

AFRL-RX-WP-TR-2012-0347

CLOSED LOOP ANALYSIS META-LANGUAGE
PROGRAM (CLAMP)

Mangus Chisterson

Intentional Software Corporation

 MAY 2012
Final Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RX-WP-TR-2012-0347 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

_______//SIGNED//__________________ ________//SIGNED//_________________
C. BRANDON LOVETT, Program Manager SCOTT M. PEARL, Branch Chief
AFRL/RXMS AFRL/RXMS

This report is published in the interest of scientific and technical information exchange,
and its publication does not constitute the Government’s approval or disapproval of its
ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if
it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
 May 2012 Final 19 May 2011 – 31 May 2012

4. TITLE AND SUBTITLE
CLOSED LOOP ANALYSIS META-LANGUAGE PROGRAM (CLAMP)

5a. CONTRACT NUMBER
FA8650-11-C-7129

5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

62303E
6. AUTHOR(S)

Mangus Chisterson
5d. PROJECT NUMBER

3000
5e. TASK NUMBER

00
5f. WORK UNIT NUMBER

 M0129700
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Intentional Software Corporation
2821 Northup Way, Suite 250
Bellevue, WA 98004-1439

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Materials and Manufacturing Directorate
Wright-Patterson Air Force Base, OH 45433-7750
Air Force Materiel Command
United States Air Force

 Defense Advanced Research Projects
Agency/ (DARPA)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

 AGENCY ACRONYM(S)
 AFRL/RXMS
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)
AFRL-RX-WP-TR-2012-0347

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES
The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or
disclose the work. PA Case Number and clearance date: 88ABW-2012-3762, 5 July 2012. This document contains color.
14. ABSTRACT
The Closed Loop Analysis Meta-language Program (CLAMP) sought to develop an Adaptive Vehicle Make (AVM)
Workbench, including: 1) A set of common foundation meta-languages that describes a subset of relevant META Design
languages and iFAB Foundry languages and relationships between them. 2) A meta-language analyzer that processes models
in those languages and provides closed loop manufacturability feedback to designers. 3) Synthesized manufacturability
constraints with a set of foundry libraries. The constraints (and design rules) are expressed independently of the chosen design
language(s).
15. SUBJECT TERMS

Meta-language, design, foundry, manufacturability
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT:
SAR

18. NUMBER OF
PAGES

 34

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 C. Brandon Lovett
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution unlimited.

Table of Contents

Summary ... 1
Introduction ... 3
Methods, Assumptions, and Procedures ... 5
Results and Discussion .. 7

iFAB Library integration .. 7
Foundry Configuration Exercise ... 15
META-iFAB Exercise .. 19
Try CLAMP on Commercial design process .. 20

Conclusions ... 26

Appendix 1: Manufacturing Annotation User Model ... 27

ii
Approved for public release; distribution unlimited.

List of Figures

Figure 1. Overview of Foundation languages developed. The arrows shows dependencies
between the various foundation languages. .. 2
Figure 2. AVM Workbench. Design and iFAB models integrated through a meta-language.
Manufacturability Constraint Analyzer runs off the meta-language models. 3
Figure 3. Boeing MCPML library Source Data .. 8
Figure 4. M-SysML raw MongoDB data exported as json objects. ... 11
Figure 5. M-SysML uml schema that should be used to interpret the data above. 11
Figure 6. Some example data imported into the AVM Workbench. .. 12
Figure 7. The library data as imported and transformed into the normalized Foundry language
(note that the projection has not been tweaked to a desirable syntax). ... 12
Figure 8. GTech MSysML machine instance data in the foundation languages. 13
Figure 9. GTech Processes in the Manufacturing process language. ... 14
Figure 10. MSysML-Mongo to Foundation language schema mapping. 14
Figure 11. MSysML-UML schema to foundation language schema. ... 15
Figure 12. BOM natively projected in the AVM Workbench rather than Excel. 16
Figure 13. Product to be manufactured. .. 20
Figure 14. Flexible cell layout. ... 21
Figure 15. Schematic cell layout. .. 21
Figure 16. Manufacturing process library for FLEXA cell. ... 23
Figure 17. Foundry description for FLEXA cell. ... 23
Figure 18. Process plan for FLEXA cell. .. 24
Figure 19. Primitive Manufacturing process operations. .. 24
Figure 20. Sequence Planner showing possible parallel operations. .. 25
Figure 21. Optimized process plan Gantt chart constrained with available resources. 25

1
Approved for public release; distribution unlimited.

Summary

 The Closed Loop Analysis Meta-language Program (CLAMP) sought to develop an
Adaptive Vehicle Make (AVM) Workbench, including:

1) A set of common foundation meta-languages1 that describes a subset of relevant
META Design languages and iFAB Foundry languages and relationships between
them.

2) A meta-language analyzer that processes models in those languages and provides
closed loop manufacturability feedback to designers.

