, Carlos F. O. Graeff, Ivo Hummelgen, Bin Hu*

[3] Dynamic behavior of photogenerated radical pairs for application of molecular metamaterials
Liang Yan, Jon Slagle, Augustine Urbas, and Bin Hu*, to be published.

Huidong Zang, Liang Yan and Bin Hu*, to be published.

[5] High Seebeck Effects from Hybrid Metal/Polymer/Metal Thin-Film Devices”
Liang Yan, Ming Shao, Hsin Wang, Doug Dudis, and Augustine Urbas, and Bin Hu*