3) Synthesized manufacturability constraints with a set of foundry libraries. The
constraints (and design rules) are expressed independently of the chosen design
language(s).

The AVM Workbench is built on technology developed by Intentional outside of this
DARPA program that allows an unlimited set of integrated design and foundry languages.
It uses consistent cross language representation and allows substitution of different
Design and Foundry languages.

The picture below shows an overview of the languages developed and integrated. The
main focus has been on:

• Product Language – Language to describe a product model as output from a
design process using one of the META tool chains and input to an iFAB Foundry.
This product model is used to automate the manufacturability feedback to META
designers from one or more iFAB Foundries.

• Manufacturing Process Language – Language to describe a synthesized version
of the iFAB/C2M2L Manufacturing Model Libraries (MML) which is used to
compute manufacturability feedback.

• Foundry Language – Language to describe a Foundry and its capabilities
expressed in terms of resources and what manufacturing processes it can perform.

• Process Plan Language – Language to describe instantiated process plans of how
to manufacture a certain product in a specific foundry.

The languages that are used as integration points into these foundation languages are also
illustrated in Figure 1, e.g. Modelica, SysML, CyPhy, M-SysML, etc. These are existing
languages or languages being developed under the DARPA AVM program that we have
built integration points to.

1 We define a meta-language as a language that operates on other languages.

2
Approved for public release; distribution unlimited.

Figure 1. Overview of Foundation languages developed. The arrows shows dependencies between the
various foundation languages.

The foundation languages are used to calculate manufacturability feedback at various level of
fidelity for a designer to assess their submitted design. At the highest level we want to be
able to compute answers like:

Transit time = 𝒎𝒊𝒏 𝑻𝑺𝒕𝒐𝒑 − 𝑻𝑺𝒕𝒂𝒓𝒕
Foundry Cost = 𝒎𝒊𝒏∑ 𝑷𝑴𝒌

𝒏
𝒌=𝟏

Unit Cost = 𝒎𝒊𝒏∑ 𝑷𝑹𝒌
𝒏
𝒌=𝟏 ;
𝑹 = {𝑪𝑶𝑻𝑺, 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒔, 𝒄𝒐𝒏𝒔𝒖𝒎𝒂𝒃𝒍𝒆𝒔 }

3
Approved for public release; distribution unlimited.

Introduction
Using Intentional’s Language Workbench, Intentional Domain Workbench (IDW), we
researched and developed an AVM Workbench that supports iFAB Technical Area 3 objectives.
We collaborated with other META and iFAB teams to implement (a subset of) their languages in
a substitutable way, thereby allowing these languages to be integrated, focused, adaptable, and
more plentiful. The research showed that the old way of processing language models through
information interchange formats and transformation tools, which create data redundancy, can be
a thing of the past. Instead we give designers and foundry engineers an integrated experience of a
rapid, semi-autonomous closed loop feedback process of manufacturing constraints to a design.
The AVM Workbench implements language schemas for the META languages and iFAB
languages. All language schemas use a small set of foundation languages to express common
concepts like math and physical properties. An Analysis meta-language is used to express
manufacturability constraints and design rules that apply across models expressed in any of the
design or foundry languages.

Figure 2. AVM Workbench. Design and iFAB models integrated through a meta-language.
Manufacturability Constraint Analyzer runs off the meta-language models.

CLAMP and the AVM Workbench illustrated a novel, scalable approach for design and
manufacturing engineers using independent, yet inter-dependent, languages to optimize
vehicle design and foundry configuration. In fully developed and deployed CLAMP
workflows:
• Design engineers rapidly respond to manufacturability constraints thanks to the

semi-automatic feedback provided by the AVM Workbench.

• Manufacturing engineers perform cost analysis earlier in the product lifecycle –
starting from the earliest stages of design.

4
Approved for public release; distribution unlimited.

• Language engineers improve existing relationships between design and foundry
languages – and add new ones – independent of models expressed in those languages.
(These improvements will result in a continuous strengthening of the relationship
between design and foundry over time.)

Rather than relying on manual feedback processes using standalone, general purpose
languages and tools, engineers rely on AVM Workbench to express their intent precisely and
to respond quickly to the precisely expressed intent of others. Rapid feedback provided by
AVM Workbench results in shorter design iterations and well-informed engineers, both of
which lead to better vehicle designs – vehicles that can be manufactured in small
quantities at lower cost with production-level quality.

5
Approved for public release; distribution unlimited.

Methods, Assumptions, and Procedures
First we performed an analysis of all languages that have been used or proposed from other
META and iFAB teams. The following languages represent the language choices for various
teams. The result for the META language analysis is summarized in the table below.
META Team Requirements Structure/Architecture Dynamics/Behavior CAD/Physical
Vanderbilt DOORS, SysML CyPhy(CLNG, AML),

SysML (SysArch), Formula
Bond Graph,
Modelica, Simulink,
Matlab

Pro/E

IBM/UTRC (SysML) SysML (Rhapsody), MoCC Excel, OCL, CPlex ?
BAE (SysML) SysML (MagicDraw),

AMIL
Modelica, Matlab,
Simulink

Pro/E

Rockwell
Collins

 SysML (Sparx), AADL,
Lute

EDICT ?

Adventium (SysML) SysML (Topcased), AADL Excel, Modelica Pro/E

The analysis shows that there is some consensus and convergence, but also a wide variety:

- For structural/architectural modeling, SysML was mentioned by all teams, but each team
seems to have chosen a different tool implementation for SysML. SysML is central to
some teams, and more peripheral to other teams.

- For dynamic/behavioral modeling, Modelica is mentioned by three of the teams. Excel,
Matlab, Simulink by two teams.

- For CAD, ProE is mentioned by 3 teams. 2 teams made no reference to CAD.
Surprisingly, CAD does not seem to be central for any of the teams; they are very
peripheral to all teams that mentioned them.

- Requirements were mentioned by a few teams, but no team put a central focus on this. A
bit surprising since Requirements Engineering has evolved recently as its own discipline
with the recognition that many design problems can be surfaced at the requirements
level. SysML is mentioned by a few teams, but SysML does not have deep support for
Requirements.

- We did not analyze verification languages as they are outside of the current scope of
CLAMP.

We ended up focusing on the following languages: CyPhy, Modelica and SysML. For CAD we
ended up focusing on FreeCAD, OpenCascade and SolidWorks. Integrating CAD elements into
the meta data of a design is particularly not well developed due to the limitations of current tools
and standards (like STEP). Appendix 1 discusses an approach to this discussion that eas
explored in our research.
Our focus has been on not only on representing the languages, but also to integrate them. With
respect to integrating SysML and Modelica language models there have been a number of
efforts in the last few years. The following two are the most important ones:

6
Approved for public release; distribution unlimited.

- One effort, ModelicaML2, is focused on expressing Modelica models as a SysML/UML
profile. The benefits would be to allow Modelica models be expressed as graphical models,
but the drawbacks are that they require the use of a new SysML/UML profile and therefore
would not work with native SysML models.

- Another effort started in December 2008, and is currently ongoing within OMG, is to create
an official SysML – Modelica Transformation specification3. It is currently under
development, and a beta 1 version is currently available for review. This specification also
requires additional new profiles to be learned by users. Furthermore, it relies on manual and
hand coded transformation steps to be feasible.

Our approach within CLAMP for language integration in general, and for SysML and Modelica
integration in particular, is quite different from these efforts in that we try to preserve the
intention from the designer in what they have already done by using different languages to
express and refine those design intentions. We try to avoid defining new language constructs for
designers to learn as part of this process.

For iFAB languages we have also done a language analysis. A summary of the result is in
the table below.

2 Towards Unified Systems Modeling with the ModelicaML UML Profile. Pop, A., and Akhvlediani, D., and
Fritzson, P. International Workshop on Equation-Based Object-Oriented Languages and Tools. Berlin,
Germany, Linköping University Electronic Press, 2007
Towards Unified System Modeling and Simulation with ModelicaML: Modeling of Executable Behavior Using
Graphical Notations. Wladimir Schamai, Peter Fritzson, Chris Paredis and Adrian Pop, Modelica Conference
2009.
3 An Overview of the SysML-Modelica Transformation Specification. Paredis, C.J.J., Bernard, Y., Burkhart,
R.M., de Koning, H.-P., Friedenthal, S., Fritzson, P., Rouquette, N.F., and Schamai, W.in Proceedings of the
2010 INCOSE International Symposium, Chicago, IL, July 12-15, 2010.
SysML-Modelica Transformation, FTF Beta 1. OMG document ptc/2010-11-30

Team Assumed input Factory languages
U of Delaware CAD: CATIA LIMS (Liquid Injection Molding Software),

SIMULIA, DELMIA, ABAQUS, Labview, Matlab
CMU/UMD/UMI/LM/P&M CAD? Human operator instructions, …
Boeing/GM MCPML (GME based)
Penn State CAD

Trade Space
Visualizer

Foundry Description Language (FDL)
Product Description Language (PDL)

PARC CAD (OpenCascade) Graph Grammar Rules
Georgia Tech CAD M-SysML (MagicDraw)

7
Approved for public release; distribution unlimited.

Results and Discussion
iFAB Library integration
Our focus has been on integrating the iFAB Libraries from Boeing and GTech. The import of
data from Boeing and GA Tech follows a common process with three main steps. First, the
schema information for the library is imported. Second, this imported schema is used to guide
the import of instance data. In the MLibrary case, the imported schema is described in the IDW
Schema language, and this guides the import of a raw JSON dump from the database instance
data. The schema may come from either a MagicDraw file or the database representation of the
schema;, each has its own conversion. In the MCPML case, the imported schema is described in
the language of DBML, and is used to both guide the queries to the database and the form the
results of the queries take once imported.
Finally, the third step in either case, once all the instance and schema data is represented in the
system, is to transform the entire document concurrently to our foundation languages for
manufacturing process and products, which contain representations of both schema and instance
information. For example, operationtypes and attributedefs come from the MSysML schema
information, while resourcetypes come from the machine instance data in both libraries

Boeing: We have provided feedback on the Boeing effort on their Assembly library, see below.
Below are some screenshot on the Bopeing library data and how it is integrated into the iFAB
foundation languages together with GTech.

8
Approved for public release; distribution unlimited.

Figure 3. Boeing MCPML library Source Data

Boeing contributed three files since the January PI meeting:

1) 2012-01-26_MCPML_Queries.docx
2) 2012-02-01_iFAB_MCPML_Interface_d09.docx
3) Human Assembly Process Model_11.xlsx (2012-01-26)
Also discussed is the “Human Capabilities for Jan PI meeting.pptx” presented at the January PI
meeting, hereafter abbreviated “Human Capabilities”.

1) The queries in the first file are reasonable in content and spirit. General comments:

o Most “move” operations are overspecified and should be considered optional. Emphasize
other processes. Moves can usually be discovered by rules.

o If transport is not considered, the “foundry x” clause is not necessary, since it amounts to
possessing the resources and consumables in question.

o All cost and time numbers should be limited to one significant figure.
o All references to “configure” and “configuration” (e.g. of resources) should be considered

optional, since they are hard to interpret and less useful than some of the other items.

9
Approved for public release; distribution unlimited.

What is meant by a feature in the queries? If possible, Boeing should address feature nature not as
a standalone contribution but in the terms that Georgia Tech has begun to define for describing
features. A plan for integration with GATech features is forthcoming. Illustrative examples of
(product,feature) pairs are essential for all questions that relate features.
Possible/not possible questions are more useful now than “how long”. How long questions’ precision
should probably be limited to one significant figure, based on the current limits of discriminating
between the different operations in relation to the product. A list of the questions classified as
Important / Optional is appended below.
2) Boeing’s modeling objectives will be adequately validated with a simple batch programs.
Development of a web service should not be necessary. Integration efforts are straightforward
starting from a model data set and an interpreting program. Based on existing efforts,
configuration/model data for the programs may be most easily sourced from spreadsheets. Use a
well crafted attribute-driven access mechanism for spreadsheet data retrieval. For example, looking
up row 9 of the Taxonomy table could be achieved by a helper function:
 SpreadsheetGet(

“Activity”,”Adust”,
 “Object Category”, “PPE”
 “Plant Equipment, Material and Tool”, “Ring Cover”)

This would return a dictionary from which a “Hand Posture” of “Precision Grip” could be obtained.
Programs written against spreadsheets should have a routine to check for errors and report when the
spreadsheet is not well formed.
The top two considerations for choosing contribution formats of Spreadsheets, XML, MCPML, or
something else should be the (anthropometry or other) experts’ productivity in:

1) crafting data
2) applying crafted data to configure decision support algorithms.

 Collecting feedback early and often is essential here.
3) Human assembly process model should focus on getting a way to programmatically evaluate the
various anthropometric information. The biggest easiest improvements fall into two categories.

3.a) Relate the lower fidelity postures to a higher fidelity model, for purposes of
documentation and maintaining valid correspondence between the low and high fidelity
models.
For example, the only information on Riveting is:
Rivet; Tool; Rivet Gun; Obtain, Align, Activate; Maximum Grip; move; ; get; ; move; ; put; ;
move; ; put; ; load
How is “Maximum grip” different from “Full Hand Power Grip”?
The January “Human Capabilities” presentation referred to the high fidelity model SANTOS,
yet there is no associativity with the low fidelity model summarized in the spreadsheet. The
low fidelity model will not be useful without associativity. One way to achieve associativity
would be to encode coordinates of SANTOS in the spreadsheet. The 25 degrees of freedom
of Santos’ hand could be recorded as 25 named columns in a spreadsheet. Each row would
encode one hand gesture and give the 25 real numbers for describing the gesture. A script
should be written to make a thumbnail of each hand posture for documentation purposes.

10
Approved for public release; distribution unlimited.

Building on SANTOS association, strength and fatigue thresholds for a low fidelity model
should be partially (and in some cases wholly) extractable from SANTOS by programmatic
means.
Instead of specifying explicit sequences, consider either raising the level of abstraction by
providing precedence (aka dependency) relationships, or by focusing on the aspects of
operations other than their final sequence.
3.b) Focus on decision thresholds for matching manufacturing processes to annotated
products. The “Reach Zone Abstractions” (slide 7) from “Human Capabilities” seem to be a
reasonable starting point. The degrees of freedom of each threshold have to provide the
ability to configure a program to match or not match in a given product context. Concretely
describe some artificially simple products and/or draw in CAD so that particular grips or
reaches can be matched or not matched based on programs relating those degrees of
freedom. For example:
“Grip type 123” means the ability to:

 maintain grasp an object up to 1”
 move inside a cylinder of 4.5” radius and 6” depth
 rotate the object (e.g. a nut) for threading inside the hole
 torque to 1 lb-in
 repeat operation at least 20 times per hour and 100 times per shift

Checking such a description against a product can now be decomposed by a program which
can identify one or more cylinders against a product feature, and a rule to check the
attributes above on the cylinder. The cylinder is not the only kind of geometry appropriate
useful to this kind of model. Intersections of 2-3 perpendicular half planes would probably
also be a useful starting point.
A grasp fitting inside a cylinder is an example of a bounding constraint, whereas slide 8 of
the January “Human Capabilities” is a reaching constraint. These two kinds of constraints
and others are all useful for modeling process matching.
 Again, favor precedence relationships over explicit sequences, but both are optional.

</Boeing feedback>
We are continuing to work closely with Boeing.

GTech. We have received an updated MongoDB and models from GTech and are working on
the integration. So far the M-SysML schema is used to guide the import of the instance data from
the GA Tech M-Library. In order for this to happen, the workbench converts the schema from a
generic XML-format representation (M-SysML_v66_2012-01-18.uml, obtained from GA Tech
group as an export from MagicDraw) to the workbench’s internal schema language. This
conversion makes use of a general schema for SysML, as well as a custom transformation from
SysML to the schema language. This internal representation of the M-SysML domain can then
be processed by the workbench to generate code for the import of a raw JSON-format dump of
the M-Library into this M-SysML domain. In this internal representation, additional metadata
can be attached to the instance data based on the schema, including the units of the attributes, or
attributes that are expected but missing from the instance data. Next steps was to transform

11
Approved for public release; distribution unlimited.

schemas and data into CLAMP foundation languages and thus reconcile with Boeing iFAB
models.

Figure 4. M-SysML raw MongoDB data exported as json objects.

Figure 5. M-SysML uml schema that should be used to interpret the data above.

12
Approved for public release; distribution unlimited.

Figure 6. Some example data imported into the AVM Workbench.

Figure 7. The library data as imported and transformed into the normalized Foundry language (note that
the projection has not been tweaked to a desirable syntax).

13
Approved for public release; distribution unlimited.

Figure 8. GTech MSysML machine instance data in the foundation languages.

14
Approved for public release; distribution unlimited.

Figure 9. GTech Processes in the Manufacturing process language.

Figure 10. MSysML-Mongo to Foundation language schema mapping.

15
Approved for public release; distribution unlimited.

Figure 11. MSysML-UML schema to foundation language schema.

Foundry Configuration Exercise
The first test in the program was to apply the various iFAB Languages to a Foundry
Configuration Exercise. The Foundry Configuration Exercise (FCE) began as communication by
email and phone. The scope was set to start with process planning with the tangible example to
assemble the engine and transmission of a Caterpillar 966 front loader. The results of the
communication grew to include some written artifacts in PDF, Excel and Powerpoint.
Our main contribution to this conversation was to collect the interests of the various participants
and aggregate some of the best sources of data into one machine processable corpus that would
be useful to all. This data is in the form of xml. It contains data harvested from the Cat 966 field
manual by Jonathan Vance’s team at Boeing, Powerpoint slides also from that team, and an M4
bill of materials contributed by Penn State.
We are seeing our role in the continuing exercise as bridging the gap between the various
participants. Part of the bridging exercise was spending several hours in calls and email (and in
one case an onsite visit) trying to assess the data needs of the various participants within the
exercise scope. While we provided an xml file, we also provided a translation so that if extra

16
Approved for public release; distribution unlimited.

attributes were added to the original spreadsheet data, that it could flow through to the generated
xml, implanted in Excel using worksheet functions. So the other part of the bridging exercise
was in some sense teaching the craft of structured data creation and its benefits, by example.
The response so far has been positive.
We plan on improving the xml workbook for the scope of the current exercise but not longer.
The reason is that we believe we can do better in the longer term using our language workbench
technology. In a purely technological sense, it would have been better for all participants to
download our system and use it for data curation in the FCE. That is one of our system’s many
purposes. However, we wanted to lower the learning curve for busy people who often hardly
have time to take the 30 minute phone calls. We wanted them to be empowered to own and
improve, and recontribute the shared data, so we illustrated the principles of structured editing
with Excel worksheet functions. We hope that the xml data and spreadsheet data will help
people understand the benefits of structured editing and how they can have an even better
experience by incorporating our technology into their work, see Figure below. Note now that the
particular parts and their description are now references to their correct element from a
component library or META design model.

Figure 12. BOM natively projected in the AVM Workbench rather than Excel.

Perspectives
CMU
The CMU team has a focus on process planning on a narrow domain. As far as we can tell, the
CMU team plans on emitting a process plan with all degrees of freedom removed. Welding
contains, as does any specific manufacturing process, certain assumptions about how the work
may proceed. They are strongly committed to automating the fabrication of their product.

17
Approved for public release; distribution unlimited.

However, I am not quite sure if they will produce any process planning artifacts usable by other
participants. They have been very interested that the FCE data contains all the aspects that they
need to consume, but less eager to talk about what others would like to consume. Since the
CMU team will be analyzing every nut and bolt in the foundry configuration exercise, and Penn
State is expecting a bill of materials to contain only three nodes for engine, transmission and
frame, there may be a possible data interchange between the two teams of only three nodes.

Boeing
Boeing has a background in hands on processes, and have done a great job of getting a lot of that
data in one place. We are very curious at about what level their MCPML language will turn out
to be actionable. The language conflates many primitive ideas about manufacturing process with
other ideas about foundries and instructions. We also are concerned that they have outsourced
their specific data entry to a subcontractor at Vanderbilt. The subcontracting has insulated them
from being aware of just how much labor is being performed to enter even very simple examples
in the MCPML language. We fear that the data entry aspect of MCPML may make the language
unusable. We would encourage the AVM program to have another participant create a model in
the MCPML language and have Boeing process it by machine in some useful way.

Penn State
Penn State has a background in agent-based architecture and the operations management aspect
of manufacturing. Instead of building a computer-guided search through the foundry
configuration trade space, they plan on showing a smart user interface to a smart user and
allowing the user to completely guide the optimization in the foundry configuration space. Their
biggest risk is dependence on a high quality cost function to accurately reflect the assignment of
different foundry resources to units of work on the product. While there has been some
solicitation of parametric cost data from other participants, we do not see how such a cost
function can be created without correct identification of the degrees of freedom of said cost
function. The processes Penn State wants to cost are very few: positioning, fixing and
inspecting. Penn State would like to roll up their bills of materials to approximately 10 high
level nodes (engine, transmission, frame, battery, etc) and decide amongst assembly sequences
approximately 9! in number. The kind of decision process Penn State wants to answer is to for
example compare these two process plans:

1) Move and fix engine to chassis. Move and fix transmission to engine and chassis.
2) Move and fix transmission to chassis. Move and fix engine to transmission and chassis.

Bulk moving is perhaps the easiest element to cost, since the equipment handling capability will
be primarily determined by mass. Fine level positioning is much harder to quantify. The
number and type of kinematic degrees of freedom of each fastening will be a big cost
contributor. It’s a lot easier to ensure that planar surfaces on two objects are in contact than it is
to ensure that bolt holes line up. Exhaustive lists of the degrees of freedom and informed
framing of the costs will be essential to their objectives.

18
Approved for public release; distribution unlimited.

Suggestions
The FCE illustrated why machine processable data is one of the basic components of interaction
between various participants. We recommend creation of more machine readable data to be
created, shared, and exchanged among teams. We believe that continued exchange of each
participant’s core data structures, both input and output, will be essential to the continued
successful development of the AVM toolchain.
Requiring implementation of challenge problems pose a concern to the direction of the program,
in that a problem which is not in the path of the main research direction of a participant may be
distracting to their particular research goals. The upside is of course development of a common
set of problems for teams to use in communication both verbally and in software. We believe
that the AVM program can expand the number of challenge problems from the current level and
still have the upside outweigh the downside.
In cases where it does not make sense for multiple teams to both be consuming as input the same
set of data because the distraction from central goals would be too high, the AVM program could
instead negotiate a data input/output interchange between groups of teams where the members of
the group are defined as either producers or consumers or both. For example, Georgia Tech
could produce an input file for CMU to consume, or a CMU analysis program could produce a
file for the Penn State team’s software to consume. The negotiation should result in a schema
and illustrative example.
Beyond a language as syntax, the meaning of any language (also known as its semantics) lies in
illustrations of how to perform analysis with data expressed in the language. We recommend an
all around higher expectation of illustrative example analysis programs on every contributed
machine-readable document. Collaboration between teams is especially relevant to confirm that
the illustrative examples are sufficient in number and clarity.

19
Approved for public release; distribution unlimited.

META-iFAB Exercise

This exercise is ongoing as of this writing.

20
Approved for public release; distribution unlimited.

Try CLAMP on Commercial design process
A requirement from the original iFAB BAA was to show that the developed approach is also
applicable to non-META design processes. Together with Chalmers we are trying CLAMP on
commercial industry manufacturing processes. We have used an example from an existing
project with Volvo Aero called FLEXA, to optimize a multi-robot cell with four robots, a set of
machining stations and a human working in unison for parts manufacturing, see below. The
objective is to design a flexible automation cell that can manufacture an array of parts for a
turbine structure from a variable product structure.

Figure 13. Product to be manufactured.

The Volvo Aero cell layout consists of four robots, one human, a variable number of milling
machines, washing machines, deburring machines, measuring stations as well as fixtures, and
work tables.

21
Approved for public release; distribution unlimited.

Figure 14. Flexible cell layout.

Figure 15. Schematic cell layout.

22
Approved for public release; distribution unlimited.

The operation sequence is:
 Process times in

minutes
Process Sequence of Operation Prod.

A-C Prod. D-
H

Mtrl handling Loading of part 1 (hub) into milling fixture 2 2
Parts info Part identification (reading of serial number)

Milling Milling of welding surfaces and locator points 32 32
Milling Deburring of edges of welding surfaces if required
Milling Measuring of machined surface, in milling machine

Mtrl handling Unloading of part from milling fixture 2 2

Mtrl handling Loading of part 2 (shroud) into milling fixture 2
Parts info Part identification (reading of serial number)

Milling Milling of welding surfaces and locator points 42
Milling Deburring of edges of welding surfaces if required
Milling Measuring of machined surface, in milling machine

Mtrl handling Unloading of part from milling fixture 2

Mtrl handling Loading of part 3 (case) into milling fixture 2 2
Parts info Part identification (reading of serial number)

Milling Milling of welding surfaces and locator points 22 22
Milling Deburring of edges of welding surfaces if required
Milling Measuring of machined surface, in milling machine

Mtrl handling Unloading of part from milling fixture 2 2

Mtrl handling No milling on part 4, ready to weld

Mtrl handling Loading of part into cleaning station
Parts info Part identification (reading of serial number) if required

Washing Washing to remove oil/emulsion film. 3 (4) parts 10 10

Brushing Brushing on hub. 2 2
Brushing Brushing on case. 2 2
Brushing Brushing on shroud. 3
Brushing Brushing on vane. 3 3

Washing Washing to remove dust after brushing. 3 (4) parts 10 10

Mtrl handling Loading of parts into welding fixture 8 8
Parts info Part identification (reading of serial number)

Welding Laser welding in Argon atmosphere. 3 (4) parts to 1 20 20

Parts info Marking of the assembly (new serial number)
Measuring Measuring of the assembly 2 2
Mtrl handling Unloading of assembly from welding fixture 2 2
Measuring Measuring of the assembly 2 2

This example has been entered into the AVM Workbench and was showed at the latest PI
meeting. Below are some screenshots of the manufacturing process library as well as the
foundry itself.

23
Approved for public release; distribution unlimited.

Figure 16. Manufacturing process library for FLEXA cell.

Figure 17. Foundry description for FLEXA cell.

24
Approved for public release; distribution unlimited.

Next is the process plan and some of the primitive operations that will be used for
scheduling, control programs and operator instructions.

Figure 18. Process plan for FLEXA cell.

Figure 19. Primitive Manufacturing process operations.

25
Approved for public release; distribution unlimited.

This cell was entered manually into the AVM Workbench and was run and simulated based
on the throughput criteria and demoed in Camp Pendleton. Based on that model the best
answer was 74 minute cycle time!

Figure 20. Sequence Planner showing possible parallel operations.

Figure 21. Optimized process plan Gantt chart constrained with available resources.

26
Approved for public release; distribution unlimited.

Conclusions

We have build out the support for META-X languages and iFAB languages. For META
languages we focus on:

• CyPhy
• Modelica
• QML
• SysML
• CAD (specifically FreeCAD/OpenCascade and SolidWorks as an example)

For iFAB Languages we focus on

• MCPML (Boeing)
• M-SysML (GTech)
• FDL/PDL/MML (PennState)

To allow us to do cross-language analysis across these languages while still maintaining uniform
semantics across models, our work included a layer of Foundation languages. To support
Manufacturability Analysis we showed languages for Products, Foundry Resources as well as
Manufacturing Processes and Process plans. We use these as foundation languages so that
other language models can map to these languages for analysis.

These foundation languages are VHDL like languages and are built in such a way that other
iFAB and META languages can provide content expressed in these foundation languages. In
particular, these are some examples of content that can be expressed in the foundation languages:

o Product: Product (BOM, assembly), Subassembly, Part, Seam Type (between
parts), Seam.

o Manufacturing Process: Operation Type (pre and post conditions), Resource
Type, Substitution (features).

o Foundry: Foundry, Resource, Consumable
o Process Plan: Process Plan, Instruction (seams, actuals), Alternative (cost),

Schedule (time), Sequence (parallel, arbitrary)

27
Approved for public release; distribution unlimited.

Appendix 1: Manufacturing Annotation User Model

Jeff Henrikson
Intentional Software
Revised Jan 24, 2012

This document describes a user model for FANG participants labeling manufacturing process
and other metadata into CAD models with supporting software. This document is not
prescriptive about particular metadata required for particular manufacturability queries under
a particular iFab model. This document prescribes nothing about geometric elements or
relationships beyond the notions of AP203. A variety of feature recognition and feature-
based design techniques should be implementable using the Manufacturing Annotation User
Model.
The constituents of the Manufacturing Annotation User Model are:
An off the shelf CAD editor
A metadata editor
Suitable extension points and implementations.
Any metadata editor meeting this specification and the specification of the integrated iFab
toolchain should be considered acceptable input in a FANG challenge, including but not
limited to CyPhy, CyDesign, Intentional CLAMP, and Dassault META toolchain.
This document will use the term "strong identity" to mean an identity assigned by an editor to
a document element which:
Is saved to disk in the editor's native format
Can be programmatically obtained by the editor's native API
Is unchanged by edits of sufficiently different elements of the document
Though outside the context of editors, a well known example of strong identity is the use of
globally unique interface identifier (IID) in the Component Obect Model (COM) standard. A
nonexample of strong identity is STEP "Instance name" (e.g. #123 at the beginning of a line),
since they are typically generated from consecutive integers and thus can change drastically
from edit to edit.
This document is primarily concerned with the notion of strong identity supported by the
editors of off the shelf CAD systems.
The manufacturing process and other metadata will be edited in the metadata editor, typically
open at the same time as a CAD editor.
AP203/XML support
To support a given off the shelf CAD editor, one of the following is required:
A.1) (Adapt CAD editor's existing AP203 export filter)
A set of macros for decorating CAD element strong identity information into a format
transportable by the CAD editor's AP203 export. Note that with STEP's approach of identity

28
Approved for public release; distribution unlimited.

stopping with notions such as "Instance name" (e.g. #123), the (temporary) decoration will
not be compliant with STEP. For example, in SolidWorks name properties will pass through
the AP203 export.
A batch reading filter for the AP203 export (P28 or P21 embedding) and recovering the
strong identities from the decorations. The result should be recorded in a P28 (xml)
embedding with an extra XML attribute avmcadid=. The decorations for the strong identities
may be removed so as to be conformant with AP203/xml, with the addition of the avmcadid
attribute.
Even if an AP203 editor is not naturally inclined to export an identity for each solid, surface,
edge, and vertex of the CAD model, the decorating macro and reading script should make a
best effort to compose a strong identity from other strong identities. For example, an edge
could be identified by the identities of two adjacent surfaces.
A.2) A custom AP203/xml export from the CAD tree with avmcadid attribute.
A.3) A lazy (demand-driven instead of batch) DOM-like view of A.2.
A.4) A lazy (demand-driven instead of batch) DOM-like view of A.2 supporting writes to the
CAD store.
(optional) To the extent that feature information is present in the CAD document, the
decoration macros may present it as duplicate elements for AP203 to be recovered by the
reading filter. Note that AP203 does not prescribe feature definitions but AP224 can be used
as a starting point.
Metadata XML
The metadata editor must be able to export its annotations as xml. It should use an xml
attribute avmcadref= to record strong identities from CAD. Thus the avmcadid and
avmcadref pair will follow the IDREF pattern of XML Schema:
http://books.xmlschemata.org/relaxng/ch19-77159.html
By combining the metadata xml and the CAD AP203 xml, we will have an annotated product
model. The consuming application can join the references with definition pieces however
appropriate.
Interactive labeling
To support the interactive labeling of a CAD model, the metadata editor and CAD editors
must supply extension points. In general, different CAD and metadata editors would be
expected to implement different extension points, depending on respective functionality.
All CAD editors should provide:
B.1) A programmatic means of obtaining a strong identity during user interaction. In
scenario A.1, this could be by a special macro that implements strong identity copying to
Windows clipboard. In scenario A.3 or A.4 it could simply be use of the avmcadid attribute.
B.2) A means to visually identify an element with a given strong identity. In cases where the
identified element is offscreen, it should be made visible. A selection in the CAD editor may
be one reasonable notation for visually identifying an element. In cases where strong

29
Approved for public release; distribution unlimited.

identities had to be composed from other identities (e.g. identifying an edge from two
surfaces), the composition must be parsed for interpretation.
All metadata editors should provide:
C.1) A way to record a reference to a strong identity in the CAD editor. In scenarios A.1 or
A.2, this could be done with a paste from Windows clipboard. In scenarios A.3 and A.4
ability to consume the described data source is required.
C.2) A method to invoke B.2 from a selection of a cad reference.
Any windows clipboard data should be transmitted with an IDataObject format string of
"AvmCadref", and use "Text" only as a fallback.

	Summary
	Introduction
	Results and Discussion
	iFAB Library integration
	Foundry Configuration Exercise
	Perspectives
	CMU
	Boeing
	Penn State
	Suggestions

	META-iFAB Exercise
	Try CLAMP on Commercial design process

	Conclusions
	Appendix 1: Manufacturing Annotation User Model

	2012-0347COVER.pdf
	AFRL-RX-WP-TR-2012-0347
	STINFO COPY

